Hoja 2

1) Let Δ_{ABC} be a triangle in the plane. Find the point X, and show or refute its uniqueness, such that the sum of the squares of the distances from X to each vertex of the triangle is minimal. In other words, such that the following quantity is minimal:

$$\overline{XA}^2 + \overline{XB}^2 + \overline{XC}^2$$
.

- **2)** Let $n \in \mathbb{Z}^+$ and f a function $f : \mathbb{Z}_n \longrightarrow \mathbb{Z}_n$ such that f(f(x)) = 1 x, $\forall x \in \mathbb{Z}_n$. Prove that $n \equiv 0, 1 \pmod{4}$. Note: \mathbb{Z}_m denotes the ring $\mathbb{Z}/m\mathbb{Z}$ of integers module m.
 - 3) Let $A_0A_1...A_{n-1}$ a regular n-gon whose circumradius equals 1.
 - Compute the value of $\prod_{k=1}^{n-1} \overline{A_0 A_k}$.
 - Find the maximum value of $\prod_{k=0}^n \overline{PA_k}$ as P ranges over the circumcircle.
- **4)** Consider a non-empty real interval (a,b). Does there exist a function $f:(a,b)\to (0,\infty)$ with Riemann integral equal to 0?
 - 5) Let $\{F_n\}_{n\geq 1}$ be the sequence of positive integers defined by the recurrence relation

$$F_1 := 1$$
, $F_2 := 2$, $F_{n+2} := F_n + F_{n+1}$ $(\forall n \ge 1)$.

Prove that every positive integer can be uniquely decomposed as a sum of distinct F_n 's with no two consecutive terms appearing (that is, if F_n appears in the sum, then F_{n-1} and F_{n+1} cannot appear). For example,

$$10 = 8 + 2 = F_5 + F_2$$
, $20 = 13 + 5 + 2 = F_6 + F_4 + F_2$.

6) Show that the series

$$\sum_{k=1}^{\infty} \frac{\sin k}{k}$$

converges.

- 7) The function f is continuous on the interval [0,1], is differentiable on (0,1) and satisfies the equalities f(0) = f(1) = 0. Prove that there exists some $x \in (0,1)$ such that f(x) = f'(x).
- 8) Suppose u and v are rational numbers such that the sum $\sqrt[3]{u} + \sqrt[3]{v} \neq 0$ is also rational. Prove that then the cubic roots $\sqrt[3]{u}$, $\sqrt[3]{v}$ are both rational.
 - 9) Let f be a positive continuously differentiable function on $[0, +\infty)$. Prove that

$$\int_0^\infty \frac{\sqrt{1 + (f')^2}}{f} \, dx = +\infty.$$