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1. A grasshopper starts at the origin in the coordinate plane and makes a sequence of hops. Each

hop has length 5, and after each hop the grasshopper is at a point whose coordinates are both

integers; thus, there are 12 possible locations for the grasshopper after the first hop. What is the

smallest number of hops needed for the grasshopper to reach the point (2021, 2021)?

Solution. The answer is 578.

Each hop corresponds to adding one of the 12 vectors (0,±5), (±5, 0), (±3,±4), (±4,±3) to

the position of the grasshopper. Since (2021, 2021) = 288(3, 4) + 288(4, 3) + (0, 5) + (5, 0), the

grasshopper can reach (2021, 2021) in 288 + 288 + 1 + 1 = 578 hops.

On the other hand, let z = x+y denote the sum of the x and y coordinates of the grasshopper, so

that it starts at z = 0 and ends at z = 4042. Each hop changes the sum of the x and y coordinates

of the grasshopper by at most 7, and 4042 > 577× 7; it follows immediately that the grasshopper

must take more than 577 hops to get from (0, 0) to (2021, 2021).

Remark. This solution implicitly uses the distance function

d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|

on the plane, variously called the taxicab metric, the Manhattan metric, or the L1-norm (or `1-

norm). �

2. Let {an}∞n=1 be a nonincreasing sequence such that the series
∑∞

n=1 an converges. Prove that

lim
n→∞

nan = 0.

Solution. Notice that an ≥ 0 for all n. Also, since the series converges, it is Cauchy, and therefore

lim
n→∞

(abn/2c+1 + abn/2c+2 + · · ·+ an) = 0.

Using that an ≥ an+1 for all n, we have

abn/2c+1 + abn/2c+2 + · · ·+ an ≥
⌈n

2

⌉
an ≥

n

2
an.

Hence limn→∞
n
2an = 0, and the statement follows. �

3. Let n and k be integers with 2 ≤ k ≤ n. Let a1, . . . , ak be distinct elements of the set {1, . . . , n}
such that n divides ai(ai+1 − 1) for all i ∈ {1, . . . , k − 1}. Prove that n does not divide ak(a1 − 1).

Solution. Since n divides ai(ai+1− 1) for i = 1, . . . , k− 1, we have the following list of congruences

a1a2 ≡ a1 (mod. n),

a2a3 ≡ a2 (mod. n),
1
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...

ak−1ak ≡ ak−1 (mod. n).

Suppose that aka1 ≡ ak (mod. n). Multiplying this congruence by ak−1 and using the last congru-

ence of the list we obtain

ak−1a1 ≡ ak−1 (mod. n).

Now multiplying this congruence by ak−2 we obtain

ak−2a1 ≡ ak−2 (mod. n).

And so on, we finally get

a2a1 ≡ a2 (mod. n).

Comparing this with the first congruence of the list we obtain that a1 ≡ a2 (mod. n). But since

a1, a2 ∈ {1, . . . , n}, we have a1 = a2. But they were distinct by assumption. This contradiction

shows that aka1 6≡ ak (mod. n), i.e., n does not divide ak(a1 − 1). �

4. Let D be the closed unit disc in the plane and p1, . . . , pn be fixed points in D. Show that there

is a point p ∈ D such that
n∑

i=1

dist(p, pi) ≥ n.

(Here dist(p, pi) denotes the Euclidean distance between the points p and pi.)

Solution. We write pi as complex numbers and put q = −
∑

pi. First assume q 6= 0. We put

p = q/|q|. Then, by the triangle inequality,

n∑
i=1

|p− pi| ≥

∣∣∣∣∣np−∑
i=1

pi

∣∣∣∣∣ = |nq/|q|+ q| = n + |q| ≥ n.

If q = 0, we put p = 1 and then we can use the triangle inequality in the same way as above. �

5. Let V be a finite dimensional vector space and let A and B be two linear transformations of V

into itself such that A2 = B2 = 0 and AB + BA = I. Prove that

(a) kerA = A kerB and kerB = B kerA.

(b) dimV is even.

Solution. (a) By symmetry in A and B, it is enough to check that kerA = A kerB. Since A2 = 0,

we have AV ⊂ kerA. (Analogously, BV ⊂ kerB.) In particular, A kerB ⊂ kerA. Now let us

see that kerA ⊂ A kerB. Take u ∈ kerA, that is, Au = 0. Then obviously BAu = 0. Since

AB + BA = I, we have

u = (AB + BA)u = ABu ∈ ABV ⊂ A kerB.

Hence kerA ⊂ A kerB, as we wanted to prove.
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(b) Since kerA = A kerB, we have dim kerA ≤ dim kerB. Analogously, dim kerB ≤ dim kerA,

so dim kerA = dim kerB. Now let us see that

V = kerA⊕ kerB. (∗)

The statement will follow from this, since we would have dimV = 2 dim kerA. For any v ∈ V we

have

v = (AB + BA)v = ABv + BAv ∈ kerA + kerB,

since ABV ⊂ kerA and BAV ⊂ kerB. Hence V = kerA + kerB. Let us check that this sum is

direct, that is, kerA∩kerB = {0}. Indeed, take u ∈ kerA∩kerB. Since kerA = A kerB, for some

b ∈ kerB we have u = Ab. Now using that u ∈ kerB we get

0 = Bu = BAb = b−ABb = b.

Hence u = A0 = 0, as we wanted to prove. �

6. Let x, y, z > 1. Prove that

x4

(y − 1)2
+

y4

(z − 1)2
+

z4

(x− 1)2
≥ 48.

Quedó para la siguiente reunión.


