Hoja 1

1. A grasshopper starts at the origin in the coordinate plane and makes a sequence of hops. Each hop has length 5, and after each hop the grasshopper is at a point whose coordinates are both integers; thus, there are 12 possible locations for the grasshopper after the first hop. What is the smallest number of hops needed for the grasshopper to reach the point $(2023,2023)$?
2. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a nonincreasing sequence such that the series $\sum_{n=1}^{\infty} a_{n}$ converges. Prove that

$$
\lim _{n \rightarrow \infty} n a_{n}=0 .
$$

3. Let n and k be integers with $2 \leq k \leq n$. Let a_{1}, \ldots, a_{k} be distinct elements of the set $\{1, \ldots, n\}$ such that n divides $a_{i}\left(a_{i+1}-1\right)$ for all $i \in\{1, \ldots, k-1\}$. Prove that n does not divide $a_{k}\left(a_{1}-1\right)$.
4. Let D be the closed unit disc in the plane and p_{1}, \ldots, p_{n} be fixed points in D. Show that there is a point $p \in D$ such that

$$
\sum_{i=1}^{n} \operatorname{dist}\left(p, p_{i}\right) \geq n .
$$

(Here $\operatorname{dist}\left(p, p_{i}\right)$ denotes the Euclidean distance between the points p and p_{i}.)
5. Let V be a finite dimensional vector space and let A and B be two linear transformations of V into itself such that $A^{2}=B^{2}=0$ and $A B+B A=I$. Prove that
(a) $\operatorname{ker} A=A$ ker B and ker $B=B \operatorname{ker} A$.
(b) $\operatorname{dim} V$ is even.
6. Let $x, y, z>1$. Prove that

$$
\frac{x^{4}}{(y-1)^{2}}+\frac{y^{4}}{(z-1)^{2}}+\frac{z^{4}}{(x-1)^{2}} \geq 48 .
$$

