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§1. Introduction.

This work is about Conformal Geometry. More concisely we are interested on establishing conditions
under which a non-regular metric is locally conformally flat. Let us illustrate the problem. Suppose
we have a positive definite matrix function G : Ω → Rn×n defined in some open set Ω ⊂ Rn. Here
Rn×n denotes the n×n square real matrixes. Now consider the system of partial differential equations
with unknown f : Ω→ Rn given by

Df t(x)Df(x) = J(f, x)
2
nG(x) (1)

The system 1 is called the Beltrami System. Here J(f, x) = |Det(Df)| denotes the Jacobian determi-
nant of f . Taking determinants we see that if there exists a C1 solution f to 1 then necessarily the
determinant Det(G) := |G| ≡ 1 and f is a local C1 diffeomorphism by the Inverse Function Theorem.

We can assume |G| = 1 without problem by considering the reescaled metric det(G)−
1
nG instead of

G. So let us assume that |G| = 1.

Suppose that f is a C1 local diffeomorphism satisfaying the Beltrami system and denote λ(x) :=

J(f, x)
2
n . Then we see that the metric G(x) is locally the pull-back by the diffeomorphism f of the

metric λ−1Id. In other words, the metric G is the expression in the coordinates x = f−1(y) of the
metric λ−1Id. Therefore a necessary and sufficient condition for the local existence of a solution f to
the Beltrami system is that the metric G(x) is locally conformally flat, which means there there exists
a C1 diffeomorphism f so that the pull-back of G via this diffeomorphism is a function multiplied by
the identity matrix (and this is the very definition of f being a solution to the Beltrami system).

We see that the problem of determining when a metric G is locally conformally flat is equivalent
to proving the local existence of solutions to the Beltrami system. Moreover we see that the more
adequate setting to tackle this existence problem is the lenguage of Riemannian Geometry. Therefore
along this thesis we will work on smooth Riemannian Manifolds, though as our results will be of local
nature we can just think that our manifold is an open set Ω ⊂ Rn equipped with a metric of certain
regularity.

By making this simplification we do not have to worry about the differentiable structure of M
because open sets have canonical global coordinates. This will be useful since in the future we will
have to deal with non-smooth coordinates of M . Non-smooth coordinates do not mix well with
differentiable structures. For example, it can happen that a function f defined on the manifold M
is very regular expressed in some non-smooth coordinates, and losses regularity when expressed in
smooth coordinates.

That is why it is more convenient to have in mind that we are simply considering a function f(x)
canonically defined in the standard coordinates x of Ω, and then considering the pull-backs (ϕ)∗f of
f under certain local C1 diffeomorphisms ϕ : Ω→ V ⊂ Rn. The same applies for the metric g of the
manifold: g(x) ∈ Rn×n is canonically defined in the standard coordinates of Ω, and when we say that
we express g in other coordinates we are just considering the pull-back (ϕ)∗g, which is not g any more
but a new metric defined on V . However, despite the fact that (ϕ)∗g is not g, it is still interesting to
study properties of the different pull-backs of g under various C1 coodinates, (for example one may
wonder how regular can be the pull-back of a certain non-smooth metric g if we can choose over all
the C1 coordinates).

Thus one is allowed to identify the metric with its expression in some fixed coordinates previously
given on M (in this case the natural coordinates of Ω). Later on this shall help the reader fixing
ideas since we are going to consider the expression of the metric in various coordinates, and it can get
confussing.

It took a while before I realised this fact. During a time I considered that the metric g was not
identified with a fixed expression in coordinates, and rather was defined in an abstract manifold M .
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If one does this, then g is considered to be Cm regular for some m ∈ N near a point x0 ∈ M if and
only if g has Cm regularity expressed in any Cm+1 coordinates near x0, so one is forced to demand
that the coordinates are of a certain regularity depending on what is desired to prove. All this mess
can be avoided by fixing some coordinates as the canonical expression of g, and then g is Cm regular
if and only if this fixed expression of g is regular. If there are C1 coordinates so that the expression
of g is more regular, we regard this as a property of the pull-backs of g, and not a property of g itself.

Some part on this thesis was written before I got to the conclusion that it is better to forget about
abstract manifolds. Therefore, artificial hipothesis asking certain regularity of the coordinates under
which the metric is expressed (which are needed when dealing with abstract manifolds) will appear.
We recommend the reader to stick to the case of M being Ω and ignore the mentioned artificial
hipothesis by supposing that all the coordinates considered are C1.

I think it is important to set this straight in order to avoid confussion.

