Hoja 1

1. A grasshopper starts at the origin in the coordinate plane and makes a sequence of hops. Each hop has length 5, and after each hop the grasshopper is at a point whose coordinates are both integers; thus, there are 12 possible locations for the grasshopper after the first hop. What is the smallest number of hops needed for the grasshopper to reach the point (2023, 2023)?

2. Let $\{a_n\}_{n=1}^{\infty}$ be a nonincreasing sequence such that the series $\sum_{n=1}^{\infty} a_n$ converges. Prove that

$$\lim_{n \to \infty} n a_n = 0.$$

3. Let *n* and *k* be integers with $2 \le k \le n$. Let a_1, \ldots, a_k be distinct elements of the set $\{1, \ldots, n\}$ such that *n* divides $a_i(a_{i+1}-1)$ for all $i \in \{1, \ldots, k-1\}$. Prove that *n* does not divide $a_k(a_1-1)$.

4. Let *D* be the closed unit disc in the plane and p_1, \ldots, p_n be fixed points in *D*. Show that there is a point $p \in D$ such that

$$\sum_{i=1}^{n} \operatorname{dist}(p, p_i) \ge n$$

(Here $dist(p, p_i)$ denotes the Euclidean distance between the points p and p_i .)

5. Let V be a finite dimensional vector space and let A and B be two linear transformations of V into itself such that $A^2 = B^2 = 0$ and AB + BA = I. Prove that

- (a) ker $A = A \ker B$ and ker $B = B \ker A$.
- (b) $\dim V$ is even.
- 6. Let x, y, z > 1. Prove that

$$\frac{x^4}{(y-1)^2} + \frac{y^4}{(z-1)^2} + \frac{z^4}{(x-1)^2} \ge 48.$$