HOJA 1

1. A grasshopper starts at the origin in the coordinate plane and makes a sequence of hops. Each hop has length 5 , and after each hop the grasshopper is at a point whose coordinates are both integers; thus, there are 12 possible locations for the grasshopper after the first hop. What is the smallest number of hops needed for the grasshopper to reach the point $(2021,2021)$?

Solution. The answer is 578.
Each hop corresponds to adding one of the 12 vectors $(0, \pm 5),(\pm 5,0),(\pm 3, \pm 4),(\pm 4, \pm 3)$ to the position of the grasshopper. Since $(2021,2021)=288(3,4)+288(4,3)+(0,5)+(5,0)$, the grasshopper can reach $(2021,2021)$ in $288+288+1+1=578$ hops.

On the other hand, let $z=x+y$ denote the sum of the x and y coordinates of the grasshopper, so that it starts at $z=0$ and ends at $z=4042$. Each hop changes the sum of the x and y coordinates of the grasshopper by at most 7 , and $4042>577 \times 7$; it follows immediately that the grasshopper must take more than 577 hops to get from $(0,0)$ to $(2021,2021)$.
Remark. This solution implicitly uses the distance function

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|
$$

on the plane, variously called the taxicab metric, the Manhattan metric, or the L^{1}-norm (or $\ell_{1^{-}}$norm).
2. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a nonincreasing sequence such that the series $\sum_{n=1}^{\infty} a_{n}$ converges. Prove that

$$
\lim _{n \rightarrow \infty} n a_{n}=0
$$

Solution. Notice that $a_{n} \geq 0$ for all n. Also, since the series converges, it is Cauchy, and therefore

$$
\lim _{n \rightarrow \infty}\left(a_{\lfloor n / 2\rfloor+1}+a_{\lfloor n / 2\rfloor+2}+\cdots+a_{n}\right)=0
$$

Using that $a_{n} \geq a_{n+1}$ for all n, we have

$$
a_{\lfloor n / 2\rfloor+1}+a_{\lfloor n / 2\rfloor+2}+\cdots+a_{n} \geq\left\lceil\frac{n}{2}\right\rceil a_{n} \geq \frac{n}{2} a_{n}
$$

Hence $\lim _{n \rightarrow \infty} \frac{n}{2} a_{n}=0$, and the statement follows.
3. Let n and k be integers with $2 \leq k \leq n$. Let a_{1}, \ldots, a_{k} be distinct elements of the set $\{1, \ldots, n\}$ such that n divides $a_{i}\left(a_{i+1}-1\right)$ for all $i \in\{1, \ldots, k-1\}$. Prove that n does not divide $a_{k}\left(a_{1}-1\right)$.

Solution. Since n divides $a_{i}\left(a_{i+1}-1\right)$ for $i=1, \ldots, k-1$, we have the following list of congruences

$$
\begin{aligned}
& a_{1} a_{2} \equiv a_{1}(\bmod . n) \\
& a_{2} a_{3} \equiv a_{2}(\bmod . n)
\end{aligned}
$$

$$
\begin{gathered}
\vdots \\
a_{k-1} a_{k} \equiv a_{k-1}(\bmod . n)
\end{gathered}
$$

Suppose that $a_{k} a_{1} \equiv a_{k}(\bmod . n)$. Multiplying this congruence by a_{k-1} and using the last congruence of the list we obtain

$$
a_{k-1} a_{1} \equiv a_{k-1}(\bmod . n)
$$

Now multiplying this congruence by a_{k-2} we obtain

$$
a_{k-2} a_{1} \equiv a_{k-2}(\bmod . n)
$$

And so on, we finally get

$$
a_{2} a_{1} \equiv a_{2}(\bmod \cdot n)
$$

Comparing this with the first congruence of the list we obtain that $a_{1} \equiv a_{2}$ (mod. n). But since $a_{1}, a_{2} \in\{1, \ldots, n\}$, we have $a_{1}=a_{2}$. But they were distinct by assumption. This contradiction shows that $a_{k} a_{1} \not \equiv a_{k}(\bmod . n)$, i.e., n does not divide $a_{k}\left(a_{1}-1\right)$.
4. Let D be the closed unit disc in the plane and p_{1}, \ldots, p_{n} be fixed points in D. Show that there is a point $p \in D$ such that

