UNIVERSIDAD AUTONOMA
DE MADRID

Universidad Auténoma de Madrid UAM

Master in Mathematics and Applications

Master Thesis 2015/16

Weak Solutions of the Incompressible Euler
Equations

Francisco Mengual Breton
Supervised by Daniel Faraco Hurtado
and Angel Castro Martinez






ABSTRACT






Master Thesis 2015/16

Master in Mathematics and Applications

Index

1

2

3

INTRODUCTION TO FLUID MECHANICS

1.1 The Navier-Stokes equations . . . . . . . .. .. ... ... ... ... ..
1.1.1 Conservation of mass . . . . . . .. ... ... ... ... .....
1.1.2  Conservation of momentum . . . . . . . ... ... ... .. ....
1.1.3 Homogeneous flows . . . . . .. ... ...

1.2 Conserved quantities . . . . . . . . . ...

WEAK SOLUTIONS

2.1 Weak solutions of the incompressible Navier-Stokes equations . . . . . . . .
2.1.1 The space of time dependent divergence-free vector fields . . . . . .
2.1.2  Weak conservation of momentum . . . . . ... ... ... .. ...

2.2 Subsolution criterion and non-uniqueness . . . . . . . .. .. ... ... ..
2.2.1 Nash-Kuiper method . . . . . . . ... ... ... ... .......
2.2.2 Tartar framework . . . . . .. . ...
2.2.3  Subsolutions of the incompressible Euler equations . . . . . .. ..
2.2.4 Measuring the relaxation . . . . . . ... ...
2.2.5  Proof of the subsolution criterion . . . . . . ... ... ... . ...
2.2.6  Convex integration proves the perturbation property . .. . . . ..

2.3 Constructions . . . . . . . . . e
2.3.1 Global existence and non-uniqueness on T¢ . . . . . . .. ... ...

YOUNG MEASURES AND ADMISSIBLE SOLUTIONS

3.1 Parametrized Measures . . . . . . . . . . ...
3.1.1 Young Measures . . . . . . . . ... o
3.1.2  Generalized Young Measures . . . . . . . ... .. ... ... .. ..
3.1.3 Lifted Generalized Young Measures . . . . . . .. ... ... ....

3.2 Measure-valued solutions of the IEE . . . . . .. .. .. ... ... .....
3.2.1 Leray solutions of the INSE . . . . . . ... ... ... ... ....
3.2.2 Measure-valued solutions of the IEE . . . . . . . ... ... ....
3.2.3 Measure-valued subsolution of the IEE . . . . . . ... ... ... .

3.3 Density of wild initial datas . . . . . . . ... oo
3.3.1 From subsolutions to exact solutions . . . . .. .. ... ... ...
3.3.2 Approximation of Generalized Young Measures . . . .. ... ...
3.3.3 Discrete Homogeneous Young Measures . . . . . . .. .. ... ...

10
10
10
12
12
12
12
14
18
21
21
33
33




Master Thesis 2015/16 Master in Mathematics and Applications




Master Thesis 2015/16 Master in Mathematics and Applications

1 INTRODUCTION TO FLUID MECHANICS

1.1 The Navier-Stokes equations
Given a fluid element o € R? we consider the map

X(a,):RY — RY
t — X(a,-)

which is the particle trajectory of a. If v is the velocity vector field of the fluid, the
particle trajectory is the solution of the ODE

Gl t) =v(X(a,t),1), (a,t) € R x RY,
X(a,0) = a, a € R%

Lemma 1.1.

% det(VoX) (o, t) = diveo(X (o, t),t) det(Vo X)(a, t).

Proof. Call J = det(V,X). On the one hand
dJ d d
— = —det(0,,X; E i =00 Xi
@~ a0, X) = 2 iy g0, X

,j=1

for some functions a;;((X*);.;) on R? x R*. On the other hand

d
dJ d
—— = = (=1 My0e, X
dt dtj:1
d d
L d o dM;;
= —1 Z“Mi‘—@a‘Xi —1 o i Y
D (M g Kok 310 X

where M;;((X*);4) is the minor of V,X. Therefore, it must be a;; = (—1)"7M;;. Recall
the determinant formula by minors

d
D (1)1 MO, X = Sig].
j=1
Observe that
daX( t) = 0, Za ), )0, X1, t).
E o <3 Uz xkvz k&
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Finally,

d
1) = 32 () My (0, 1) 5 8, Xife 1)

2,7=1

— Z 1) My (e, 1) 0y, 0i( X (0, 1), 1) D, X (e, 1)
1,7,k=1
d

= 0, ), )0 (v, t)

= dl\:fo(X(Oé, t),t)J(a,t).

]

Proposition 1.2 (The transport formula). Let Q a bounded open subset of R® with smooth
boundary. Then, for every f € C*(Q x [0,00)),

d .
i |, S0 = /X o (00 + div, (7)) (2. 1)

Proof. By making the change of variables z = X (a,t) we obtain

/ f(x,t)dﬂiz/f(X(a,t),t)J(a,t)da.
X(Q,t) Q

Hence, since f € C'(Q x [0,00)) (integrabilidad) and X € C?(Q x [0, 00)),

% o = /Q %(f(X(a,t),t)J(a,t)) da

/Q[(Vf +atf),]+f%]da

_/ [mew—katf—}—fdivrv}g]da
Q
_ /X o (0f + diva(f0)] (2, t) de.

1.1.1 Conservation of mass

The law of conservation of mass states that for any system closed to all transfers of mass
and energy, the mass of the system must remain constant over time, that is,

d

— p(x,t)de =0
dt Jx
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for every Borel subset € of RY, where p : R — R measures the infinitesimal density of
mass of the fluid. By transport formula 1.2, it must be

/ [atp + div,(pv) | (z,t)dz =0
X(Q0)

for every Borel subset Q of R?. The continuity implies that this holds if and only if
Op + div,(pv) =0

in R% x RT.

1.1.2 Conservation of momentum

The law of conservation of momentum states that for any system closed to all transfers
of mass and energy, the momentum of the system must remain constant over time. This
is developed from Newton’s second law which says that

d
— pv(x,t)de = / pg(x,t)dx +/ f(n,o,t)do
dt Jx @, X(Qu) AX(,t)

for every subdomain 2 of R? with smooth boundary, where ¢ and f are the vector field
of the infinitesimal volume and surface forces acting on the flow. The surface force is
expressed as

f(n,z,t) =7(x,t)n

where 7 is a matrix field called the Cauchy stress tensor.
On the one hand, Gauss divergence theorem implies

/ 7i(o,t) -ndo = / div,7;(z,t) d.
AX(Q,t) X Q)

On the other hand, transport formula 1.2 implies

d
pvi(z,t) de = /

— [6&(,0@@-) + divm(pviv)} (x,t)dz.
dt Jx @, X(Q.t)

Therefore, conservation of momentum means

/ [@(pvi) + divm(pviv)} (x,t)dx = / [,ogi + diVxTz} (z,t)dx
X (t) X(Qt)

for every subdomain  of R? with smooth boundary. As in conservation of momentum,
this is equivalent to
0 (pv;) + div(pvv) = pg; + div,;

in RY x RT. Applying conservation of mass to the left hand side we obtain

O (pv;) + div,(pvv) = pdev; + v, <8tp + divx(pv)> + pv - V,u; = pDy;

5
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Therefore, conservation of momentum is equivalent to
pDww = pg + div, T
in R x R*. An useful notation is derived from the observation
pDw; = 0i(pv;) + div,(p(v ® v),),
that is, we can write conservation of momentum as
O(pv) + div,(pv ® v) = pg + div,T
in R x RY.

Constitutive equations for Newtonian fluids

Assuming that there are not body-forces couples proportional to the mass of the fluid
element (such as those exerted by an electric field on polarized fluid molecules) it can be
shown that the Cauchy stress tensor 7 is symmetric, 7,; = 7;; (see [KCD]).

In a fluid at rest there are only normal components of stress on a surface, independently
of the orientation of the surface, that is, the stress is isotropic. The only (up to a
constant) isotropic (0, 2)-tensor is d;;. Hence, 7 must be

Tij = —POij
where p is called the pressure of the fluid.

A moving fluid develops additional stress components, o, because of viscosity. More
precisely, this is a resistance, due to internal molecular forces, of the flow to be deformed.
A simple extension of the last case is

Tij = —p5ij + Jij-

Since this force appears due to movement, o depends on the quantities 0%v, a every
multiindex. By simplicity, we make the assumption that we can skip the dependence
on derivatives of second order and beyond. Invariancy under galilean transformations
implies that o cannot depend explicitly of v, so it must depend on Vv (see [KCD]). We
can express Vv as direct sum of symmetric and antisymmetric parts Vo = S + R where

1 1
S = é(Vv +Voul) and R= E(Vv — Vo)
are the strain rate tensor and the rotation tensor respectively. These correspond to

infinitesimal deformation and rotation in the flow. By definition, stresses only develop
in fluid elements that change shape. Therefore, only the symmetric part S should be
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considered in the fluid constitutive equation. The most general linear relation between o
and S is

Oi5 = kljmnSmn

Isotropy forces that tensor K be isotropic, hence (see [KCD])

where A, u,v depend on the thermodynamic local state. Since 7 is symmetric, v = pu.
Therefore,
= p(Sij + Sji) + Adij S
= 2/LSU + )\dijdin’U.
In this way
Tij = —p(Sij -+ 2:“‘913 + Adijdiva.
Taking the trace of the above relation we obtain
p =p+ Bdiv,v
where . )
D= —C—iTI'(T) and (= E,ujt A

are known as the mean pressure and the coefficient of bulk viscosity respectively of
the flow. Finally

1
d

Flows satisfying the above relation are called Newtonian fluids. Examples of such fluids
are air, water, oil, gasoline, etc.

Tij = _p(;zj + 2,u (Sz] — 52-jdivzv> + Béijdivmv.

Returning to conservation of momentum equation, observe that
d d 9
diVx(Ti) = ; aroij = —&;ip + ; 8%. (u(@mjvl + axi’l}j> + <B - E'u> 5ijdin’U>.

Since u, 5 depend of the temperature, if the variation of temperature is neglected, we
obtain

d—2
div, (7)) = — 04,0 + nALv; + (5 + Tu) O, (div,v;).

Stokes assumption is that 3 is neglected, which is reasonable in many situations. In
this way, Navier-Stokes conservation of momentum equations are

d—2
pDw = —=V,p + plAv + Tuvx(divxv) + pg
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in vector form.

Euler considered the case of inviscid fluids, that is, 4 = 0. In this way, Euler con-
servation of momentum equations are

pDyww = —Vup + pg

in vector form.

1.1.3 Homogeneous flows

Definition 1.3. A flow X is said to be incompressible if for all subdomains the flow is
volume preserving, that is,

d

—L(X(2,t)=0

SLX(Q.1)

for every Borel subset 2 of R%.

Proposition 1.4. For smooth flows these conditions are equivalents:

i) X is incompressible.
i) det(Vo,X) =1 in R? x RT.
ii) divyv =0 in RY x R,

Proof. By transport formula 1.2

d d
0=— dz = / —J(a,t) da = / div,v(z, t) dz
dt Jx o dt X(Q.0)

for every Borel subset  of RY. On the one hand, continuity implies that this holds if and

only if
dJ

i

in R? x R*, that is, J is constant. Indeed, since

0

LIX(Q,1)) = /Qj(a,t) da = JL(Q),

this is constant is 1. On the other hand, continuity implies that this holds if and only if
div,v =0

in R? x RY. [l
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Definition 1.5. A flow X is said to be homogeneous if it has constant density (we
may assume that p = 1). In such flows, conservation of mass and incompressibility is
equivalent by observing

Oyp + div,(pv) = pdiv,v

in R x R*.
Homogeneous Navier-Stokes Equations are

D = —Vop+ pAv+g RYxRY,

div,o =0 R? x Rt.
In the present work, we assume that there are not volume forces acting on the fluid,
that is, ¢ = 0. In particular, our purpose is to study the solutions of the homogeneous
Euler equations without volume forces, which are often called the Incompressible Euler

Equations (IEE)
{ o +div,(v@v) + Vep=0 R?x RY,

div,o =0 R? x R*.

