Hoja 6

1) Find the largest integer n such that n is divisible by all positive integers less than $\sqrt[3]{n}$.
2) Suppose that f is a function from \mathbb{R} to \mathbb{R} such that

$$
f(x)+f\left(1-\frac{1}{x}\right)=\arctan x
$$

for all real $x \neq 0$. (As usual, $y=\arctan x$ means $-\pi / 2<y<\pi / 2$ and $\tan y=x$.) Find

$$
\int_{0}^{1} f(x) d x
$$

3) The sequence

$$
\left\{a_{n}\right\}_{n=1}^{\infty}=\{1,2,4,5,7,9,10,12,14,16,17, \ldots\}
$$

of positive integers is formed by taking one odd integer, then two even integers, then three odd integers, etc. Express a_{n} in closed form.
4) Let X and B_{0} be real $n \times n$ matrices. Define by induction a sequence of matrices $B_{k}=B_{k-1} X-X B_{k-1}$. Prove that if $X=B_{n^{2}}$, then $X=0$.
5) Show that one has $a^{b^{a}}>b^{a^{b}}$ if $a>b>1$.
6) Let A be a countable subset of \mathbb{R}^{2}. Prove that it can be represented as $A_{1} \cup A_{2}$, where the intersection of A_{1} with any horisontal line, as well as the intersection of A_{2} with any vertical line is a finite set.
7) There are n beetles situated in n different points of the circumference of a circular wheel. Each one moves by the circumference with a constant speed and makes one complete round in one hour. On hearing the initial signal, each of them selects a direction and starts moving immediately. When two beetles meet, both of them change directions and go without loss the speed.

Show that at a certain moment all beetles will return to their starting points.

