Hoja 1

1) Compute the following limit:

$$\lim_{n\to\infty} \left(1+\frac{1}{n^2}\right) \left(1+\frac{2}{n^2}\right) \cdots \left(1+\frac{n}{n^2}\right).$$

- 2) Show that for every natural number n there are infinitely many Fibonacci numbers which are divisible by n.
- **3)** A function $f: \mathbb{R} \to \mathbb{R}$ satisfies |f(a) f(b)| < |a b| for any $a \neq b$. Prove that f(f(f(0))) = 0 implies that f(0) = 0.
- **4)** Let $n, p \in \mathbb{Z}^+$ with p a prime. Count the number of $n \times n$ matrices whose entries belong to $\mathbb{Z}/p\mathbb{Z}$, with determinant equal to 1 (in other words, congruent to 1 modulo p).

Indication: Consider first p = 3.

- **5)** Does there exist a continuous function f on \mathbb{R} such that $f(f(x)) = e^{-x}$, $x \in \mathbb{R}$?
- 6) Let x_1, \ldots, x_n be positive numbers. Prove that

$$\left(\max_{1 < j < n} x_j\right)(x_1 + 2x_2 + \dots + nx_n) \ge \frac{1}{2}(x_1 + x_2 + \dots + x_n)^2.$$

- 7) Find all integer solutions of $x^3 + y^3 + z^3 = (x + y + z)^3$
- 8) Let $a \in \mathbb{R}$ and n a positive integer. Show that at least one of $a, 2a, \dots, (n-1)a$ is at distance at most $\frac{1}{n}$ of an integer
- 9) Let α , β , be positive irrational numbers such that $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. This is, they are said to be conjugate.

Define $(a_n)_{n\in\mathbb{Z}^+}$, $(b_n)_{n\in\mathbb{Z}^+}$ such that

$$a_n \le n\alpha < a_n + 1$$
 $b_n \le n\beta < b_n + 1$

Show that the sequences (a_n) and (b_n) form a partition of \mathbb{Z}^+ .

- 10) Let f be a real-valued function on the plane such that for every square ABCD in the plane, f(A) + f(B) + f(C) + f(D) = 0. Does it follow that f(P) = 0 for all points P in the plane?
- 11) Twenty-three people of positive integral weights decide to play football. They select one person as referee and then split up into two 11-person teams of equal total weights. It turns out that no matter who is referee this can always be done. Prove that all 23 people have equal weights.