1.2 Conserved quantities
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2 WEAK SOLUTIONS

In this section we fix an open subset 2 of R, and a final time 0 < T' < oo (with out lost
of generality, if T' = oo, [0, 7] will denote RT).

2.1 Weak solutions of the incompressible Navier-Stokes equa-
tions

...[Motivacién para rebajar la regularidad de las soluciones buscadas]

2.1.1 The space of time dependent divergence-free vector fields
Definition 2.1. A vector field v € L?(2,R?) is said to be divergence-free if dive = 0
in the sense of distributions, that is,
/ Vo-vdr=0 forall p € CF (D).
-(Z
We will denote the space of such divergence-free vector fields by H(Z), and we will use the
notation H,,(2) to specify that H(2) is endowed with the weak topology of L?(2,R%).
The next proposition is immediate by definition.
Proposition 2.2. The space H,(2) is a closed linear subspace of L2(2,R?).

(... explicar mejor)We saw that classical solutions of the IEE conserves kinetic energy.
However, ... . The space that we are talking about is time dependent divergence-free
velocity fields with bounded kinetic energy, that is, L>([0,7], H(2)).

Proposition 2.3. Let v € L>([0,T]; L*(R%4RY)), u € L, .([0,T] x RG R and g €
L} ([0, T] x RY) be a distributional solution of

O + divu + Vg = 0.
Then, we can redefine v in a set of times of measure zero such that
v € Gy([0, T; Ly, (R RY))
Proof. Take a finite time 0 < s < T. Consider a countable set {¢p}ren C C.(R%RY)
dense in L*(R% R?). Denote

T (t) = (g 0(t)) = / ou(x) v(z,t)de, t€0,T], keN,

Rd
which are in L'([0, s]) by Holder inequality. By hypothesis, for every ¢ € C>([0, s]),
(6,09 k)01 = —(0:D, Yi)jo,r) = —(OrPPrk, V) rax[o,1]

= (ppr, atU>Rd><[O,T} = — (¢, divu + VQ>R‘1><[O,T}
= (0, (Voor, u(t))ra + (diver, q(t))ra) o7

10
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Hence
0V = (Veor, u(t))re + (divir, ¢(t))re

in the sense of distributions, so 9,¥; € L'([0,s]) and ¥, € WH([0,s]). By Morrey’s
inequality we known that we can redefine Wy in a set of times of measure zero 7, C [0, s]
such that U, € C([0, s]). Hence, 7 = UgTy is a negligible Borel subset of [0, s], and

Ui(t) = (pr,v(t)) = /Rd op(z) -v(z,t)de, te€[0,T]\ 7, keN.

If T is finite we are done. If T' = oo, taking a sequence sy T 0o we obtain ¥, € C([0,T1])
and the above equality still being truth a.e. [0, T]. Notice that

k(@] < [[ollerzllprllz  ae.t €[0T,
but continuity implies that it must be on [0, 7. For every t € [0, 7] denote
Agr) = ult), KeEN.

Density and the above estimate allows us to extend it naturally to all L?*(R?%R?). For
every ¢ € L*(R%:RY), taking ¢y, — ¢ in L*(R%R?), the quantity

At(SO) = jlggo At(@kj)

is well defined (it is a Cauchy sequence in R) and it does not depend on the election of the
subsequence. Moreover, the operator A; acting on L?(R%; R?) is linear and bounded with
|A¢| = ||vllpeer2. Hence, by theorem [Riesz], there exists a unique o(-,t) € L*(R%RY)
such that

Adl) = (i, 5(0)) = /R () ol 1) .

Moreover,
[0@) |22 = [[Adl] < Nlvllzgerz,  t€10,T7,

and uniqueness implies that
o(t) =v(t) ae.tel0,T].

Finally we check that o € C([0,T], L,(R%RY)). Fix tq € [0,T]. Let p € L*(R%R?) and
take ¢, — ¢ in L*(R%RY). Then

[ e@ - otatyde = [ ola)- oo to)de| = 18u06) = M)

<A () = Alor,)] + [Ai(pr;) — Aao (0r;)] + [Aso (08;) — Ago (0)]
< 2l|vlpeerz llor; — @llre + Wi, (1) — Wy, (to)]

and making t — ¢y and after j — oo we obtain the result. O

11
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2.1.2 Weak conservation of momentum

d

— <p~vdx:/Dt(go-v)dq::/(Dtg0~v+g0~Dtv)dx
9

Dip-v+¢- (=Vp+ ,uAv)) dz

Dyp-v+pdivp — uVp : Vv) dx

(
(
:/@((DWJFMA@) -v—i—pdiwp) da
:/@<

(Orp + pAp) - v+ Vo v®v—|—pdiv<p> dz.

Integrating on [0, 7]
T
—/ o(z,0) - vo(z) de = / / ((@gp + pAp)-v+Ve:v®u +pdivg0> dz.
9 0 2

2.2 Subsolution criterion and non-uniqueness
2.2.1 Nash-Kuiper method
2.2.2 Tartar framework

Given % a bounded open domain of R™, Ay,...,A,, constant matrices of R™*?¢ and
K a compact subset of R™, we consider the general problem consisted on find functions
2 B — R? satisfying

> A;0;z =0 in the sense of distributions, 2.1)
i=1 )

2(y) e K aeyeAB.

Assumptions.

A) The wave cone. There exists a closed cone A C R? and a constant C' > 0 satisfying:
for every Z € A there exists a sequence (z¥)reny C C°(B, R?) satisfying

- ZAZ@Z’“ =01in B,

i=1

- dist(2*(y), [~Z,z]) — 0 uniformly in y € B,

- 2% — 0 (weakly) in L2 (B,R"),

12
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- [5 12y > C|z)?
The more general candidate for the wave cone is

A= {zERd 3 esS™t 5 (Z&Ai)zzo}.
=1

K*) The A-convex hull. There exixts a bounded open set K* C R? which doesn’s
intersect K satisfying: for every a > 0 there exists 3(a) > 0 such that, for every z € K*
with dist(z, K) > a > 0 there exists z € AN S9! such that

2+ (=B8,8)Z = (2 — Bz, 2+ Bz) C K~
Lemma 2.4. The A-convex hull K» is contained in the usual convex hull K.

S) The space of subsolutions. There exists a nonempty bounded subset S of L*(%)
consisting of perturbable functions, that is, any z € § is continuous with

z(y) € K for all y € 8,

and moreover, for any z € S and w € C.(%) such that z+w satisfies (2.1) and (z4+w)(y) €
KA for all y € 4, then z +w € S.

We consider also the closure of S in the topology of L2 (%), and we denote it by S,
which is a complete metric space.

Lemma 2.5. There exists a continuous function ® : KA — [0, c0) with
d1(0) C K,

such that, for every z € S there exizts a sequence (2*)eny C S tending weakly to z in
L2 (AB) satisfying

[1e= Py = [ o) d

% %

Theorem 2.6. Under the assumptions (A, K*,S), the set
{2€8: 2(y) € K a.e.y € B}

is residual in S.

Proof. Let us consider the functional

13
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Comparison with IEE

[we want V¢ instead of a.e.t, this leads to consider the functional with a supreme in
the time variable; we want to consider possible not bounded domains, this leads to an
exhausting argument; as the compact set depends on y, we have to be careful with the
perturbation to be sure that the perturbed subsolution belongs to S; ...]

j@:Sq(-@Tavme) — [0,00)

Lo
v sup/ e— —|v|7|(x,t)dx.

tel

Ir comparando Annals y ARMA a lo largo de este capitulo.

2.2.3 Subsolutions of the incompressible Euler equations

Definition 2.7 (Subsolution). We call a subsolution to the IEE a triple (v, u, q¢), where
v € Cy([0,T), Ho(2)), u € L=([0,T), L*(2,S)), and ¢ a distribution such that

o +divu +Vg=0
in the sense of distributions.

Proposition 2.8. Given (v,p) a weak solution to the IEE on 9r, then (v, va,p+§|v|2)
is a subsolution to the IEE on Pr. Reciprocally, if (v,u,q) is a subsolution to the IEE on
Dr such that w=v O v, then (v,q — 3|v|?) is a weak solution of the IEE on Py,

Proof. Tt follows immediately from the following equality in the sense of distributions

: _ : Lo L2
8tv—|—dlv(v®v)+Vp—atv—l—dw(v@v d]v| I) +V(p+ d|v| )

The set of Euler states of speed r is
K, ={(v,v0v) : vers™}.

These spaces are, by the above proposition, the compact sets were u(y) must be for each
v(y) to be a weak solution instead of only a subsolution.

In order to measure the relaxation, we introduce the generalised energy density
p:RExSE — R
d
(v,u) 5/\max(v ®v—u)

where Aj.x denotes the largest eigenvalue on symmetric matrices. The below lemma
justifies why it is a good measurer of the relaxation of subsolutions.

14
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Lemma 2.9 (Properties of p). For all (v,u) € R? x S
(a) p is conver.

(b) 3|v|* < p(v,w) with equality if and only if u=v O v.
(0) luloe < 252 p(o, )

(@) plv,u) < (0P + Jul).

(e) The g—sublevel set of p is the is the convex hull of K,

K = {(v,u) cRYx S§ : plv,u) < %2} = 71([0’%])

Proof. (a) Note that

d d
plv,u) =5 max (§, (vev —u)) = 5 max (£, (§vjv —ul)

= C—l max ((€,v)? — (&, uf)),

2 £esd—1

2

Since (-,v)? is convex and (-, u-) is linear, it follows that p is convex.

(b)) Asv®@v=v0uv+ 3v|l,

o d 1 5 d 1
p(v,u) = —gfe%%ﬁ(fa (vOv+ E|U| I —u)é) = Egreré%zcl(f, (vOv—u))+ §|v|

d 1
= EAmaX(v Ov—u)+ §]v|2.

Since v O v — u is traceless, Apax(v O v —u) > 0 with equality if and only if u = v Owv.

(¢) By (a) and (b)
p00) 2 (0, 0) = (1) = — 2 A1)

Since u is traceless, Apin(u) < 0, so

d
p(0,10) 2 5 Phwin ()]

Recall that the spectral radius of u is max{A,az(w), | Amin(w)|}. If Ay < ... < Ay are the
eigenvalues of u, since u is traceless,

d—1 d—1 d—1
M) = = D2 =D (=) < 3 (i) = (d = 1) Ain ()
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Therefore (...),
d—1
[tloo < (d = 1) Amin(u)] < 2=——p(v, u).
(d) Applying that A\, is dominated by the Frobenius norm (recall that the Frobenius
norm is the usual Euclidean norm in R?*?) we obtain

d d d
p(v,u) = SAnax(v @V —u) < Gllv@v —ulr < (||v @ ollr + [lullr) = (vl + Jul)

2

when we have used that

S

d d
o @ vllr = (ZZMF) — P

i=1 j=1

=7 ([o-3])

which is convex by (a). Since p(v,u) = 32 for all (v,u) € K,, it is immediate that
K C 8,

(e) Denote

]

Definition 2.10 (Space of Subsolutions). Let vy € H(Z) an initial divergence-free ve-
locitiy field and
e € C(2 % (0,T))NCy([0,T), L' (2)),

an energy density candidate. We consider the space consisted of smooth velocity fields
v e Gy([0,T], Hu(7))
satisfying:
(i) v attains the initial condition
v(0) =vy in H(D).
(ii) For a fixed (independent of v) smooth scalar function ¢ : 2 — R, there exists a

smooth matrix field
we L>(0,T],LY(2,S))

such that (v,u,q) is a subsolution of the IEE and
p(v(z,t),u(x,t)) <e(x,t) forall (x,t) € Z x (0,T).

This is the space of smooth strict subsolutions of the IEE on Zr with corrected pressure
q, initial velicity field vy and energy density bounded by e. We denote it by

S(Dr, vy, €).

We consider also the closure of S,(Zr, vg, €) in the topology of Cy([0,T], H2(2)), and we
denote it by o
Sy(Dr, g, €).

