Hoja 9

1) Let \(f : [0, 1] \rightarrow \mathbb{R} \) be a Riemann integrable function that satisfies the functional equation

\[
f(x) = \frac{1}{3} \left(f\left(\frac{x}{3} \right) + f\left(\frac{x+1}{3} \right) + f\left(\frac{x+2}{3} \right) \right)
\]

for all \(x \in [0, 1] \). Determine the function \(f \), if it is known that \(f(1/\pi) = 1 \).

2) Let \(P(x) \) be a polynomial of degree \(n \), all whose roots are real and distinct, and let \(c \) be a positive number. The set of real numbers \(x \) such that \(P'(x)/P(x) > c \) is a union of finitely many disjoint intervals. Prove that the sum of their lengths equals \(n/c \).

3) Does there exist an injective function \(f : \mathbb{R} \rightarrow \mathbb{R} \) that attains a maximal value on any non-empty subset of \(\mathbb{R} \)?

4) Find all possible integral solution to the following equation:

\[
19y^2 = 20x^3 - 2019
\]

5) Does there exist a \(12 \times 12 \) matrix \(A \), all whose entries are numbers 0, \pm 1, such that \(\det A = 2018 \)?