After this digression, and coming back to the Beltrami System, note that it can be posed for
arbitrarily low regular metrics G, for example for G a metric with measurable entries, by considering
f ∈W 1,2(Ω) and the weak formulation.

For n = 2 it can be shown that the Beltrami system is equivalent to the Beltrami equation
∂zf = µ(z)∂zf for some function µ which is derived from the metric G and that satisfies ‖µ‖L∞ ≤ 1.
This equation has been well studied, and the celebrated Measurable Riemann Mapping Theorem says
that for every µ a measurable complex function with ‖µ‖L∞ ≤ 1 there exists a weak solution f ∈W 1,2

to the Beltrami equation. Moreover f can be proved to be a quasiconformal homeomorphism. Thus
the two dimensional case of the Beltrami system is solved. We will focus on the case n ≥ 3.

For n ≥ 3, the classical approach to prove existence of solutions only works if the metric G is very
regular, i.e, G ∈ C3. This is the Weyl-Schouten Theorem, a result proved between 1896 and 1921 by
Schouten and Weyl. Recently, in 2013, Salo and Liimatainen in the paper [15] have applied modern
techniques to get similar results for C1,α metrics, α > 0.

The question of solving the Beltrami system for measurable metrics if n ≥ 3 remains open, and it
is of great interest in geometric function theory. For more on the Beltrami system and its aplications,
see the monograph [25], Chapther 2.

Our first aim in this thesis is to give a detailed proof of the classic Weyl-Schouten Theorem, that
works for C3 metrics. It is an important theorem in conformal geometry. However the proof is a long
and quite hard computation, and normally the literature skip the details. Once this is done, following
the paper [15] we tackle the problem of weakening the regularity of g, and we see that an analogous
of the Weyl-Schoutem theorem holds for less regular metrics.

1.1. Sketch of the Procedure.

Let us sketch how the classical approach works. If the metric g is regular enough, more concisely
g ∈ C3, some techniques of classic Riemannian Geometry characterize which metrics g are locally
conformally flat. This is the so called Weyl-Schouten Theorem that says that a metric g on a Rieman-
nian manifold is locally conformally flat if and only if certain tensors, the Weyl and Cotton tensors,
denoted by W and C, vanish. The condition W = C = 0 is true if and only if the entries gij of the
metric g satisfy certain identities (pde’s) corresponding to the fact that the components of W and C
vanish. We shall see that the identities W = 0 and C = 0 are respectively second and third order
pde’s on the gij . This pde’s that the gij satisfy will turn out to be certain integrability conditions that
allow the metric g to be locally conformally flat.

More precisely, in dimension n = 3 conformal flatness is equivalent to C = 0, a condition that
involves three derivatives of g. If n ≥ 4, conformal flatness is equivalent toW = 0, a condition involving
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only two derivatives. However, to see that W = 0 indeed implies that g is locally conformally flat
we will need to check that in dimension n ≥ 4 the condition W = 0 implies C = 0, so we still need
g ∈ C3.

If the metric g is less regular than C3 this approach does not work. We will follow the techniques
of Salo and Liimatainen in the papers [15] and [13]. These techniques will allow us to weaken the
hipothesis of C3 regularity and characterize local conformal flatness for metrics of class C1,α for some
α > 0. Let us sketch the procedure for dimension n ≥ 4.

Suppose that we have our metric g defined in Ω and that g ∈ C1,α. As the Weyl tensor involves
two derivatives of g, we will be able to define W in the distributional sense by the same formulas than
in the regular case. Then we may wonder if the condition W = 0 as a distribution implies that g is
locally conformally flat.

To see that this is true we will express the metric in some special coordinates, called n-harmonic
coordinates. Let us denote ϕ : V → Ω = M for any system of n-harmonic coordinates. The ϕ
coordinates satisfy certain pde (the n-Laplacian) and this confer them nice properties. One property
is that the pull-back ϕ∗g is also C1,α in V , so of all the possible pull-backs of g, the pull-backs by
n-harmonic are the most regulars. This is indeed true also for any system of p-harmonic coordinates
for p > 1.

Another important property of the n-harmonic coordinates ϕ is that the condition of being n-
harmonic is preserved under conformal change of the metric, so being n-harmonic is a conformal
property rather than a metric property. This property does not hold for arbitrary p-harmonic coordi-
nates.

