1) Let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous function. A real number \(y \) is called an extremal value of \(f \) if there exists a point \(x_0 \) such that \(f(x_0) = y \) and \(x_0 \) is a point of local maximum or minimum of \(f \). Prove that the set of extremal values of \(f \) is countable.

2) Prove that for any polynomial \(P \) with integer coefficients, there exists a positive integer \(k \) such that \(P(k) \) is not prime.

3) Define a set to be self-referenced if its number of elements is its element. For instance, \(\{1, 3, 4\} \) is self-referenced and \(\{1, 2, 4\} \) is not. Find the number of subsets of \(\{1, 2, \ldots, n\} \) that are minimal self-referenced sets, which means that they are self-referenced and do not have any smaller self-referenced subset.

4) Show that there is an infinite number of powers of two which start by the digit 9.

5) Which of the two polynomials,
\[
P(x) = (1 + x^2 - x^3)^{1000}, \quad Q(x) = (1 - x^2 + x^3)^{1000},
\]
has larger coefficient at \(x^{400} \)?