Hoja 3

1. Prove the (well-known) inequality of arithmetic and geometric means: for any $n \geq 1$ and for any nonnegative real numbers $x_{1}, x_{2}, \ldots, x_{n}$,

$$
\sqrt[n]{x_{1} x_{2} \ldots x_{n}} \leq \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

Try to find several proofs.
2. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous and nowhere monotone function. Show that the set of points on which f attains local minima is dense in $[0,1]$. (A function is nowhere monotone if there exists no interval where the function is monotone. A set is dense if each non-empty open interval contains at least one element of the set.)
3. In the linear space of all real $n \times n$ matrices, find the maximum possible dimension of a linear subspace V such that $\operatorname{trace}(A B)=0$ for all $A, B \in V$. (The trace of a matrix is the sum of the diagonal entries.)
4. Let m and n be nonnegative integers. Prove that

$$
\frac{(2 m)!(2 n)!}{m!n!(m+n)!}
$$

is an integer. (Recall that $n!=n(n-1) \cdots 2 \cdot 1$ if n is a positive integer and $0!=1$.)
5. Is it possible to plot 2023 points on a circle with radius 1 so that the distance between any two of them is a rational number (distances have to be measured by chords)?
6. Prove that, for any integers a, b, c, there exists a positive integer n such that $\sqrt{n^{3}+a n^{2}+b n+c}$ is not an integer.
7. Is there a strictly increasing function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=f(f(x))$ for all x ?