That said, consider n-harmonic coordinates ϕ : V → Ω = M , and the pull-back ϕ∗g defined
on V , which is C1,α as mentioned above Its Weyl tensor ϕ∗W keeps being zero. Note that for the
metric ϕ∗g the standard coordinates on V are n-harmonic (just by construction). Moreover, as n-
harmonic coordinates are a conformal invariant, we can multiply ϕ∗g by a suitable function to obtain
a conformally equivalent metric g̃ defined in V so that the standard coordinates on V are n-harmonic
for g̃, and besides |g̃| = 1.

On the other hand, we shall prove that the equation W (g̃)(x) = 0 for x ∈ V , regarded as a system
of pde’s on the metric g̃, becomes elliptic under the gauge conditions |g̃| = 1 and ∆nx

k = 0, being xk

the standard coordinates in V and ∆n the n-Laplacian.

Therefore by elliptic regularity this imples that g̃ is smooth. Then we apply the classic Weyl
Schouten Theorem to g̃ and conclude that g̃ is locally conformally flat. Finally, as both g̃ and g are
in the same conformal class, this will imply that g is locally conformally flat also.

Therefore, one could consider that the last section of the Thesis is the most important, since almost
all the work done before points towards it. However I find that also the so called technical results
are important in mathematics, and interesting by its own right, and that is why an effort is made to
prove them as much as possible. When not proved, at least I try to state the result and explain its
relevance.

More concisely, in the Thesis we make use of powerful results of elliptic regularity both classic and
modern. On the one hand we have the classic Schauder estimates-type regularity results for elliptic
equations in Holder spaces.

On the other hand we have the elliptic regularity results provided by the theory of Pseudodiffer-
ential Operators. This implies to work with the Fourier transform and with spaces of functions well
behaved for singular integral operators. These spaces will be the Zigmund spaces Cr∗ . It will require
some work to set the main properties of these spaces, which will enable us to establish the elliptic
regularity results for pseudodifferential operators.

I am grateful to my advisors Daniel Faraco and Luis Guijarro for its support on the realization of
this Thesis. Also I want to thank Mikko Salo for his mathematical advices and help.
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1.2. Some Remarks about Notation.

(1) We always assume that 0 ∈ N, the natural numbers.

(2) To express partial derivatives we shall use the well known multiindex notation, though some
times we will write Dkf to denote any derivative of f of order k. This notation is clear and shorter,
and avoid writing too much in some situations.

(3) We have made an abuse of notation regarding the coordinates on a manifold. In order to refer
to coordinate systems on a manifold M we have sometimes used Greek letters such as φ, ϕ, η, and
sometimes we have used the letters x and y. This should be understand as follows. The Greek letters
normally refer to a parametrization i.e, ϕ : Ω→ U ⊂M , and the letters x and y usually are the proper
coordinates, so x = ϕ−1 : U → Ω. Sometimes we say that a tensor is expressed in the ϕ coordinates,
and sometimes we say that a tensor is expressed in the x coordinates. Both sentences mean the same,
i.e, if the tensor T is defined on M , then its expression in the x or ϕ coordinates is the pull-back ϕ∗T .
Note that

ϕ∗ : {Things defined on M} → {Things defined on Ω}

For example if T is a (2, 0) tensor on M then for X,Y vector fields on Ω we have

[ϕ∗T ](X,Y ) = T (dϕ(X), dϕ(Y ))

We will imposse always on a coordinate system to be C1 in order to have a well defined pull-back.

(4) When we have derived products of functions we have written for every multiindex α =
(α1, . . . , αn) ∈ Nn with |α| =

∑
i αi = m

Dα(fg) =
∑

|β|+|η|≤m

DβfDηg

This formula is not true, since only some of the summands written above actually appear in Dα(fg).
The reader should understand the formula above as saying that Dα(fg) is a sum of some things of
type DβfDηg with |β|+ |η| ≤ m.

(5) We point out also that although we work with real valued functions and vector real valued
functions troughout this text, we can assume that the functions are complex valued and vector com-
plex valued respectively, with no changes. In the part where we use Fourier analysis this remark is
especially important, since complex valued functions are the correct functions to whom apply the
Fourier transform. In particular if u is a real function, its Fourier transform F [u] is complex valued,
and in general is not real valued.

(6) In the first part of this Thesis I did not use Einstein summation convention. At first I felt more
comfortable with the usual summation symbols, due to inexperience with Einstein notation. Later on,
I realised how powerful Einstein notation is, and I began to use it. The most amazing think about
Einstein notation is that you can know whether a coordinate expresion is invariant or not at first
glance.