16
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The original space considered in [Ref] was
S(-@Ta Vo, 6) = U Sq(-@Tv Vo, 6)7
q

which only requires the existence of some pressure ¢ for every v, but not the same for all.
In [ref] .. ... modified the argument to obtain weak solutions at constant pressure, which
we will follow in this work.

Corollary 2.11 (Boundness of Subsolutions). Ifv € S,(Zr, v, e) and u is the associated
smooth matriz field, then

d—1

1
§\v|2 <e,  |uloo <2 e, in2x(0,T).

Proposition 2.12. §,(%r,vo,e) is a complete metric subspace of Cy([0,T], Hu(2)).
Also, each v € S§,(Pr,vo,e) attains the initial condition

v(-,0) =vy in H(2).

Proof. As e € C([0,T], L*(2)), there exists R > 0 such that
R =2 max / e(z, t)dz.
te[0,T] J ¢

Since norms are convex, by the... it holds that
/ v (2, t)dx < 2/ e(r,t)dr < R for all v € S(Zr,v0, q,¢€),
9 9

i.e., Sy(Zr, v, ) is in B, the L?-closed ball of radius R of L*(2,R?). By the sequential
Banach-Alaoglu theorem we know that B is a metrizable subspace of L2(2,R?). If dp
is such a metric, then (B, dp) is a complete compact metric subspace of L2(Z). This
induces naturally a metric d on C([0, 7], B) via

d(v,w) = trer%g% dp(v(-,t),w(-,t)), v,weC([0,T],B).

Also, C([0, T, B) inherits the completeness of B. The topology induced by d on C([0,T7], B)

is equivalent to its topology inherited as a subspace of C([0, T1, L7, (2, R?)). As S,(Zr,vo,¢) C

C(]0,T], B), and this is closed, S,(Zr, vo, €) is a complete metric subspace of C([0, 7], H,(2)).
[

Theorem 2.13 (Subsolution criterion). If S(Zr,vo,€) is non-empty, then there exists
infinitely many weak solutions (v,p) of the IEE on Pr such that

e v e Cy[0,T], Hu(2)) and p = q — L|v]*.
e v(0)=wvy nH(D).
o |v*(z,t) =e(x,t) aexeP Vte(0,T).
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2.2.4 Measuring the relaxation

Comparar con Nash-Kuiper. La sucesion que se consigue no garantiza la convergencia
fuerte. Necesidad de recurrir a Baire (u otros).

Let 28 = Q) x I a bounded subset of Zr, where () is an open bounded subset of & and
I =[s,t] with 0 < s <t <T. We associate to £ the functional

J@:Sq(@T,vo,e) — R

Lo
v sup/ e — —|v|7|(x,t)dx.

tel
This is well-defined because S,(%r, vo,e) C L*([0,T], H(Z)) and e € C([0,T], L*(2)),
Proposition 2.14 (Properties of Jy). The functional Jy is:
(a) Upper-semicontinuous.

(b) Bounded from below by zero, that is,
J@ . ‘Sq(-@Tu Vo, 6) — [07 OO)

Moreover, if v € Sy(Pr,vo,€) satisfies Tz(v) =0, then
1
5]1}]2(95,15) =e(x,t) aexeQ Vtel.

(c) 1-Baire.

Proof. (a) We prove it by contradiction. Suppose that there exists a sequence (v*)gen

and a function v in S, (Zr, vy, €) such that v* % v but

J»(v) < limsup Jz(v"),

k—o0
that is,
1 1
sup/ [e - —\vﬂ (x,t) dz < limsup sup/ [e — —]vkﬂ (x,t)dz. (2.2)
tel JQ 2 k—oo tel JQ 2
On the other hand, for every k£ € N there exists t;, € I such that
1 1
sup/ [e - —]vkﬂ (x,t)dx < / [e - —\vkﬂ (z,tp) do + 27, (2.3)
tel JQ 2 Q 2

Taking the limsup on (2.3) and using (2.2) we obtain

1 1
sup/ [e — —\Uﬂ (x,t)dz < lim sup/ [e — —|Uk|2] (x,ty) de. (2.4)
) 2 Q 2

tel k—00
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Since [ is compact, we may assume (taking a subsequence if necessary) that t;, — ¢ for
some to € I. Now, note that

dB(Uk<'> tk)? U('? to)) B(Uk(" tk’)ﬂ U('v tk)) + dB(U<'> tk)a U(" tU))

<d
< d(W*,v) +dp(v(-, ), v(-, to)).
Since v* % v and v € C([0, T], B), we conclude

V(- 1) = v, te)  in H(D).

Therefore, since L2-norm is wslsc and e € C([0,T], L'(2)),

1 1
li — P (2, ) da < — = |v]*|(z,t0) d
11};n_>sotolp/Q [e 2|v | }(x, k) x_/g[e 2|v| ](x, o) dz,
which contradicts (2.4).

(b) Now, if v € S,(Zr, vy, €), by corollary 2.11

1
/ [e - é\vﬂ (x,t)de >0 foralltel, (2.5)
Q

therefore

1

Jz(v) = sup/ [e — —|U|2] (x,t)dz > 0.
tel Jo 2

Finally, for every v € S,(%r,vo, ), taking a sequence (v*)zeny C S,(%r,v0,€) tending to

v, applying the upper-semicontinuity of the functional we conclude

Jz(v) > limsup jgg(l)k) > (.

k—o0

Assume now that we have v € S,(Zr,vp,¢) such that Jz(v) = 0. Let (v¥)peny C
S,(Pr,v0,€) a sequence tending to v, and u* the associated smooth matrix field of each
k .

v”. Since

d—1 )
|uk|oo<2 g lelle(s in A,

(u¥) is a bounded sequence in L*°(%, SJ). Therefore, we may assume (taking a subse-
quence if necessary) that it converges (weakly) to a function u in L(%, S$). Now, since
L2-norm is wslsc and e € C([0,T], L'(2)), the hypothesis and (2.5) imply

1 1
O:j%(v)z/ [e——\vﬂ(z,t)delimsup/ [e——|vk|2}(x,t)dm20 for all t € I,

k—o0
that is,
1
/ [e—§|v|2] (,t)de =0 foralltel. (2.6)
Q
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But now, since p is convex, lemma 2.9 and Mazur theorem imply

1

§|v|2(x,t) < p(v(z,t),u(z,t)) < ligninfp(vk(x,t),uk(x,t)) <e(x,t) aexeQ Vtel.
—00

This means that (2.6) is

which is precisely statement.
(c) ... O

Proposition 2.15 (The perturbation property). For all a > 0 there exists f(a, B) > 0
such that, whenever v € S,(Pr, vy, €) satisfies

Jz(v) > a,
there exists a sequence (vV¥)ren C Sy(Pr,vo, €) such that v* v and

Jz(v) > limsup j{g(vk) + B.

k—o0

We postpone the proof of this property to the section...

Now, we fix an exhausting sequence (%, )nen of Z x (0,T), where %,, = Q,, x I,. This
means that %, C %, for all n € N and

U %.=2x(0,7).

neN

Corollary 2.16. Given v € S,(Zr,vo,€), if
Jz,(v) =0 foralln €N,

then (v,p) is a weak solution of the IEE on Pr with initial data v(-,0) = vy, pressure
p=q— v]* and energy 3|v|* = e a.e. on Dr.

Proof. Given v € S,(Zr, vy, €), assume that

v E ﬂ \7;}:(0)

neN

By ... we know that
1
§|v|2(m,t) =e(x,t) aexe, Vtel,.
Since this is true for all n € N and (%, ),en is an exhausting sequence of P,

1
§|v|2(x,t) =e(z,t) aexzeP Vte(0,7).
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2.2.5 Proof of the subsolution criterion

Proof. As Jg, is 1-Baire, its points of continuity form a residual set of S,(Zr, vy, €). Now
we claim that, if v is a point of continuity of Jz,, then Jg (v) = 0. We prove it by
contradiction. Suppose that Jz, (v) > «a for some a > 0. Take a sequence (v¥)rey C

S,(Pr,vo, €) such that v* % v. As v is a point of continuity,
J%, (Uk) — Ja, (U)v
so we may assume that (starting the sequence sufficiently late)
Tz, (V") > a, forall k€ N.

The perturbation property gives, for each k € N, a sequence (v"4) ey C S,(Zr, v, €) such
that v*7 % v* and
Tz, (0F) > limsup Tz, (V") + B.

Jj—00
By a diagonal sequence argument, we can construct a sequence (v¥9®)), oy C S,(Zr, vo, €)
such that v*9® % and

Jz, (v) > limsup Jggn(vk’j(k)) + 0,

k—o0

but this contradicts the continuity of Jz, at v because

3 lim Jg, (V") = T4 (v).

k—o0

In summary, the set

M 7510

neN

is residual in S_q(.@T, vo, €) because is a intersection of residual sets in a complete metric
space, and, by prop..., we know that all the functions of this set are weak solutions of the
IEE. m

2.2.6 Convex integration proves the perturbation property

Localized waves

Explicar porque hay que meter ondas localizadas. Comparar con Nash-Kuiper. Necesi-
dad de introducir el potencial.
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Lemma 2.17 (Maximizing the perturbation). Let r > 0 and z = (v,u) € IntK°. Then
there exists a vector 7 = (0,u) € R% x S¢ and a sufficiently small radius € > 0 such that
the line segment

o=[-%,%]
satisfies
C -
| > = (r* — [v|*) and z+ B(o,e) C IntK(r)®,
r
where C' = 4(D171) and B(o,€) = {w € R? x §¢ : dist(w, o) < €}. Furthermore,

i - p(z)) for all w € B(o,¢).

T——p(z+w)>1(2

4
Proof. Let z = (v,u) € Int K. We know, by Caratheodory’s convex hull theorem [ref],
that z lies in the interior of a simplex spanned by D, elements of K(r), and, we may
assume (perturbing slightly such vertices inside K., which is possible since z belongs to
the interior zone) that v; # +v; whenever i # j [aqui se podria explicar mas esta parte].
That is, there exists z; = (v;, v; Ov;) with v; € rS*! for i = 1,..., D, such that v; # +v;
whenever ¢ # j and

for some A; € [0,1) for i = 1,..., Dx with Y. A\; = 1. Assume (relabeling if necessary)
that A\; = max ;. Notice that, for each 5 > 1, the points

D*

2 Aj(2 —21) = (M F Az + (£ 1A + Z Aizi
=2
7]

belongs to K ° because they are convex combination of elements of K,. Now, since

D*
Z— 25 = Z)\i(zi - 21);
i=2

then b
v — v | < (D, — l)miX)‘iWi — vy

Fix the index j > 1 for which the above maximum is attained. Finally, we consider the
vector

s A
z=mu) =2z —xn)= é(%‘ — 01,05 O 1),

and the line segment
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which is an admissible segment because v; # #+v;. Furthermore, let w = )\%(zj —z1) €0
(A € [-1,1]). Recall that z 4+ A)\;(z; — 21) € K° because we have seen that the extremal
points (A = £1) belongs to K (7). Applying the convexity of p we obtain

plz+70) = (57 + 52+ A — 20)

2 2
1 1
< 5/)(2) + 5/)(2’ + (2 — 21))
1 r?
B 1 ( )+ r2 2
TP Ty

hence

Now consider the set
2

c-{zerixs: T p@> L))

which is open and satisfies z+0 C C C IntK°. Finally, we can choose a sufficiently small

radius € > 0 such that z + B(o,¢) C C.

