Curso Avanzado de Análisis Universidad Autónoma de Madrid

Master, Curso 2017-2018

DMITRY YAKUBOVICH

Problem sheet 1

- 1) Let T be a (bounded) linear operator on a Hilbert space.
- a) Prove that there are selfadjoint operators A, B such that T=A+iB.
- **b)** Prove that this decomposition is unique.
- c) What condition on A and B guarantees that T is normal?
- **d)** Prove that both A and B are compact if and only if T is compact.
- 2) Let $\{d_n\}$ be a complex sequence. Define a diagonal operator T on $\ell^2 = \ell^2(\mathbb{N})$ by

$$T\{x_n\}_{n=1}^{\infty} = \{d_n x_n\}_{n=1}^{\infty}.$$

For which sequences $\{d_n\}$, is T (a) bounded; (b) unitary; (c) normal; (d) compact?

- 3) Let T be a bounded diagonal operator on ℓ^2 as above.
- a) Calculate the point spectrum of T.
- **b)** Calculate the approximate point spectrum of T.
- c) Calculate the spectrum of T.
- 4) Let T, S be bounded operators on a Banach space X. Suppose that ST is compact. Does it follow that either T or S is compact?

HINT: Think of the operators from the exercise 2).

5) We define the shift operator on $\ell^2(\mathbb{Z}_+)$ by

$$S(x_0, x_1, \dots) = (0, x_0, x_1, \dots)$$

(here $\mathbb{Z}_+ = \{n \in \mathbb{Z} : n \ge 0\}$).

- a) Calculate ||S||. Calculate S^* .
- **b)** Is S a compact operator?
- c) Calculate $\sigma_p(S)$ y $\sigma_p(S^*)$. For each $\lambda \in \mathbb{C}$, calculate dim $\ker(S \lambda)$ and dim $\ker(S^* \bar{\lambda})$.
- **d)** Calculate $\sigma_{ap}(S)$, $\sigma_{ap}(S^*)$, $\sigma_{comp}(S)$, $\sigma_{comp}(S^*)$.
- e) Does S have a left inverse on $\ell^2(\mathbb{Z}_+)$? Is it unique? Does S have a right inverse?
- **6)** Let $T \in L(X)$, where X is a Banach space.
- a) Prove that the approximate point spectrum $\sigma_{ap}(T)$ is closed.
- **b)** Prove that $\sigma_{comp}(T) = \{\bar{z} : z \in \sigma_p(T^*)\}.$
- 7) Let H_1, H_2 be Hilbert spaces. An operator $U: H_1 \to H_2$ is called *isometric isomorphism* if $U^*U = I_{H_1}$ and $UU^* = I_{H_2}$. If $U: H \to H$ is an isometric isomorphism, we say that U is unitary.
- a) Let $U: H_1 \to H_2$. Check that $U^*U = I_{H_1}$ if and only if U is an isometry, that is, ||Uh|| = ||h|| for all $h \in H_1$.
- b) Check that the operator S on $\ell^2(\mathbb{Z}_+)$ from the previous exercise is an isometry, but not is unitary. What is its image $S\ell^2(\mathbb{Z}_+)$?

- 8) Given an isometry $S: H_1 \to H_2$, check that the following properties are equivalent:
- a) $S(H_1) = H_2;$
- **b)** S has a (two-sided) inverse;
- c) S is an isometric isomorphism (unitary in case $H_1 = H_2$).
- 9) Let A, B be bounded linear operators on a Hilbert space H. Prove or disprove the following assertions.
 - a) A, B are self-adjoint $\implies AB$ is self-adjoint;
 - **b)** A, B are unitary $\implies AB$ is unitary;
 - c) A, B are normal $\implies AB$ is normal.
 - 10) Answer the same three questions for A + B, instead of AB.
 - 11) Which answers in the above two exercises change if A and B commute?
- 12) Let N be a normal operator on a Hilbert space. Prove that for all $\lambda \in \mathbb{C}$, dim $\ker(N-\lambda) = \dim \ker(N^* \bar{\lambda})$.

HINT: Given a vector h, consider $||(N-\lambda)h||^2$ and use the normality of N.

- 13) What is the analogue of the above equality for compact operators? Are there exceptional values of λ , for which this analogue can fail? Justify your answer.
 - 14) Let A be a Banach algebra without unity. Consider the vector space

$$A_1 = \{(x, a) : x \in A, a \in \mathbb{C}\}\$$

and define the multiplication and the norm on A_1 by

$$(x,a)(y,b) = (xy + ay + bx, ab),$$

 $||(x,a)|| = ||x|| + |a|.$

Prove the following.

- a) A_1 is an algebra and (0,1) is its unit;
- b) The map $x \mapsto (x,0)$ is an isometric isomorphism from A onto a two-sided closed ideal in A_1 of codimension 1.
- 15) The Banach inverse map theorem says that any bounded bijective map from one Banach space to another has a bounded inverse. Deduce it from the closed graph theorem.
- **16)** Given $n \in \mathbb{N}$, consider the linear space $C^n[0,1]$ of n times continuously differential complex functions on the interval [0,1], with the norm $||f||_{C^n[0,1]} = ||f||_{\infty} + ||f^{(n)}||_{\infty}$, $f \in C^n[0,1]$.
 - a) Prove that the space $C^n[0,1]$ with this norm is a Banach space.
 - b) Prove that there are constants M_k such that

$$||f^{(k)}||_{\infty} \le M_k (||f||_{\infty} + ||f^{(n)}||_{\infty})$$

for all k = 1, 2, ..., n - 1 and all $f \in C^n[0, 1]$.

c) Prove that $C^n[0,1]$ satisfies all properties of Banach algebras, except for the submultiplicative property for the norm, instead of which the following weaker property holds: $||fg||_n \le$

 $C_n||f||_n||g||_n$ for all $f,g \in C^n[0,1]$. Can one introduce an equivalent norm on $C^n[0,1]$, which makes it a Banach algebra?

17) We define the convolution of two finite (complex) Borel measures μ and ν on \mathbb{R} by

$$(\mu * \nu)(B) = \iint_{\mathbb{R}^2} \chi_B(x+y) \, d\mu(x) \, d\nu(y).$$

where χ_B is the characteristic function of the set B.

- a) Prove that $\mu * \nu$ is a finite Borel measure on \mathbb{R} .
- **b)** Prove the formula

$$(\mu * \nu)(B) = \int_{\mathbb{R}} \mu(B - y) \, d\nu(y) = \int_{\mathbb{R}} \nu(B - x) \, d\mu(x).$$

- c) Prove that $\mu * \nu$ is absolutely continuous if either μ or ν is absolutely continuous.
- **d)** Prove that $\|\mu * \nu\| \le \|\mu\| \|\nu\|$, where $\|\mu\|$ is the total variation of μ :

$$\|\mu\| = |\mu|(\mathbb{R}).$$

18) Prove that the space $M(\mathbb{R})$ of all finite (complex) Borel measures is a Banach algebra with respect to the convolution and the norm, defined as the total variation. Is this algebra commutative? Does this algebra have the unit?