For example, for a function u defined on M consider the expression gab∂au∂bu, a typical example
of Einstein summation. The fact that a and b appear as lower indexes and super indexes mean that
in the expression above we sume over a and over b ranging from 1 to n = dim(M). The fact that
the sum gab∂au∂bu does not depend on the coordinates can be seen by noting that a and b appear as
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lower and upper indexes, so we cancel them in the same way we cancel terms in the fraction ab
ab = 1.

Indeed, gab∂au∂bu is the norm of the gradient of u.
Another example, the expression Γj = Γjabg

ab does depend on coordinates, since only a and b cancel

out, and j remains, the fraction here would be jab
ab = j. Actually, it can be proved that Γj = −∆xj .

Note also that in Einstein notation the coordinates xj are denoted with super indexes. This is done
to make things work. For the metric and partial derivatives we use subindexes gab = g(∂a, ∂b) and
for the inverse of the metric we use super indexes gab. This way, du = ∂budx

b does not depend on
coordinates, and neither it does grad(u) = (gab∂au)∂b.

In general, given a tensor T , say of type (4, 0), we denote Tabcd := T (∂a, ∂b, ∂c, ∂d), and we raise
the index of T putting by Tabc

d = Tabclg
ld. Also we denote

∇aTbcde := (∇∂aT )(∂b, ∂c, ∂d, ∂e)

and for other tensors is analogous.

§2. Integrability Conditions for Overdetermined Systems.

In this section we shall study conditions under which overdetermined system of PDE’s admit solutions.
As we shall se, this will play a crucial role when proving conformal flatness. In analogy with linear
systems of algebraic equations, a system of PDE’s is called overdetermined if the system has more
equations than unknown functions.

First of all we remind the well known theorem for existence of ordinary differential equations.

Theorem 1. Let U ⊂ Rm and open set, f : U → Rn a continuous function, and x0 ∈ U . Let a > 0
such that:

(1) B(x0, 2a) ⊂ U .
(2) There exists L > 0 such that |f | ≤ L in B(x0, 2a).
(3) There exists K > 0 such that |f(x)− f(y)| ≤ K|x− y| for all x, y ∈ B(x0, 2a)

Now select b > 0 such that b ≤ a/L and b < 1
K . Then for all x ∈ B(x0, a) there exists a unique

αx : (−b, b)→ U verifying
α′x(t) = f(αx(t)),
αx(0) = x,

Proof. See [1], Theorem 2 of Chapter 5.

Note that in Theorem 1 the domain of definition (−b, b) of the curves αx can be taken in such a
way that it does not depend on the initial values x, as long as this initials values are in B(x0, a).

Remark 1. If f : U → Rn is of class C1, then for every x0 ∈ U and for every a > 0 such that
B(x0, 2a) ⊂ U , the hypothesis of Theorem 1 are satisfied because we can apply the mean value
theorem for the components of f and then use the boundness of the differential Df in B(x0, 2a) to
verify the Lipschitz condition (3).

The next theorem we want to prove is about integrability conditions of a first order system of
partial differential equations. We begin by an example.

Example 1. Suppose we are given open sets U ⊂ R2 and I ⊂ R and C1 functions f, g : U × I → R.
Let (x0, y0) ∈ U . We wonder if there exists a C1 function α : W → I, where W ⊂ U is an open
neighborhood of (x0, y0), such that for every (x, y) ∈W

∂α

∂x
(x, y) = f(x, y, α(x, y))

∂α

∂y
(x, y) = g(x, y, α(x, y))

(2)
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If this is the case, α is C2 and if we put f̃(x, y) = f(x, y, α(x, y)) and g̃(x, y) = g(x, y, α(x, y)), then

∂f̃

∂y
(x, y) =

∂2α

∂y∂x
(x, y) =

∂2α

∂x∂y
(x, y) =

∂g̃

∂x
(x, y)

and applying the chain rule to f̃ and g̃ we should have

∂f

∂y
(x, y, α(x, y)) +

∂f

∂z
(x, y, α(x, y))

∂α

∂y
(x, y) =

∂g

∂x
(x, y, α(x, y)) +

∂g

∂z
(x, y, α(x, y))

∂α

∂x
(x, y)

for all (x, y) ∈ U and this yields a necessary condition for f and g for the existence of α. This condition
is, however, not quite satisfactory, since it appears the unknown α. If we substitute according to
equation (2) the partial derivatives of α, we get

∂f

∂y
(x, y, α(x, y)) +

∂f

∂z
(x, y, α(x, y))g(x, y, α(x, y))

=
∂g

∂x
(x, y, α(x, y)) +

∂g

∂z
(x, y, α(x, y))f(x, y, α(x, y))

And it still appears the unknown α. But if we want the local existence of such function α around
(x0, y0) satisfaying equation (2) with arbitrary initial conditions α(x0, y0) = z0, z0 ∈ I then necessarily
we must have

∂f

∂y
(x, y, z) +

∂f

∂z
(x, y, z)g(x, y, z) =

∂g

∂x
(x, y, z) +

∂g

∂z
(x, y, z)f(x, y, z)

for all (x, y, z) ∈ U × I.
This indeed give us a good necessary condition depending only on the data of the system (2).