On the other hand, since |v| < |v1| =7,

ol = oy ] > o~y
v 5 (Ui~ 0l 2 2D, 1) v —

1 1 r+ |y
_2(D*—1)(T M)_Z(D* 0 2 (r=l)
_ 1 o oy Ca,o

B ) = S = o)

Explicar el potencial de Annals.
Define the spaces of matrices

8d+1 - {U € Sd+1 : U(d+1),(d+1) == 0}
Sg+1 = {U c Sg+1 : U(d+1),(d+1) = 0}
Consider the following map
U:C®2x (0,T),Rx S¢ xR) — C=(2 x (0,T),S™H)

u+qly v
(v, u,q) H( y 0)
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Denoting y = (x,t), by definition it is clear that

o +div,u+Vg=0
div,v =0

divy, =0 <« {

Proposition 2.18. Let a,b € R? such that |a| = |b] = r with a # £b. Then, there ezists a
matriz-valued, constant coefficient, homogeneous linear differential operator of order three
L - Coo<Rd+1) N Coo(Rd+1’Sg+l)

and a space-time vector n € R4 not parallel to eqyq with the following properties:

o For all p € C*(R¥), U = L(§) satisfies

div,U =0, suppU C supp ¢.

o Ifo(y) =v(n-y) for some € C=(R), then
L(O)(y) = Us—Up)¥"(n-y), yeR"

Proof. The construction of this potential comes from the election of a suitable matrix-
valued, homogeneous polynomial

PRIy R@HD)x(d+1)
Yy = (Pz(y))glj_:ll
taking £ = P(0). Since
(P(@)¢)' = P1(9)¢,  (P(0)¢)@s1).a+1) = Plasn) @) (0)9,  Te(P(9)¢) = (TrP) ()¢,
for all ¢ € C°(R¥!), we must set
P'=P  Pgiy@y =0, TrP =0,
that is, P : R4 — SgH. On the other hand, as we want

d+1

0 = div, (P(9)0), = (Z Hj<a>aj)¢ — (P(0)0)u0
we must set

P(y)y =0 Vye R

(Obviously, as a linear differential operator, the support of U is contained in the support
of ¢). Consider the matrices

A f acbl|0 0 |y
Rz@@bz( 0 0), Qy:y@edﬂz(_y g), y € R+

We claim that, for all y € R4,
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e (Ry,y) =0, (Quy,y)=0
b <Ry7 ny> — O

Both follows from the next observation, if M € R™" is an antisymmetric matrix with
null diagonal

(ME,€) = my&&; + > (—my)&€; =0, € E€R™

1<J i>7

For the second one observe that

Ry = ((CL S b)gv 0)7 ny = (derlgv _|g|2>7

hence
(Ry, Qyy) = yar1((a © )y, 9) = 0.
Let .
Ply) = 5(Ry @ Quy+ Q@ Ry), ye R,

Let us see that this satisfies the desired properties. By definition, it is an homogeneous
polynomial of degree three, and P is symmetric. Moreover, for all y € R 1,

P(y)at1),a+1) = (BY)ar1(Qyy)as1 = 0,

d+1

Tr(P(y)) = Y (Ry)i(Qyy)i = (Ry, Quy) =0

i=1

and
1 1
P(y)y = 5(Ry @ Quy + Qyy @ Ry)y = 5 (Ry(Qyy. y) + Quy( Ry, y)) = 0.
Now observe that, if n € R and ¢(y) = ¥ (y - n) for ¢ € C=(R41), then

(P(9)())ij = Pij(0) () = Py (m)v"”,

that is
L(¢) = Pn)y".
Therefore, we must find n € R such that

a®bla—>b
P(U):Ua_Ub:<a_b 0 )

On the one hand, we want

(a—="b)i=Pn)idgr = %(Rn>i(Qn77)d+1 = —%|77| ((a © b)n);.
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Observe that

(aob)(a+b)=(a®b)(a+b) — (b®a)(a+b)
= a{a,b) + a|b|* — bla|* — b{a, b)
= (a—b)(r* + (a,b))

(a — b)|a + b|*.

N | —

Hence, taking 7 = C(a +b) # 0 (a # —D),

1 C3
—SIiP(a e by = ——lo+bl'(a - b)

therefore, the constant must be

o _< 2 )3 1
|a + b (r2 + (a,b))3
Call A = éndﬂ. Then,

(@ © )iy = P(n)i

_ %((Rn)i(an)j + (Qum)i(Bn);)
- %(((a S b)ﬁ)i<nd+1nj) + (77d+177i)((a © b)ﬁ)])
_ %C’?’(((a Sb)(a+0))i(a+b);+ (a+b)il(acb)(atb));)
- %C‘Q’Ia +0P((a = b)i(a +b); + (a+b)i(a—b);)
_ %C3|a + b22(asa; — bib)

A 3 2
— 50 la + b|*(a © b),;,

therefore, must be
2 1 9 2
A= Cola+b? gl b=~ b)),

Finally, the direction is

n=- (a+b,—(r* + (a,b))).
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Lemma 2.19. Ifn € R4 s a direction not parallel to eqi1, then

1
lim [ sin®(kn - (z,t))do = §|B|

k—o00 B

uniformly in t € R, for every bounded open set B C R+,

Proof. Notice that

2
sin?(kn - (1)) = (sin(kﬁ . ) cos(knas1t) + cos(kii - x) sin(knd+1t)>
= sin® (k7 - x) cos? (knay1t) + cos? (ki - z) sin® (kng1t)
+ 2sin(kn - ) cos(kn - ) sin(kng1t) cos(kngsqt)

1
= sin®(k7) - x) + cos(27) - x) sin®(kngt) + 5 sin(2kn - ) sin(2kng41t)

Since 7 # 0 and B is an open bounded set, the first term satisfies

1
lim [ sin?(k7-z)de = §|B|

k—o0 B

The other terms

< — 0

k—o0

/ cos(27 - x) sin?(kngy1t) do
B

/ cos(2n - x)dx
B

and
‘ / sin(2k7n - x) sin(2kng1t) dz| < / sin(2kn - x) - x)dz| — 0

uniformly in ¢t € R. (referencia) O

The brick grid

For k = (k1,...,k,) € Z™ and s € (0, 1] denote

1 1I\n
n k:7 = k |: ) _>
Qn(k, s) + s 55

by the n-dimensional cube of center k and side s. For i = (i1, ...,i4) € Z% we consider the

reduced x-cubes €Qy(i, s) = Qu(ei, se). Note that {€Q(i,1) : i € Z?} form a partition of
R?. Now, for (i, ) € Z¢ x Z denote

Qu1((4,j + 3),s), if |i] is even,

o
b4:) {QdH((i,j),s), if [i] is odd,

by the shifted ¢-cylinders. We denote y; ; by the center of each cylinder C(i,7,s). We
consider the reduced t-cylinders €C(i,7,s) = C(gi,ej, se) with center ey; ;. Note that
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{eC(i,4,1) : (i,j) € Z* x Z} form a partition of RZ x R;. Now, let ¢° : RZ x Ry — [0, 1]
a smooth function with suppy C €Qq11(0,1) and ¢° =1 on £Qq11(0, 2). Denote ¢, by
the translated function ¢° to eC(3, j, 1)

\:[/6 - Z pr’] .
(1,)€Z4XT

Denote
Q(s) = U £Qq(i, 8).
|i|€2Z4~
EQd(i,l)CQ
Lemma 2.20. Given a function f: B — R, define the simple function
Of = Y fleya)lectism

(i,§)EZAXZ

which is a discretization of f in the middle points of each cylinder eC(i,j,1). Then, if f
s uniformly continuous on A,

d
s
C.f(x,t)de — — [ f(z,t)de
/Qg(s) e—0 2 QO
for v =1,2 uniformly int € I.

Proof. Fix t € I. Observe that, as [, f is a simple function,

/ Elgf(x,t)dx:sd/ Cef(z,t)dx forl=1,2.
Q2(s) Q1)

/ Hef(z,t)de — / f(z,t)d
QL(1)u02(1) &0
O

From now on, we will denote simply 22 = Qg(%) Now, for every fixed time ¢, observe
that the set
{r e V(x,t) =1}

contains at least one of the sets 2. Moreover, if
=Je@G+18), =),
JEZL JEZ

then 7!Ur? = R and
Ue(z,t) =1 in Q) x 77.

The perturbation
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Fix a > 0. Let v € §;(Zr,vo, e) such that Jz(v) > a. Since v and e are uniformly
continuous on & by lemma 2.20

[;ELP%_%WF]@:wdxgjg;(i)d[;F—-%WP]@%ﬂdx

for v = 1,2 uniformly in ¢ € I. Therefore, taking § = %(%)d, there exists €9 > 0 such
that, for every 0 < € < g,

/ﬂgma[e—émwawdxz;@d b= 56"

for any ¢t € I for which

Consider now the associated smooth matrix field u : 27 — S¢. Recall that
p(z(y)) <ely) forallye 2 x(0,T).

In particular, for some § > 0,

dw—M4w+w>iMw—MMwD25EHMyQ@wEBWMw@)

Recall now that, since p is convex on RP, it is locally Lipschitz. Hence, since the
image of z on A with the possible perturbation are bounded, for some M > 0

p(2(y) +w) = p(2(y) + w)| < M|z(y) — 2(y)]

for all y,y € @_and w € B(o(y),e(y)). On the other hand, since z and e are uniformly
continuous on %, there exists £; > 0 such that

J

12(y) = 2(y)] < le(y) — e < §

_4M

for all y € Q(y,¢) and § € # and every 0 < € < ¢,. Finally

e(y) — p(2(y) + w) = e(y) — e(y) + p(2(y) + w) — p(2(y) + w) + e(y) — p(2(y) + w)
S MR

for all y € Q(y,¢), ¥ € % and w € B(a(y), e(y)) and every 0 < £ < £;. From now on we
fix 0 < ¢ < min{eg, &1} and we miss the index € to simplify the notation.

For each (i,7) € Z% x Z such that eC(i, j, 1) C A, denote

Rij = (v(ayi,j),u(ayi,j)),
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which is the value taken by (v,u) in the middle point of each cylinder. By definition of
the space of subsolutions, each z; ; belongs to Int K (r; ;) for r; ; = \/2e(ey; ;). Therefore,
by lemma 2.17, there exists z;; = (v, ;) € R? x S§ and a radius € > 0 such that the
segment

oij = [~ Zij» Zij)
satisfies
Cq

1
2e—vf-2 EY; i >CegD[e——vz}€l~,
e t2e = PN evis) 2 Cuean® [o = 510 i)

[vi5] =

where Cy, 5 = ,/==—Cy, and, as we have observed before,
6 llellcigay — %

p(z(y) +w) <e(y)
for all Y < €C(i,j, ].), w e B<Ui,j7 Ei,j)-
Let us consider the operator £;; and the direction 7, ; € R+ (not parallel to egyq)

associated to the segment o; ;. Define the perturbation in each cylinder for some frequency
k € N via

1
Zf,j - (vkjj’uij) L 1,J (SOZJ]{?S COS(]{?’I’]Z] (ZE? t)))? (C(],t) € @Ta

which is supported in the cylinder €C(7,5,1). Recall that (v;;,u;;,0) is a subsolution.
Moreover, we can choose the frequency k& > kg for some kg € N sufficiently large to
guarantees that

Z,ﬁj(l',t) S B(O'i’j, 6),

for all (x,t) € Pr, because, as
£ (g costhny - (r,1))) = 7 sinhn - (2,0)), (e.1) € Fr,
then
dist(z;;(x, 1), 015) < |285(x,t) — @igZig sin(kn - (2,1))]
<|lz; = @i g7 sin(kni o) o)
= Hﬁm (%j% COS(’WJ')) —pigli; (% COS(WJ')) H
< C('Cim%pf,j)% <€,
for all (z,t) € Zr. Define the total perturbation as the (finite) sum of all these localized

waves
= @) = Y (vig,uag),

C(i,j,1)C B

C(eC(irg1))
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and the perturbed function
2K = (0 uF) = (v, u) + (0F, 7).

Therefore, for each k > kg, v* € S,(Pr, v, €).

Proposition 2.21. " 0.

The property

Since ¥ =1 in Q7 x 77,
[0 (2, ) =[] sin® (ks - (2, 8)), (1) € £C(i,5.3),

for all cylinders. Using lemma ... (1;; }f €44+1)

| d.

