Hoja 9

1) Let $f:[0,1]\to\mathbb{R}$ be a Riemann integrable function that satisfies the functional equation

$$f(x) = \frac{1}{3} \left(f\left(\frac{x}{3}\right) + f\left(\frac{x+1}{3}\right) + f\left(\frac{x+2}{3}\right) \right)$$

for all $x \in [0,1]$. Determine the function f, if it is known that $f(1/\pi) = 1$.

- 2) Let P(x) be a polynomial of degree n, all whose roots are real and distinct, and let c be a positive number. The set of real numbers x such that P'(x)/P(x) > c is a union of finitely many disjoint intervals. Prove that the sum of their lengths equals n/c.
- 3) Does there exist an injective function $f: \mathbb{R} \to \mathbb{R}$ that attains a maximal value on any non-empty subset of \mathbb{R} ?
 - 4) Find all possible integral solution to the following equation:

$$19y^2 = 20x^3 - 2019$$

5) Does there exist a 12×12 matrix A, all whose entries are numbers $0, \pm 1$, such that $\det A = 2018$?