This necessary conditions are called integrability conditions for the overdetermined system of PDE’S
given by (2), (an overdetermined system is a system of equations where there are more equations than
variables). Recall that it is indeed reasonable to expect that an overdetermined system of PDE’S
needs to be special in order to admit solutions, just as for linear systems of algebraic equations. In
the case above, ‘special’ just means that the system satisfies the integrability conditions.

It is easy to generalize the above calculations for vectorial functions. The next theorem proves that
for the system (2) the integrability conditions just obtained are indeed sufficient for local existence of
a solution.

Theorem 2. Let U ⊂ Rm and V ⊂ Rn be open sets, and let f1, . . . , fm : U×V → Rn be C1 functions.
Denote t = (t1, . . . , tm) and x = (x1, . . . , xn) the coordinates in U and V respectively. The following
are equivalent:

(a) For every x0 ∈ V and t0 ∈ U there is a unique function α = (α1, . . . , αn) : W → V , where
W ⊂ Rm is some open neighborhood of t0 ∈ Rm satisfying

∂α

∂tj
(t) = fj(t, α(t))

α(t0) = x0

(3)

for each t ∈ U and j = 1, . . . ,m.
(b) The functions f1 = (f1

1 , . . . , f
n
1 ), . . . , fm = (f1

m, . . . , f
n
m) satisfy the following integrability con-

ditions for all (t, x) ∈ U × V :

∂fj
∂ti

(t, x)− ∂fi
∂tj

(t, x) +

n∑
k=1

fki (t, x)
∂fj
∂xk

(t, x)−
n∑
k=1

fkj (t, x)
∂fi
∂xk

(t, x) = 0 ∈ Rm
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for i, j = 1, . . . ,m. Note in the equations above that by the partial derivative of a vectorial function
we mean taking the partial derivative of each of its components.

Remark 2. Though the integrability conditions may look complicate, they are just as simple as in
the previous example in each coordinate, because the vectorial system just mean that

∂αl

∂tj
(t) = f lj(t, α(t)) for l = 1, . . . , n; j = 1, . . . ,m

and if we forget the index l, this is just the previous example, so we imposse

∂

∂ti
[f lj(t, α(t))] =

∂2αl

∂ti∂tj
(t) =

∂2αl

∂tj∂ti
(t) =

∂

∂tj
[f li (t, α(t))]

so by the chain rule,

∂f lj
∂ti

(t, α(t)) +

n∑
k=1

∂f lj
∂xk

(t, α(t))
∂αk

∂ti
(t) =

∂f li
∂tj

(t, α(t)) +

n∑
k=1

∂f li
∂xk

(t, α(t))
∂αk

∂tj
(t)

and this yields the integrability conditions in each coordinate if we substitute

∂αk

∂ti
(t) by fki (t, α(t)) ,

∂αk

∂tj
(t) by fkj (t, α(t)) and α(t) by x

so in practice if we want to determine the integrability conditions, rather than identify first who the
f lj are and then check the integrability conditions, it is easier to imposse the second order partial
derivatives to be equal, then substitute every derivative of α you find, and then consider α as a
variable rather than a function.

Proof. If condition (a) is true, we can apply the equality of mixed partial derivatives and the generality
of the initial data as in the remark to obtain (b).

Now suppose (b). For the sake of notation, we shall assume that U ⊂ Rm is an open neighborhood
of 0 ∈ Rm and that t0 = 0.

We first want to define the function α in the t1 axis. Necessarily it must satisfy

∂α

∂t1
(t1, 0, . . . , 0) = f1(t1, 0, . . . , 0, α(t1, 0 . . . , 0))

α(0) = x0

(4)

In view of this, we consider the system of ODE’S

β1
′(t) = f1(t, 0, . . . , 0, β1(t))

β1(0) = x0

(5)

As we know, there is a unique solution β1 of the last system, defined for |t| < ε1, being ε1 > 0 small
enough. If we define α in the t1 axis by putting α(t1, 0 . . . , 0) = β1(t1), then α satisfies (4) as we want.

