Hoja 5

1) Prove that for any positive real numbers a, b, c such that $a b c=1$, one has

$$
\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right) \leq 1 .
$$

2) Let $n \geq 2, n \in \mathbb{Z}$, and the divisors of n are $1 \leq d_{1}<d_{2} \leq \cdots \leq d_{k}=n$. Prove that the sum $d_{1} d_{2}+d_{2} d_{3}+\cdots+d_{k-1} d_{k}$ is always less than n^{2}. Find, for which values of n is this sum a divisor of n^{2}.
3) Suppose we have a disk D of radius 16 and an annulus A of inner radius 2 and outer radius 3 . We choose a finite subset $X \subset D$ having 650 points. Show that it is always possible to move the annulus A and place it in such a way that it covers at least 10 points of X, regardless of how the set X was chosen.
4) Let A, B, C be pairwise commuting complex matrices. Prove that there exist real numbers α, β, γ, not all equal to zero, such that $\operatorname{det}(\alpha A+\beta B+\gamma C)=0$.
5) Find all the functions $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f(x, x)=x, \quad f(x, y)=f(y, x) \quad \text { and } \quad(x+y) f(x, y)=y f(x, x+y) \quad(\forall x, y \in \mathbb{N}) .
$$