- 1 ) 1
lim |vk(ac,t)|2 de = =1eQa(1,2)||7:; 2 = —/ Ui ;
k—oo Qd(iul) 2 2 Qd(lz%)
Therefore,

lim 0% (2, )| doz = lim Z / (z,t)]*dz

k—o0 k—o0
o li|€2Z 4+
EQd Z I)CQ

1
=3 Z / |U”|2dm

|i|€2Z+~
EQd Z 1 cQ

slet, Y / o~ 510 0y dr

li|€2Z+~
EQd ’L I)CQ

— 5Ches [ B[e- ||2]2< 1
= 5Cies . e 21} x, T

1 1 2
> ) ale - 2
> 2|Q|Cd€2</m [e 2|v|}(:z;,t) dm)

uniformly in ¢ € 77. In general,

liminf/ 0% (z,t)|* dz > liminf min / 5% (,t)|? dz
Q

k—o0 k—oo ~={0,1} Jon~

1 1 ?
> - —
> 2|Q|Cdej Er?nl} (/ D[e 2|v[] (:U,t)dx)

uniformly in t € 7tUT? = I.
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Writting v* = v + 0%

/Q[e_%wkﬂ(l’at)d%:/ [e——\v| :ct dx——/| xtdx—/ﬁ(ﬁ’“m)(m,t)dm

foreacht e I. ..

1
lim su e — =|v*?|(z,t) dz
msup [ [ = 510 (.1
1 1
§/ [e——]v|2] (a:,t)dx——liminf/ ]5k|2($,t)dx—liminf/(5k-v)(x,t)da:
Q 2 9) k )

—00

1 1 ?
< — Zlul? N
_/Q[e 2]v| ](;E,t)d 4|Q|Cd“3’w§5%}</mm[e 2\@\](x,t)dx)

uniformly in ¢ € I. Now, given t € I, if

then, since Jz(v) > «,

1
limsup/ [e— —|vk|2} (z,t)dx < @ < JIz(v) — iy
Otherwise, by ...,
1 a 3\¢
Be -zl @ndr=5(3)"
/m e 2[1}] (x)x_S 1
hence
s [ e~ SAF] 2,0)dr < Tal0)  gramgry Ol
im su e— =|v x,t)dx (V) — ——— a’.
’Hoop o 5 ) > Jz QadtS[Qy|  her®
In general,

limsup/ [e - %|vk|2] (z,t)dz < Tz(v) - B
Q

k—o0

uniformly in ¢ € I where
6(\73&7 Oé) = min {%7 Dd,e,:%’a2}

and
32d

Dyon= .
be? = 111D, — 12|10 [lelloa)

The uniformity brings the conclusion

1
lim sup Jz(v*) = lim sup sup/ [e - §|vk|2} (x,t)dx < Tx(v) — 5.
Q

k—o0 k—oo tel
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Otherwise, if (tx)ren € I is the sequence for which

L k2 / Lok
- = tp)dx = - = t)d
/[e 2|v | }(x, k) da ig) [e 2|U | ](m, ) dz,

there would be € > 0 and a subsequence (tx;);en for which
1
/ [e - §|vk]2] (z,t,)dr > Ju(v) — B +e€ forall jeN,
Q

contradicting the uniformity.

2.3 Constructions
2.3.1 Global existence and non-uniqueness on T¢

In this section we consider the d-dimensional torus T¢ as the domain 2, equipped with its
group structure. At the end we will see that the solution of the (divergence-free) half heat
equation provides a subsolution. For that reason, before constructing such subsolution
we will recall the basic properties of the fractional heat equation on the torus. For our
purpose, we focus on the divergence-free case. [ref]

Consider, for s > 0, the fractional Sobolev space on the torus
zrm%:{feLMW);Z]MMm@P<m}
keZzd

Since
Vo-vdr = (20) 0 dk-0(k), 6 € O(T%),v € X(T),
T kezd

the divergence-free fractional Sobolev space on the torus is
H3(TY) = {v € HY(TLRY) : k-o(k) =0 Vke Zd}.

We also denote
H>®(TY) =\ H*(T%), H>(T%) = [ (T%).
s>0 s>0

For 0 < a < 1, the fractional Laplacian is the linear operator defined by
(=A)*: H**(T%) —  L*(T%
roe (om0 X e iwe)
kezd

This is an interpolation between the identity map on L?(T¢) (o = 0) and the usual Lapla-
cian on H*(T%) (a = 1). From now on, we focus on the case 3 < a < 1.
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Given vy € H%(T?), the (divergence-free) fractional heat equation (FHE) is
O+ (=A)*w =0, T¢x R+t
divoe =0, T x R*
v(0) = vy, T¢
which expression in the Fourier side is
o + |k|**0 =0, Z%x R*
k-0=0, Z*xR*
0(0) = bg, Z¢
The solution of the above system is
bk, t) = do(k)e ™™ (k,t) € Z¢ x RT,
hence, we can represent the solution of the FHE as its Fourier series
v(x,t) = Z bo(k)e Wtk (1) € T¢ x R* (2.7)
kezd
or by the convolution

(o) = g [ ) (3 MR ) dy = o Koo, () € T X RS

(27)d
kezd
(2.8)

with the fractional heat kernel

Ko(x Z Stk 1) € T x R (2.9)

kezd

d

The above change of the order of integration is justified by Fubini’s theorem since the
properties of the heat kernel that we will see now. Notice that, for all s > 0,

2

kezd kezd

Z |k|28

kezd

and
~ |2
UO( ) |k| t

< ||k[*(e™) \k\”é o l|vo]|2 < oo,

therefore
Ka,t: Vo * Ka,t € Hoo(v]rd)

For example, for d =1 and o = %, this is the well known Poisson Kernel
—2t .
Ko (x) = 1 Z oIkt gike _ 1 1—e _ 1 sinh(t)

2 2m 2r 1 —2e~tcos(x) + e 2 27 cosh(t) — cos(x)
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The fractional heat semigroup is
Sap : H(TY) — HZ(T?) C D((—A)*)
vg > v *x Koy

The previous estimates justifies that we can derive under the integral sign. Furthermore,
all the derivatives exists and are continuous, that is,

Sus() € C%(T x (0, 00)).

In particular,

EI%SW(UO) =g * (01K nt) = Vo * (—(—A)*Kayp) = —(—A)*Sy(v).

From (2.8) it is clear that it is a contractive semigroup on H(T%)
[[Sa.t(vo)ll2 < flvoll2
and contractive of exponential type on H(T%) = {v € H(T?) : #(0) = 0}
1Sa.e(vo)ll2 < ™ [lvoll2-

For ty,t € RT, applying the dominated convergence we observe

2
1S4 (V0) = Savto (v0)|12 = d Z |6k ’ —lkPot _ —lkPto|T 0,

t—to
kezd

that is,
Set(vo) € C(RT, H(T?)).

The idea to relate it with the incompressible Euler equations is to rewrite the diver-
gence as a fractional Laplacian. For that reason we must introduce the fractional gradient

\Val HS(Td) N Hs—(ch—l) (Td Rd)
f N (IEHZZ | |2 |2af( ) zk:x)
kezd

for s > 2ac — 1, which generalizes the usual gradient (o = 1). Let v € H>®(T<¢,R%). On
the one hand,

div(V5v) ZZ 7 \k|20“ (k)e'®* = V¢ (div). (2.10)

n=1 geczd
On the other hand,
: « k-k 20¢A ik-x a
div(Ve;) = — Z 7 k20, (k)R T = —(=A)%;. (2.11)
kezd
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Although we could play with this relation for arbitrary «, since we will need continuity at

1
t = 0, we must take a = % This special case is the well known Riesz transform R = Vz,
that is,

R: H (T — H*(T%RY
k - )
f o~ (xHiZ?f(k)e”“’”)
keZd| |
which satisfies
[Rujllz < [lojllz - and  [[Ryv]l2 < [[v]|2 (2.12)

Theorem 2.22. For every vy € H(T?) there exists infinitely many weak solutions (v, p)
of the IEE on T x Rt such that

o v e Cy(RY, Hy(T?)) and p = —3|v]>.
o v(-,0) =vy in H(TY).
If in addition vy € H(T%), then v € Co(RT, Hy(T)).

Proof. In view of the Subsolution crierion 2.13 it is enough to find suitable subsolution
(v,u,q) and energy density e. Let start taking

v(t) = Sé,t(vo)a t>0.
This is a good candidate for the velocity field because it is smooth,
v € Cyp(RY, H(T?))

and attains the initial condition v(0) = vg. Applying the properties of the Riesz transform
(half gradient (2.10) (2.11)) we observe

0= dw; + (—A)%vj = Owj + div(—Rv; — Rjv) + VO

as we were looking for. Therefore, we can try with ¢ = and u; = —Rv; — R v which are
smooth. Moreover, u is symmetric (by definition) and traceless

d
k 4
Tru=-2) Rju=-2i) T o(k,t)e™™ = 0.
Jj=1 kezd

On the other hand, applying (2.12) for ¢,¢y € R™ we deduce

[u;(t) —u;(to)ll2 < [Rv;(t) — Ruj(to)ll2 + [[Rjv(t) — Rjv(to) |l
< v () = v;(to) |2 + [v(t) — v(to)ll2 P 0,
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that is,
u € Cyp(RT, L*(T¢, S3)) C Cy(RT, LY(T?, S9)).

Finally, consider

d 1
e(@,t) = S([of + [ul)(z,1) + min{t, =}, (x,6) € T x RT.

This satisfies
e € O(T% x (0,00)) N Cy(RY, LY(T?))

and (recall proposition 2.9)
pv(z,t),u(z,t)) < e(x,t) for all (z,t) € T¢ x (0, 00).
Finally, we have just seen that Sy(vo, €) is non-empty, and this concludes the proof.

If in addition vy € ﬁ(Td), since the fractional heat kernel is contractive of exponential

type, it follows that
e € Co(RY, L*(T).
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3 YOUNG MEASURES AND ADMISSIBLE SOLU-
TIONS

3.1 Parametrized Measures

Definition 3.1. Given X and Z two Radon spaces and p a nonnegative Radon measure
on X, a parametrized measure from (X, u) to Z is a map

v:(X,u) — M(2)
T o= U

which is weakly* p-measurable, that is, for every bounded Borel function f on X x Z,
the map

xE(X,u)H/Zf(:E,z)dux(z)

is measurable. We will denote
Ly (X, s M(Z))

for the space consisting of parametrized measures which are p-uniformly bounded in
M(Z).

Fix % a nonempty Borel subset of R™. In our case it will be Z = R? x [0, 7] and
n=d+ 1.

3.1.1 Young Measures

Definition 3.2. Given X and Z two Radon spaces and p € RT(X), a Young measure
(YM) from (X, i) to Z is a parametrized measure which range lies in Prob(Z). The space
of such Young measures is denoted by

Y(X, p; Z) = L= (X, pi; Prob(Z)).

Proposition 3.3 (Disintegration theorem). Let X and X two Radon spaces. Given p €
MT(X) and 7 : X — X a Borel map, consider the pushforward measure m.pu € M*(X).
Then, there exists a [m. ] a.e. uniquely determined YM

1€ Y(X, mop; X)

such that p, s concentrated on the fiber m='(x) for [m.u]a.c.x € X and

[rat= [ ([ stanto ) anuto

fore every f € LY (X, ). That is,

= py @ meprin M(X).
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(demo Ambrosio...)

Corollary 3.4. If X and Y are two Radon spaces and jp € MT(X xY), denote ux =
Tt € MT(X) where 7 : X x Y — X is the canonical projection. Then there exists a
[x] a.e. uniquely determined Y M

e Y(X, ux; X xY)

such that p, s concentrated on the fiber m='(x) = {x} X Y for [ux]a.c.x € X and

du( Yt d
[ sewiten = [ ([ 1 ndnm) duxe
fore every f € LY (X x Y, ). That is,

p=py @ ux m M(X XY).

Theorem 3.5 (Fundamental Theorem for YM). Let (w*)ren a bounded sequence in
L>®(% ,RY). Then, for a subsequence (not relabeled) there exists a YM

v eY(%;R%
such that, for every f € Cy(% x RY),

Flyw () = (v, f(y: )
(weak™®) in L3S ().

In particular, if % is bounded, the weak™® convergence is in L>(% ).