Now we fix t1 with |t1| < ε1 and consider the system

β2
′(t) = f2(t1, t, 0, . . . , 0, β2(t))

β2(0) = α(t1, 0, . . . , 0)
(6)

This system has a unique solution βt12 defined for |t| < ε2 for some ε2 > 0. This solution βt12 depends
on the initial data t1, so the size of its domain 2ε2 depends also on t1. However, if we choose ε1
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small enough, all the initial data α(t1, 0, . . . , 0) = β1(t1) with |t1| < ε1 are as close to x0 as we want
by the continuity of β1. Now by Theorem 1 we know that all the solutions βt12 corresponding to
initial data close enough can be defined for t < ε2, being ε2 > 0 small. In this way we can define for
|t1| < ε1, |t2| < ε2

α(t1, t2, 0 . . . , 0) = βt12 (t2)

and from this definition it is obvious that

∂α

∂t2
(t1, t2, 0 . . . , 0) = f2(t1, t2, 0, . . . , 0, α(t1, t2, 0 . . . , 0))

α(0) = x0

(7)

We claim in adittion that ∂α
∂t1

(t1, t2, 0, . . . , 0) = f1(t1, t2, 0 . . . , 0, α(t1, t2, 0 . . . , 0)). Note first that as

f2 is C1, α is C2 in their two variables, so this makes sense.

Now, fix t1 with |t1| < ε1 and let

g(t) =
∂α

∂t1
(t1, t, 0, . . . , 0)− f(t1, t, 0 . . . , 0, α(t1, t, 0 . . . , 0)).

We have g(0) = 0. By the chain of rule it follows that

g′(t) =
∂2α

∂t2∂t1
(t1, t, 0 . . . , 0)− ∂f1

∂t2
(t1, t, 0 . . . , 0, α(t1, t, 0 . . . , 0))

−
n∑
k=1

∂f1

∂xk
(t1, t, 0 . . . , 0, α(t1, t, 0 . . . , 0))

∂αk
∂t2

(t1, t, 0, . . . , 0)

=
∂

∂t1
[
∂α

∂t2
(t1, t, 0 . . . , 0)]− ∂f1

∂t2
(t1, t, 0 . . . , 0, α(t1, t, 0 . . . , 0))

−
n∑
k=1

∂f1

∂xk
(t1, t, 0 . . . , 0, α(t1, t, 0 . . . , 0))f2

k(t1, t, 0 . . . , 0, α(t1, t, 0 . . . , 0))

=
∂

∂t1
[f2(t1, t, 0, . . . , 0, α(t1, t, 0 . . . , 0))]− ∂f1

∂t2
(t1, t, 0 . . . , 0, α(t1, t, 0 . . . , 0))

−
n∑
k=1

∂f1

∂xk
(t1, t, 0 . . . , 0, α(t1, t, 0 . . . , 0))f2

k(t1, t, 0 . . . , 0, α(t1, t, 0 . . . , 0))

=
∂f2

∂t1
(t1, t, 0, . . . , 0, α(t1, t, 0 . . . , 0))

+

n∑
k=1

∂f2

∂xk
(t1, t, 0, . . . , 0, α(t1, t, 0 . . . , 0))

∂αk

∂t1
(t1, t, 0 . . . , 0)

−∂f1

∂t2
(t1, t, 0 . . . , 0, α(t1, t, 0 . . . , 0))

−
n∑
k=1

∂f1

∂xk
(t1, t, 0 . . . , 0, α(t1, t, 0 . . . , 0))f2

k(t1, t, 0 . . . , 0, α(t1, t, 0 . . . , 0))
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and therefore, using the integrability conditions stated as hypothesis we see that

g′(t) =
∂f2

∂t1
(t1, t2, 0, . . . , 0, α(t1, t, 0 . . . , 0))− ∂f1

∂t2
(t1, t, 0 . . . , 0, α(t1, t, 0 . . . , 0))

+
n∑
k=1

∂f2

∂xk
(t1, t2, 0, . . . , 0, α(t1, t, 0 . . . , 0))[gk(t) + f1

k(t1, t, 0 . . . , 0, α(t1, t, 0 . . . , 0))]

−
n∑
k=1

∂f1

∂xk
(t1, t, 0 . . . , 0, α(t1, t, 0 . . . , 0))f2

k(t1, t, 0 . . . , 0, α(t1, t, 0 . . . , 0)))

=

n∑
k=1

∂f2

∂xk
(t1, t, 0, . . . , 0, α(t1, t, 0 . . . , 0))gk(t)

This shows that the function g is a solution of an homogeneous ODE, which has just one solution
fixed the initial data. As g(0) = 0, it must be g(t) = 0 for every t such that |t| < ε2.