$$
\sum_{i=1}^{n} \operatorname{dist}\left(p, p_{i}\right) \geq n .
$$

(Here $\operatorname{dist}\left(p, p_{i}\right)$ denotes the Euclidean distance between the points p and p_{i}.)
Solution. We write p_{i} as complex numbers and put $q=-\sum p_{i}$. First assume $q \neq 0$. We put $p=q /|q|$. Then, by the triangle inequality,

$$
\sum_{i=1}^{n}\left|p-p_{i}\right| \geq\left|n p-\sum_{i=1} p_{i}\right|=|n q /|q|+q|=n+|q| \geq n .
$$

If $q=0$, we put $p=1$ and then we can use the triangle inequality in the same way as above.
5. Let V be a finite dimensional vector space and let A and B be two linear transformations of V into itself such that $A^{2}=B^{2}=0$ and $A B+B A=I$. Prove that
(a) $\operatorname{ker} A=A \operatorname{ker} B$ and $\operatorname{ker} B=B \operatorname{ker} A$.
(b) $\operatorname{dim} V$ is even.

Solution. (a) By symmetry in A and B, it is enough to check that $\operatorname{ker} A=A$ ker B. Since $A^{2}=0$, we have $A V \subset \operatorname{ker} A$. (Analogously, $B V \subset \operatorname{ker} B$.) In particular, $A \operatorname{ker} B \subset \operatorname{ker} A$. Now let us see that $\operatorname{ker} A \subset A \operatorname{ker} B$. Take $u \in \operatorname{ker} A$, that is, $A u=0$. Then obviously $B A u=0$. Since $A B+B A=I$, we have

$$
u=(A B+B A) u=A B u \in A B V \subset A \text { ker } B .
$$

Hence ker $A \subset A$ ker B, as we wanted to prove.
(b) Since ker $A=A$ ker B, we have $\operatorname{dim} \operatorname{ker} A \leq \operatorname{dim} \operatorname{ker} B$. Analogously, $\operatorname{dim} \operatorname{ker} B \leq \operatorname{dim} \operatorname{ker} A$, so $\operatorname{dim} \operatorname{ker} A=\operatorname{dim} \operatorname{ker} B$. Now let us see that

$$
\begin{equation*}
V=\operatorname{ker} A \oplus \operatorname{ker} B \tag{*}
\end{equation*}
$$

The statement will follow from this, since we would have $\operatorname{dim} V=2 \operatorname{dim} \operatorname{ker} A$. For any $v \in V$ we have

$$
v=(A B+B A) v=A B v+B A v \in \operatorname{ker} A+\operatorname{ker} B
$$

since $A B V \subset \operatorname{ker} A$ and $B A V \subset \operatorname{ker} B$. Hence $V=\operatorname{ker} A+\operatorname{ker} B$. Let us check that this sum is direct, that is, ker $A \cap \operatorname{ker} B=\{0\}$. Indeed, take $u \in \operatorname{ker} A \cap \operatorname{ker} B$. Since ker $A=A \operatorname{ker} B$, for some $b \in \operatorname{ker} B$ we have $u=A b$. Now using that $u \in \operatorname{ker} B$ we get

$$
0=B u=B A b=b-A B b=b
$$

Hence $u=A 0=0$, as we wanted to prove.
6. Let $x, y, z>1$. Prove that

$$
\frac{x^{4}}{(y-1)^{2}}+\frac{y^{4}}{(z-1)^{2}}+\frac{z^{4}}{(x-1)^{2}} \geq 48
$$

Quedó para la siguiente reunión.