Proof. Let 2 a bounded Borel subset of % . Take

R = sup [[w"|| 1= (@) pa
keN

and denote B = B,4(0, R). Notice that the operator

Ap:Co(2xRY) — R

h — /h(y,wk
Q

Ax()] < / (s 0 (@) dy < [l erem,

is linear, positive and bounded

hence, by theorem [Riesz] we know that there exists a unique positive Radon measure
pk e M*(Q x R?) such that

/Qh(y,wk(y))dyzl\k(h) = (", h) =/Q Rdh(ﬁ) dp* ()
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for every h € Cy(Q x RY). Moreover, such measure is concentrated on 2 x B and they
are uniformly bounded, ||u*|| < |Q|. Therefore, by theorem [Banach-Alaoglu], for a
subsequence (not relabeled) there exists u € M*(Q x B) such that u* = p (weak*) in
M(Q x RY), that is,

(F By — {u, h), h € Cy(2x B).

By corollary 3.4

(ks o) Z/Qth(yW) du(y, w) Z/Q(/Bh(%w) duy(w)> dua(y)

for every h € Cy(Q x B). In particular, for every f € Cy(% x R?) and ¢ € Cy(2), taking
h = f¢ € Cy(2 x B), we have seen that

/Qf(y7w’“(y))¢(y)dy—>/Q(uy,f(y,-)w(y) dpa(y),

that is,
Fly,wh(y) dy = (. f(y, ) dpa(y) (3.1)
(weak*) in M(Q). For f(y,w) =1, we deduce that

dy = pg
in M(Q). Finally, for every ¢ € L'(2), taking ¢, — ¢ in L'(Q2)

‘/Qf(y’wk(y))(b(y) dy — /Q%,f(y, ) (y) dy‘
[ 5008 000600) ~ ) 0] + | [ 1 000 000) )

<

+‘/ﬂf(y,w'“(y))sbn(y)dy—L(Vy»f(y,-)wn(y)dy‘
<2l fllz@xmlldn — iy + [1f (v, w* () dy — (vy, (v, ) dyllme sup [¢nllL1 @)

— 0.

n—oo
Therefore,
f(ya wk(y)) - <Vy7 f(y’ ))
(weak*) in L>(Q).
If % is bounded the proof is done. If % is unbounded, take
Qy =B, (0,N)N%.

First, for € we obtain a YM pu; € Y(Qq;R?) satisfying (3.1). After that, we can apply
the result on €, for the subsequence of (w*).en generated in the previous step obtaining
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a YM py € Y(9;RY) satisfying (3.1) which agrees with py (a.e.) on €, by construction.
[terating, we obtain a subsequence of (w*)gey which generates a YM

v eY(%;RY).
Hence, for every f € Cy(%Z x RY),

Fly,w () = (v, f(y, )
). 0

(weak™) in Ly,

3.1.2 Generalized Young Measures
Let V be a d-dimensional real vector space! equipped with a continuous functional
[]:V = R"

which is positive definite

and positive homogeneous
[az] = alz], aeR" zeV.
For p € R* define the p-dilatation
0,:V =V
w = wwP!
(0,(0) = 0). For every p,q € RT, if w # 0
0,00(w) = wlw]” ww]" "7 = wlw] = vy (w)

and 0,0,4(0) = 0 =0,,(0). Hence, for every p € R,

=t

0 b

1
p
so 0, is a bijection. For p > 1 it is clear that 0, is continuous. For 01 the only doubt is
p
at w = 0, but observe that
1 4 1
[wlw]?™"] = [w]> =0

when w — 0, so it must be w[w]%fl — 0 when w — 0. Looked at another way, in a
compact neighborhood of 0 in V' the map 9, is a continuous bijection from a compact set
to a Hausdorff set, hence it is also an homeomorphism. Finally,

0: (R*,:) = (Hom(V),o0)

IThe results still being truth if we take, instead of V, a closed cone C inside V. Anyway, we only need
the vector case.
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is a group homomorphism.

A well know fact of these functionals is that they are equivalent to the Euclidean norm.
Since [-] is positive definite, [2] > 0 for every 2 € S?~1. Since [-] is continuous and S is
compact, by theorem [Weierstrass|, there exists ¢, C' > 0 such that

c<[f<C viest

Now, for every z € V non null we can take Z = |i € S%!. Finally, positive homogeneity

2|
_ [
||

implies that [Z] hence

clz| <[] < Clz| VzeW.

This guarantees that we can compare [w*] with |w*| to obtain the usual L? norm.

Furthermore, every [-] is characterized by its restriction to S?1, that is, there is a
bijective correspondence between positive definite and homogeneous map from V' to R
with strictly positive functions on C(S?7!) via

[2] = lzl[z/Iz]], 2 €V
([0] = 0 by continuity). Denote
By ={z€V :[z]<1l} and Sy={z€V :[z]=1}
for the unit “ball” and “sphere”of (V,[-]). Notice that both are bounded. Moreover, By

is open in V' and Sy and By are both compact in V.

In general [-] will be the Euclidean norm, so we will write simply V' instead of (V,|-]).
This is the situation of the original theorem of Alibert and Bouchitté in [AB]. On the
other hand, for measure-valued subsolutions in section... we will need to consider general
[-] which were not included explicitly in [AB]. However, as we shall see, it is a simple
generalization because we have not had to modified the proof but realise that it still being
truth for these more general [].

Definition 3.6. A triple (v, A\,v*™) is called a Generalized Young Measure (GYM)
from % to V if

veY(w,L;V), NeRY %), v*eY(%,\Sy).
The space of such GYM is denoted by
GY(%;V).
Consider the homeomorphism

©p Vo= BV
ww]?
1+ [w]p

—1
w =
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which inverse is

(1—[z])»
(©,(0) = 0). More clearly, these are obtained from
D, =900, and D '= o1 o®;!

by observing

D7D (w) = — 4 — oy,
' 1 - [1+[w]}

Notice that, if z = ©,(w), then

(3.2)

[ =1- {w[w]pl] !

T+ [wp] — T+ [w]

Definition 3.7. We define F,(%,V') as the class of continuous functions f on % x V
such that the mapping

T,f:% xBy — R
(z,2) = (1= [])f(2,9,7(2))

can be extended into a bounded continuous function on % x By. That is, a function f
belongs to F,(%,V) it f € C(% x V') and

T,f : % xBy — R
(1—[)f(z,D,'(2)) if = € By,
(r,2) i, ‘
fe(z, 2) if z € Sy.

is a well defined bounded continuous function, where f* is the p-recession function

fe(z,2z) = lim (1 — [z'])f(x,@;l(z')), (x,2) € % X Sy.

2=z
Proposition 3.8 (Properties of F,(%,V)).

a) The p-recession function of f € F,(%,V) can be calculated by

[z, 2) = zl'{g @, (,2) € U x Sy.
§—00
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b) The map T, is a linear bijection from F,(% ,V) to Cy(% x By) with inverse
T,' O (% xBy) — Fp(%,V)
g = ((x, w) — (1 + [w]?)g(z, Dp(w))).

Furthermore, the vector space F (% ,V') with the norm

| f (2, w)]
\fllry@yvy= sup ——=—
’ H »(%,V) (20)e W XV 1+[w]p

is a Banach space isomorphic to Cy(% x By) via T,.

Proof. a) It is clear by (3.2) setting

ni-1
w =9,(2') =5z where s= A

b) The map
Tp : fp(%, V) — Cb(% X Ev)
fo= T

is a linear map with inverse 7' by (3.2). Furthermore, by definition is an isometry. [

Theorem 3.9 (Fundamental Theorem for GYM). Assume that % is locally compact. Let

(w*)ren a bounded sequence in LP(%;V). Then, for a subsequence (not relabeled) there
exists a GYM

(v, \,v>°) e GY(%;V)
such that, for every f € F,(%,V),
Fly,w*(y) dy = (v, f(y, ) dy + (2, f¥(y,-)) dA(y)
(weak*) in R(% ). Moreover,

keN

/ (v [17) dy + A(%) < sup / [ (y)]P dy.
4 4

Observe that A € MT (% ).
In particular, if % is bounded, the weak™® convergence is in M(U ).

Proof. Let 2 a bounded Borel subset of 7. Notice that the operator
Ak : C()(Q X Ev) — R

b [Tt ) = [ (14 AP0, ) dy
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is linear, positive and bounded

AL < (L02) + 0| zogozn ) 1]l = e

hence, by theorem [Riesz] we know that there exists a unique positive Radon measure
k€ M*(Q x By ) such that

/QTplh(y,wk(y))dyzAk(h)z (1", h) =/ h(y, z) du*(y, 2)

QXEV
for every h € Co(Q x By,). Moreover, such measures are uniformly bounded
"1 = 1Akl < £(92) + sup [[w"]| om0,
keN
hence, by theorem [BA], for a subsequence (not relabeled) there exists 1 € M*(Q x By)
such that % = p (weak*) in M(Q x By), that is,
(F Ry — (u, h), h € Co(Q x By).

By disintegration theorem 3.4

wet = [ ) auts) = [ ([ h2)am() dunto)

for every h € Cy(©2 x By). In particular, for every f € F,(%,V) and ¢ € Cy(9), taking
o =T,(f¢) = (T,f)p € Co(Q x By ), we have seen that

/Qf(y,w’“(y))aﬁ(y) dy%/waanf(y,')W(y) dpa(y),

that is,
Flyw* () dy = (g, T, f () da(y)
(weak™) in M(Q2). For f(x,w) =1+ [w]?, since T,,f(z,2z) = 1, we deduce that
(1+ [w']) dy = dug
(weak™) in M(Q2). For f(x,w) =1, since T, f(x, 2) = 1 — [z], we deduce that
dy = (py, 1 = [2]) dpa(y)

in M(2). Let
dpo = p(y) dy + dug (3.3)

the Lebesgue-Radon-Nikodym decomposition of pq with respect to dy, where p is the
Lebesgue-Radon-Nikodym derivative ddL; and dug, L dy. Observe that

(1= p(y) (g, L= [2])) dy = (py, 1 = [2]) dpugy (3.4)
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in M(€). Therefore, it must be

p(y){uy, 1 = [z) =1 (dy)a.eyecQ (3.5)
and
(uy, 1 = [2]) =0 (dps) a.e.y € Q. (3.6)
Since 0 < 1 — [2] < 1 on By, by (3.5),
p(y) = (uy, 1= [z)7' >1 (dy)a.e.y€ Q.

On the other hand, since 1 — [z] > 0 on By, by (3.4) and (3.6), p, is concentrated on Sy
(dpg) a.e.y € Q, so
py(Sy) =1 (dug)a.e.y € S (3.7)

Notice that the operator, which is defined (dy) a.e.y € €,
r,:Co(V) — R
¢ = o) [ T din) =) [ (1= D@, diy (2
14

Vv

is linear, positive and bounded

Ty (D) < p(y) (g 1 = D@l ey = [l v)-

Indeed, for ¢ =1, we have I'y(¢) = 1, hence ||I')|| = 1. By theorem [Riesz], there exists
a unique probability v, € Prob(V') such that

p) [ Te(e) (=) = () = (4 = [ o) g )
for every ¢ € Cy(V). Define the Radon measure
A= 1y(Sv)pa € MT(Q).
Hence, by the Lebesgue-Radon-Nikodym decomposition (3.3) and (3.7),
dA = p(y)py(Sv) dy + dpgy. (3.8)
Notice that the operator, which is defined (d\)a.e.y € Q,

r=:C(Sy) - R

: /
i p(2) dpy(2)
Ny (SV) Sv Y
is linear, positive and bounded with ||[I';°|| = 1. By theorem [Riesz], there exists a unique

probability v5° € Prob(Sy) such that

. o = (™ — o)
11, (Sy) /Sv o(2) dpy(2) = Iy (p) = <Vy Q) = /SV v(2) dy, (z)
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for every ¢ € C(Sy). Finally, all these observations yield that, for every f € F,(%,V),
since T,f = f*° on Q X Sy,

(vy, fly, ) dy + (v,°, 7 (y, ) dA(y)
= ({0 £ )) + Py (SO £, ) dy + (v, £ (. ) dpi(y)

(p Tpf(y, z) dpy(2) + p(y) /S ) Tpf(y,2) duy(2)> dy

N (W /BV T,/ (y,2) duy(z)) dizg ()

— </Bv T,f(y, z) duy(Z))(p(y) dy + dpg(y))

=y, Tpf (y, ) dpg-

Therefore, for every f € F,(%,V),

(weak™) in M(Q).
If % is bounded the proof is done. If % is unbounded, take
Oy =B, (0,N)N%.
First, for ; we obtain a GYM (v, A\, v>°); € GY(Q; V) satisfying (3.9). After that, we
can apply the result on 2, for the subsequence of (w*)ren generated in the previous step
obtaining a GYM (v, A\, 1)y € GY(y; V) satisfying (3.9) which agrees with (v, A, v>°);
(a.e.) on Q) by construction. Iterating, we obtain a subsequence of (w")zeny which gener-

ates a GYM
(v, \,v>) e GY(%;V).