So we have our solution α defined in the t1t2 plane. It is clear that we can continue defining α
in this manner until α is defined in some neighborhood (−ε1, ε1)× (−ε2, ε2)×, . . . , (−εn, εn) and this
concludes the proof.

For obvious reasons, from now on we may not be so explicit about the points where a function is
evaluated, unless the evaluated points, as in the previous proof, are not the typical ones. In case we
do not write it, it will surely be easy to get it from the context.

§3. Curvature and Local Flatness for C2 Metrics.

Now we are going to prove a classical theorem: if the Riemann curvature tensor vanishes then the
metric is locally flat. Our proof here has the adventage of being purely analytical and one does not get
lost in tensor notation. Of course this implies making lots of calculations. Besides, from the proof one
can see how the components Rlijk of the curvature tensor arises naturally as integrability conditions
for the existence of coordinates in which the metric is flat. Precisely this is what lead Riemann to the
discovery of the curvature tensor, one of the most important tools in differential geometry.

Recall first some definitions and notations.

Remark 3. Let (M, g) be a Riemannian Manifold of dimension n. This mean that M is a smooth
manifold but we do not suppose necessarily that g is smooth. We will be precise on what regularity
we assume on the metric. Fix a local coordinate system (x1, . . . , xn), not necessarily smooth either.
We denote gij = g( ∂

∂xi
, ∂
∂xj

) the matrix of the metric g in this coordinates and gij the inverse of this

matrix. When there is not possible confusion about which coordinate system we are using, we may
denote the partial derivatives as ∂i := ∂

∂xi
. Assume for now that the expression gij of the metric in

these coordinates is regular enough to justify the computations below.
We write ∇ for the Levi-Civita connection with Christoffel symbols Γkij such that

∇∂i∂j =
∑
k

Γkij∂k

where the sum is taken for k = 1, . . . , n. In general if we do not put limits of summation this will always
be assumed. The fact that there exists a unique Levi-Civita connection (symmetric and compatible
with the metric) implies that the symbols Γkij can be recovered from the metric. More concisely, if we
define

[ij, k] =
1

2
(
∂gik
∂xj

+
∂gkj
∂xj

− ∂gij
∂xk

)
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then we have
Γmij =

∑
k

gkm[ij, k]

The Riemann curvature tensor R is the (3, 1) tensor given by

R(X,Y, Z) := R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

We will note r(X,Y, Z, T ) = g(R(X,Y )Z, T ) the (4, 0) Riemann curvature tensor. The components
Rlijk of R in coordinates are given by

R(∂i, ∂j)∂k =
∑
l

Rlijk
∂

∂xl

It is convenient to obtain the expression of Rlijk in local coordinates (x1, . . . , xn). We have first

∇∂i∇∂j∂k = ∇∂i(
∑
l

Γljk∂l) =
∑
l

(
∂Γljk
∂xi

∂

∂xl
+ Γljk∇∂i∂l)

=
∑
l

∂Γljk
∂xi

∂l +
∑
l,m

ΓljkΓ
m
il ∂m =

∑
l

∂Γljk
∂xi

∂l +
∑
m,l

ΓmjkΓ
l
im∂l =

∑
l

(
∂Γljk
∂xi

+
∑
m

ΓmjkΓ
l
im)∂l

therefore
R(∂i, ∂j)∂k = ∇∂i∇∂j∂k −∇∂j∇∂i∂k

=
∑
l

(
∂Γljk
∂xi

−
∂Γlik
∂xj

+
∑
m

ΓmjkΓ
l
im − ΓmikΓ

l
jm)

∂

∂xl

We conclude that

Rlijk =
∂Γljk
∂xi

−
∂Γlik
∂xj

+
∑
m

(ΓmjkΓ
l
im − ΓmikΓ

l
jm) (8)

Note that the functions Rlijk involve second order derivatives of the metric g, so it seems that the
curvature only can be defined in these coordinates (x1, . . . , xn) (at least in a classical sense) if the
functions gij are C2.

In the following Remark we define non-smooth functions on the manifold M , and discuss what
happens if a tensor is expresseed in a system of non-smooth coordinates. We will see that there will be
an important difference between how regular is a tensor expressed in some given and fixed coordinates
and how regular is that tensor regarded as a tensor defined on the manifold M .

