Problem 1. Consider a doubly infinite table of positive integers:

\[
\begin{array}{cccc}
 a_{1,1} & a_{1,2} & a_{1,3} & \cdots \\
 a_{2,1} & a_{2,2} & a_{2,3} & \cdots \\
 a_{3,1} & a_{3,2} & a_{3,3} & \cdots \\
 \vdots & \vdots & \vdots & \ddots \\
\end{array}
\]

Suppose that each positive integer appear exactly 10 times in this table. Prove that for some \(m \) and \(n \), \(a_{m,n} > mn \).

Problem 2. Suppose that a given function \(p(x) \) increases on \([0, c]\) and is differentiable on \((0, c]\), whereas \(p'(x) \) decreases on \((0, c]\). Prove that

\[
\sum_{n=1}^{\infty} \frac{1}{n^2} p\left(\frac{c}{n}\right) < +\infty.
\]

Problem 3. A ball moves endlessly on a circular billiard table. When it hits the edge it is reflected. Show that if it passes through a point on the table three times, then it passes through it infinitely many times.

The same question for a billiard with an elliptic shape.

Problem 4. Determine all integers \(n > 2 \) with the property that there exists one of the numbers \(1, 2, \ldots, n + 1 \) such that after its removal, the \(n \) numbers left can be arranged as \(a_1, a_2, \ldots, a_n \) with no two of \(|a_1 - a_2|, |a_2 - a_3|, \ldots, |a_{n-1} - a_n|, |a_n - a_1| \) being equal.

Problem 5. The sequence \(\{x_n\} \) is defined by \(x_1 = 1/2 \) and \(x_{n+1} = x_n - x_n^2 \) for \(n \geq 1 \). Prove that

\[
\lim_{n \to \infty} nx_n = 1.
\]

Problem 6. One starts with three line segments of lengths 1, 2, 3. Then the segment of length 3 is cut into \(n \geq 2 \) line segments. Prove that from these \(n + 2 \) segments, three segments can be chosen that can form a triangle.