Hence, for every f € F,(%,V),
| 1wt oy [ o s ew s+ [ 6 =00 di)
u % u
for every ¢ € C.(% ), that is,

fly,wb(y)) dy = (v, f(y, ) dy + (%, f¥(y, ) dA(y)
(weak®) in R(% ). For f(y,w) = [w]?, since ([:]?)> = 1 by proposition 3.8,

[w* ()] dy = (v, [17) dy + dA(y)
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(weak™®) in R(% ). Hence, for every ¢ € C.(% ) non negative,

[ weowa+ [ swar) = lim [ ww)row) dy
4 4 o0

4

. <sup / [wk<y>1pdy)||¢||w>-

keN Jy

Finally, denote
w= (v, [ VL+IeRT(%).

Hence, since % is locally compact, by theorem [Riesz],

W) = sup{(w,6) + 6 € Cl), 0< 6 < 1y} < sup /7/ [ (y)]? d,

keN
that is,

/% (v [17) dy + A(%) < sup / [ (y)]P dy.

keN

To simplify we will use the notation

wAv<ifo) = [

74

W £ N+ [ 07 (0.) 9 N

74

for every f € F,(%,V) and every ¢ € Co.(%).
Given v € Y(%;V) and w € LP(%; V'), we define also the shift of the YM as
Tov = (Ty)w € Y(U;V)

where T' is the usual translation in V', that is,

(Tat)ys @) = /V o(w + w(y)) dvy (@)

for every ¢ € Cy(V).
Proposition 3.10. Some properties of GYM.

1) There exists countable sets of functions { fitren C Fp(V) and {¢y}ren C Co(%) such
that

W, N5 fry b)) = (DA% fr i) YVEEN = (1, A\, v™) = (i, A, 7).
2) Let w* — (v, \,v™) and &% — (0, X\, ) in GY(%:V). Then,

w'—w" =0 nR(¥%) = v=rn
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8) Let w® — (v, \,v>°) in GY(%;V). Then,

wk—wF =0 inIP

loc

(% V) = a"—= (v,\,v™).

4)
wh —w in L (W;V) e wh = (6,,0,0) in GY(%;V).

5) Let w® — (v, \,v>°) in GY(%;V) and w € LP(%;V). Then

wh +w — (Tuv, \,v™®)  in GY(%; V).
Proof. Characterization of GYM... O

3.1.3 Lifted Generalized Young Measures

let p' = (p;);_, a collection of Lebesgue powers, that is, § € [1,00)", and V=W, -, V)
where each V; is a d;-dimensional real vector space equipped with some [];. Denote
V =V; x--- x Vy. Suppose that we have a bounded sequence in

LU VY= LP (U VL) X o X LPN (U V).
We can adapt the previous result to this situation. Denote P = max p; and

0;:V —- V

ks

B (o ()i

with correspondent inverse 95! = 9. Define
F 7

HV 'V — RT

@ [([wy];)izy]

where [] is a positive definite and homogeneous map in RY (for example the Euclidean
norm). It is clear that V' is a d; + - - - dy-dimensional real vector space of equipped with
[-]y which is positive definite and homogeneous. Denote

SE={d €V : [oz(w)y =1} =02(Sy).

ks
Sl

Definition 3.11. A triple (v, A, v*) is called a GYM; from % to Vv if
1 + oo QP
veY(%,L;V), AXeRY (%), v*eY(%,\Sy).
The space of such GYMj is denoted by

GYH%;V).
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Definition 3.12. We define F3 %, 17) as the class of continuous functions f on Z x V
such that the function defined by

9(y, @) = f(y, 0 (), (y @) €U xV
belongs to Fp(%,V).

For f € F5(%,V) define its p-recession function as

Sk

—f(yi D (@) e ¥ xS

=y, @) = lim z

-/

w'—w S
§—00

P P
(where 57 = (s% w;)_, is a pointwise multiplication) which is a well defined continuous

function in % x Sf; . This is by definition of Sf; , observation

5 5
e ; (4,505 (7))
%) f(yas%w) . 9 y,SDp w 00 5
f=(y,w) = lm p = lm o = g%y, (w))
S§— 00 Eadee]

n 13
for every (y,w) € % xS

Corollary 3.13 (Fundamental Theorem for GYMp). Assume that % is open or closed.

Let (0F)ren @ bounded sequence in LP(%:V). Then, for a subsequence (not relabeled)
there exists a GYMj

(v, \, ™) € GYHX; V)
such that, for every f € Fz %, ‘7),

Fly, @™ (y)) dy = (v, f(y, ) dy + (2, (. ) dA(y)
(weak™) in R(%).

Proof. Notice that the sequence w* = (05 (w*)) is bounded in L¥(%; V) because

sy

05, (W)™ ~ [y (wi)]j = [wfl5 ~ [wj]™.

Applying theorem 3.9 to w* we know that there exists a GYM (7, \, 7®) € GY(%;V)
such that, for every g € Fp(%,V),

9(y, w* () dy = (v, 9(y, ) dy + (°, g%y, -)) ()
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(weak*) in R(%). Consider A = A € M (%),
v = (00).5 €YU, L),
v = (00).0% € Y(U, A ST).
Hence, for every f € Fs(%,V) we have

fly, 7" (y)) dy = g(y, 0

) dy + (7,7, 9% (y, +)) dA(y)
00 )dy + (7", [*(y,) 00
= vy, f(y, ) dy + (v,°, 9% (v, ) dA(y)

) dA(y)

@1\"0

3.2 Measure-valued solutions of the ITEE
3.2.1 Leray solutions of the INSE

Theorem 3.14 (Leray ref 1934). let u > 0 a fived viscosity. For every vy € H(R?)
there exists a weak solution v* to the incompressible Navier-Stokes equations with initial
velocity field vy satisfying the strong energy inequality

sup/ |v“(x,t)|2d:n§/ lvo(2) [ da.
Rd

te[0,T] J R4

3.2.2 Measure-valued solutions of the IEE

Definition 3.15. A GYM (v, \,v>®) € GY(R? x [0, T]; R?) is called a measure-valued
solution to the IEE if

T
/ (- 0. 1) + Vo : (1€ 06)) d:cdt+/ Ve : (15,0 ® 6) dA(z, 1) = 0
0 R4

dx[0,T)

for all ¢ € C>*(RY x (0,T); RY) N H(R?) and

V- t(x,t)de =0

Rd
for all ¢ € C°(R?) for a.e.t € [0, T).

Theorem 3.16. Let vy € H(RY) and (jux)ren @ vanishing sequence of positive viscosities,
wi L 0. Denote vF = v** in the context of theorem 3.14 for the initial data vo. Then, the
sequence (V¥)pen generates a GYM (v, \,v>®) € GY(R? x [0, T]; R?) which is a measure-
valued solution of the IEE. Furthermore, such GYM satisfies:

o1
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a) The concentration measure A admits a desintegration of the form
dA\(z,t) = dM(z) ® dt
where the new X is an uniformly bounded parametrized measure

A€ Ly ([0, T]; M*(RY).
b) For almost every time t € [0,T

(Vog, |- Py do + M(RY) < [ Juo(2)] da.
Je J

Rd
We call

B0 = ([ o] P s+ (29
the energy of the measure-valued solution.

c¢) The barycenter belongs to L=([0,T]; H(R?)). Hence, by theorem..., we can redefine it
on a set of times of measure zero such that

v € Cy([0,T); H(RY)).

Moreover,
sup |o(x,t)]? dz < / |vo|? dav.
Rd

t[0,7] JRrd
d) The initial data is attained in the sense that

o(t) — 0(0) =wvy (strong) in L*(R%:RY).

t—0t+
e) For all p € CX(R? x [0,7T); RY) NH(RY)
T T
/ / (8tg0 c0(z,t) + Vo i Ve, €@ £>> dx dt +/ / Vi : (v, 0 ®0)dM\(x)dt
0 JRd 0 JRrd
= —/ o(z,0) - v(x,0)dx
Rd

Proof. By theorem 3.14, for every finite time s € [0, T

/ |vk(a:,t)]2dxdt§/ \Uo(x)|2dxdt§s/ lvo(z)2dz, k€N,
0 Rd 0 R4 R4

hence the sequence (v*)rey is bounded in L*(R¢ x [0,s]). Hence, by the fundamental
theorem of GYM 3.9, it generates a GYM (v, \,v>®) € GY(R? x [0, s]; R?) with \ €
M(R? x [0, s]). By disintegration theorem 3.4

A= 5\t X )\[075]-
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Therefore, for every f € Fo(R? x [0,T] x R?),
[l t, 0" (2, t) dedt = (vuy, flz,t,-)) dedt + V35, f>(2,t,-)) A (2) d(g.5)(t)
(weak*) in R(R? x [0, s]). For f(z,t,v) = |v|? since (| - |?)>* = 1 by proposition 3.8,
[WF (x,8) P dz dt = (v, | - |?) dadt + dM\(x) dAp g (t)

(weak*) in R(R? x [0, s]). Hence, for every ¢ € C.(R?) and ¢ € C([0, s]),

/ / D) (Vay, | - ) da dt + /0 Sgp(t) Rdgb(x)dXt(x)dA[o,s}(t)
TR /R 6(@)|o* (. )2 dz dt

k—o0 0

< el lélmm [ @) do

For every ¢ € C([0, s]) non negative, denote w, by the positive Radon measure on R?

defined by . .
[ o) [ el Brasar+ [To [ aiie) draqe)

for every Borel subset A of R%. Analogously to the proof of theorem 3.9 we conclude that

/ (1) / (e | - [2) dwdt + / 2(0) Do (1) < [llios) / wo(x)2dz.  (3.10)
0 Rd 0 Rd

for every ¢ € C([0, s]) non negative. Observe that the second term implies that Ap g <<
dt. This is because, since they are Radon measures, by theorem [Riesz|, for every open
subset U of [0, s]

Ao.s)(U) = sup{{Ap., ) = ¢ € C([0,5]), 0 < o < Ty}

SWMHM@¢w60@ﬁM0§¢§LﬁAJ%@W¢t

= dt(U) | |vo(z)|*dz,

R4

and hence, for every Borel subset A of [0, s], it is also

Ao,s)(A) < dt(A) |lvo(2)|* d.

Rd

Therefore, the Lebesgue-Radon-Nikodym decomposition of Aj 4 with respect to dt is

)\[0,3] = h(t) dt
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where h is the Lebesgue-Radon-Nikodym derivative /\d 7= Now we can use Fatou’s lemma
to extend the inequality (3.10) to all non negative ¢ € L'([0,s]). Taking ¢, — ¢ in
L]0, s]) (recall that it also converges [dt] pointwise)

/05 ©(t) /Rd@x,t, |- |?) da dt + /0 o(t)h(t) dt
Shﬂiﬂiﬂf(/os Pult) /Rd@m,t,\ . |2>dxdt+/os%(t>h(t) dt)

< lim inf (||son||L1<[o,sD/ |“0($)|2d9”)
n—o00 R4

= lelsqoo [ @) e

Finally, for every ¢ € L'(]0, s]) we deduce that

L1 [ el Prasaes [Co@ine < lelogy [ n@Pde @)

The second term implies that, since L([0, s])* ~ L>([0, s]), h € L*([0, s]) with

TP / o) de.
Rd

We define )
A = h(t)\ € MT(RY)

[dt] a.e.t € [0, s]. Hence
A=) \®dt and MN(RY) = h(t).

Again, since L1([0, s])* = L=([0, s]), (3.11) implies

/ (o, |- P) dz + M (RY) < / () ? da
R4 Rd

for almost every time t € [0, s]. We have just proved a) and b).

c) Applying Jensen’s inequality we deduce

[apar= [ fwanoFde< [ aletdn < [ luf o

[dt] a.e.t € [0,s]. On the other hand, taking f(z,t,&) = £ € Fo(R? x [0,T] x R?), since
f°° = 0 by proposition 3.8,

vF(z,t) dedt = (v, €) dedt = 0(z,t) do dt (3.12)
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(weak*) in M(R? x [0, s]; RY). Hence, for every ¢ € C>°(R?),

0= < V¢~Uk(x,t)dx> dt = (
R4

(weak™) in M([0, s]), that is,

Vi - o(z,t) dx) dt

Ra

V- o(x,t)de =0
Rd
[dt]a.e.t € [0, s].

d...

e) First recall that, since v* is a weak solution to the INSE,

/OT /Rd ((&s@ FuA) - vF + Ve ok @ v'c) (z,t)dzdt = — /Rd o(z,0) - vo(x) dz (3.13)

for every ¢ € C.(R? x [0, s); RY) NH(R?). For f(z,t,£) = @& € Fo(RYx [0,T] x RY)dxd.

since o o
ot 0) = tim SO EEO) oy g g
0'—6 S
S§—00
we obtain
v* @0 (2, t) do dt = (v, £ @ &) dadt + (125,60 @ 0) dA\(z) dt (3.14)

(weak*) in M(R? x [0, s]; R?*¢). Hence, by 3.12 and 3.14, when we make k 1 oo on 3.13
we obtain

T T
/ / (0 0w 1) + Vi € @) dardt + / Vit (12,0® 0) dA(z) dt
0 Jrd 0 Jrd
= —/ ©(x,0) - v(x,0)dz
R4
for every o € C.(R? x [0, s); RY) N H(RY).

Finally, since this is true for all finite time 0 < s < T, the results are extended natu-
rally to the case T' = oo.

Notice that d) implies that it is a measure-valued solution when we test it with func-
tions in C.(R? x (0,7); RY). O

Definition 3.17. Given vy € H(R?), a GYM (v, A\, v>®) € GY(R? x [0, T];RY) is called
an admissible measure-valued solution to the IEE with initial data v, if it satisfies
a), b), ¢), d) and e) of theorem 3.16.
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3.2.3 Measure-valued subsolution of the IEE

In this part we equip, in the sense of section..., V; = R? and V5 = S¢ with

1
=zl and [ = Ao

Define [-]gay s¢ via the Euclidean norm in R2. As we want to consider sequences in
L»(L* x L), we consider p'= (2,1). The “sphere” is

2,1
Fon =S

Rd,5¢

1
- {(v,u) € R x S+ =[ol? + Amax(u) = 1}
and the 2, 1-recession function of f € Fp (..., R, SY) is

. f(y,sv', 32u’)
C(y,v,u) = lim ——————=
f <y ) (v’,ftg’)—>(U7U) s2

(y,v,u) € ... X So;.

The election of such [-] is due to the map

Q:RY - R?xS¢
v = (v,v0w).

satisfies Q(S?71) = . It is clear from

1
2 4 AV 0 ) = A0 @) = ma (6, (00 )¢) = max (0,62 = ol v R

Theorem 3.18. Let (v¥, u*)ren a bounded sequence in L=([0, T]; L** (R4 R, S§)). Then,
for a subsequence (not relabeled) there exists a GYMs;

(v, A\, v™®) € GYq1(Zr, L:R?, 59)
such that, for every f € Fo1(%r,R%, SY),
Sy )b ) dy = (vy, fly, ) dy + (5%, £ (y,-)) dA(y)
(weak*) in R(PDr). The concentration measure A admits a desintegration of the form
dA\(z,t) = dM\(z) ® dt
where the new X is an uniformly bounded parametrized measure
A€ L ([0, T MF(RY)).

Proof. Repeat the proof with lifted GYM. n
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Definition 3.19. Let (v,\,v™°) € GY21(Zr;R%, S¢). Denote m; : R4, S¢ — R? and
7y : R4, S48 — S¢ by the canonical projections. Notice that 7° = 0 and 75° = 7.
Consider the barycenter

=1

(x,t) = <l/$7t,71'1>
(x,t) = (Vpy, m2) da dt + (vg5, ma) dA(z, t)

x,t)

I

Note that @ is only a measure. Such GYMjy; is called a measure-valued subsolution
if (0, u) is a subsolution in the sense that

Oy + divi = 0
in (C2(2r;R) N C([0, T H(2)))*

Observe that
o(sv/, %) d . Apax((s0') @ (s) — s%u)

(o.¢] J— 3 g =
0% (v,u) = lim =—3—= = - lim =2 o(v,u)
S§—00 S§—00

Definition 3.20. Given a measure-valued subsolution (v, \;@dt, v>°) € GYq1(Z7; R?, ST)
we will say that it is an admissible measure-valued subsolution is its energy

E(t):/ (Vat, 0) dx+/ (Vo3 0) dAy(7)
Rd Rd
satisfies

1 _
B(t) < 3 / o, 0)] do

for almost every time.

Given f € Fo1(Z7, R4, SY), then foQ € Fo(Zr, RY x S§) with

(Fo @) = tim L2y JELENOLV) _ g 1

We define also
U=Q.weY(Pr, L;R x S and 7™ = Q™ € Y(Dr, \; Ha1).

Hence,
(17, )\, ﬂoo) - GYQJ(.@T; Rd, Sg)
Proposition 3.21. Let (v, A\,v™®) be a measure-valued solution with bounded energy and
(7, A\, 7>®) be defined as above. Suppose (v* u*) is bounded in L°°([0, T]; L*'(R%; R?, S9))
such that
(0" u*) = (7, N, 7)) in GYa (2 RY, SY).
Then
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a) The GYMyy (D, N\, D7) is a measure-valued subsolution.

b) If E and E denote the energy of (0, A\, 0°) and (v, A, v™°) respectively, then

E(t) = E(t)
for almost every time.
¢)
o B (v, A, ™)
d)

F—ohovf| =0

lu
in Lio(Zr).
Proof. a) On the one hand

0= / (@gp (2, t) + Vo i Ve, E® 5)) dr dt + Vo (v, 0 ®0)d\(x)dt
@T @T

_/ (0 0, 1) + Vi (e €08 ) drdi 4 | Vip: (035,00 0) du(a)
@T @T

1 1
+ —/ divip(vas, |€]°) dz dt + = / divep dA(z) dt
d J g, d J g,

= / <8tg0 (2, t) + Vo : (Vgm0 Q>> dx dt + Vi : (v, m 0 Q(0)) dAy(x) dt
—@T »@T

:/ Oyp - U(x, 1) dxdt—i—/ Ve du(z,t)
i

G -@T

for every ¢ € .... On the other hand
div...

b) It is clear by definition
B(O) = [ Geng)det [ 00 dh(o)
Rd Rd
= / <V:c,ta Q(fa f O £)> dz + /
Rd

R4
1

- 5(/W@m, €%y dz + At(Rd)) = E().

c) Let f € Fo(Pr,RY). Take g = f om. Notice that g € Fo1(Zr,R%, S3) and
f =go@Q. Hence, by hypothesis,
fly,v"(y)) dy = g(y, v"(y), u"(y)) dy
= By, 9y, ) dy + (7%, 9% (y,-)) dA(y)

(v, 0(8,0 O 0)) d\ ()
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d) Note that the function
fu)=lu—vOv], (vu)eR?x 58

belongs to Fa1(Zr, R4, S¢) with

F(ou) = lim |s?u’ — (sv') O (sv')]

(v )= (v,u) 52
500

=|u—vOu| = f(v,u).

Also f o @ = 0. Therefore,
u* = 0" O F|(y) dy = (7, ) dy + (7%, ) dA(y) = 0

(weak*) in R(Zr). Density extends it to L, .(Zr). O

loc

3.3 Density of wild initial datas

Theorem 3.22. a) A GYM (v, \,v>°) € GY(Zr;RY) is a measure-valued solution of the
IEE with bounded enerqy if and only if there exists a sequence (V*)ren of weak solutions
to the IEE bounded in Cy([0,T]; Ho,(R?)) which generates such GYM, that is,

" = (v, A\, v™) in GY(2r; R?).

b) If in addition (v, \,v>®) is admissible with initial data vy € H(R?), then the generating
sequence (V¥)gen can be chosen such that they are all admissible and

v — g in L*(R%RY).

Instead of prove b), first we are going to prove a weaker version b’) which will allow
us to prove b) after.
b’) If in addition (v, \,v>) is admissible with initial data vy € H(R?), then the generating
sequence (vV¥)gen can be chosen such that

2
sup [v* (2, 1)|? do < / lvo(,2)|? dz + =
te[0,T] J R4 R4 k

and
Ve — Vg in L*(R%RY).

Corollary 3.23. The set of wild initial datas is L*-dense in the set of selenoidal initial
datas H(R?).
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3.3.1 From subsolutions to exact solutions

Proposition 3.24. a) We can generate (v, A\, v>°) as required in theorem 3.22 a) provided
we can generate the GY My (D, A, ™) by a sequence (v*, u*) bounded in L>=([0, T]; L*! (R4 R x
Sd)) such that it is a smooth subsolution in R¢ x [0,T].

b) If in addition (v, \,v>°) is admissible with initial data vy € H(R?), then we can generate

it as required in theorem 8.22 b°) if the sequence (v*,u¥) additionally satisfies

limsup sup / o(v®, u*) dx < esssupE(t)
koo te[0,7] JRY te[0,T]

and
Ve — g in L*(R%RY).

Proof. a) Since (v, u*) € L>([0,T]; L>*(R% R? x SZ)) is smooth, the function ¢* =
o(v®, uk) belongs to C(RY x (0,T)) N Cy([0, T], L*(R?)) by proposition 2.9. Hence, we can
take a > d — 2 and ¢, > 0 small enough such that the function

e = 0" + e min{t, 2} min{1, |z|7*} € C(R? x (0,T)) N Cy([0, T], L*(R%))

with
o(vF, uF) < e in R?x (0,7)

T

1
sup/(ek—gk)dx—i-/ /(ek—gk)dxdt<—.
tefo,1] Jra 0 Jrd k

Since (v, u") is a subsolution, the space Sy (Zr, vf, €*) is non empty for some pressure ¢*.
Hence, by subsolution criterion 2.13, there exists a sequence (v""),en C Cy([0, T, Hop (RY))
of weak solutions of the IEE with initial data vf such that

satisfies

Uk’n — Uk in Cb([ov T]? Hw (Rd))v

that is,

sup / ("™ — o) - pdr — 0 Vo € L*(R%:RY),
t€[0,T] J R

and )
§|vk’”|2:ek in  Cy([0, T]; L*(R%)).

n(k) € N such that

sup
t€[0,T]

1
/ (VP — Ry P da] < -
R4 k
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Now, for every finite time s € [0,T] and for every bounded subdomain Q C R¢ we have

/| - ]2dx—/]vk"\2dx+/]vk2dx / ok de
:/26 dx—/|vk|2dx—2/(v k) ok de
Q Q Q

1 d
/ (gk - —]vk|2> de dt = / Amax (V" O vF — u®) dz dt
Q, 2

/ [vF O vF —uF|dedt — 0

By prop...

when & — oo. Hence,

1
/ 2ekdxdt—/ ]vk|2dxdt:2/ (ek—gk)dxdt—}—Q/ (gk——|vk|2) dz dt
o, 0, Q. Q. 2

3.3.2 Approximation of Generalized Young Measures

3.3.3 Discrete Homogeneous Young Measures
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