Remark 4. Given a smooth manifold M of dimension n, its smooth structure is given by

S∞ = {φ−1
α : Aα → Uα ⊂M : α ∈ Λ, Aα an open subset of Rn }

The functions φ−1
α are called parametrizations and the functions φα are called coordinates . We know

the definition of C∞(M), the smooth functions on M , as the functions f : M → Rm such that for
every φα ∈ S∞ the localization or pull-back (φ−1

α )∗f = f ◦ φ−1
α : Aα → Rm is smooth as a function

defined in Aα ⊂ Rn.
We can define less regular functions in an analogous way. For a nonnegative integer k, and given a

function f : M → R, we say that f ∈ Ck(M) if for every φα ∈ S∞, f ◦ φ−1
α ∈ Ck(Aα) in the classical

sense. We call f ◦ φ−1
α an expression of f in coordinates , which is the same as the pull-back (φ−1)∗f .

So we can define Ck diffeomorphisms between manifolds as biyective mappings whose expression on
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any system of smooth coordinates is a Ck diffeomorphism between open sets of Rn. Then we define
Ck coordinates on M as Ck diffeomorfisms between open sets of M an open sets of Rn.

It is straighforward that with this definition the composition of two Ck functions is Ck, so if f ∈ Ck
and (x1, . . . , xn) is a Ck system of local coordinates, then f is Ck when expressed in that coordinates.
The minimun regularity we demand on a system of coordinates is C1 if we want to work in a manifold,
because otherwise we can not make sense of ∂

∂xi
so the tangent spaces are not defined. Note that to

define the curvature tensor in coordinates, we need C2 regularity since we need to make use of ∂2

∂xj∂xi
.

We can extend the definition of Ck regularity to tensors. Givenm ∈ N and a tensor T of type (m, 0),
we say that T ∈ Ck(M) if for every smooth vector fields X1, . . . , Xm, the function T (X1, . . . Xm) ∈
Ck(M). Other way to see this is that when we express T in smooth coordinates, we have that

T =
∑

i1,...,im

ai1...imdxi1 ⊗ . . . dxim

and T ∈ Ck(M) if and only if the functions ai1...im ∈ Ck(M).

About the Hipothesis of Regularity on this Work.
In this thesis we are seeking for local results about conformal flatness, and these results will be

obtained by working in not necessarily smooth coordinates. Imagine for example that we work in a C1

coordinate system ϕ−1 : A→ U for A ⊂ Rn, U ⊂M and we deduce that the expression of a function
f ∈ C(M) given by (ϕ−1)∗f = f ◦ ϕ−1 is smooth in the ϕ coordinates. Then the only thing we can
say about f (as a function defined on M) is that f ∈ C1(M). However, it is interesting the fact that
(ϕ−1)∗f is smooth, even if this does not imply that f is smooth as a function in M .

Therefore, across all this thesis, when we suppose that a function f or an (m, 0)-tensor T (X1, . . . , Xm)
defined on M are Ck expressed in some coordinates η with variable regularity (depending on the par-
ticular need of derivatives we have supposed η ∈ C4 or η ∈ C2) we can change this hipothesis and
simply suppose that in some fixed C1 coordinates ϕ : U → A, with U ⊂ M and A ⊂ Rn open sets,
the pull-backs (ϕ−1)∗f and (ϕ−1)∗T are Ck in the Riemannian manifold (A, g′), being g′ := (ϕ−1)∗g
the pull-back of g, given by

g′x(u, v) = [(ϕ−1)∗g]x(u, v) := g(dxϕ
−1(u), dxϕ

−1(v)).

The definition of (ϕ−1)∗T is analogous. This way, under the mentioned assumptions that (ϕ−1)∗f and
(ϕ−1)∗T are Ck in (A, g′), if additionally we know that the coordinates ϕ are Ck+1, then the vector
fields ∂i are Ck, so both f and T are also Ck defined on M . Note that we would only need ϕ ∈ Ck to
conclude that f is Ck on M since f does not involve partial derivatives.

From this, we see that all the results we will obtain are valid for tensors on M if the coordinates
ϕ on which we work are regular enough. If ϕ is not so regular we simply obtain information about a
concrete expression in coordinates of f and T , and not about the function f or the tensor T defined
on M . Nevertheless we do obtain information about the function (ϕ−1)∗f and the tensor (ϕ−1)∗T
defined in the Riemannian manifold (A, g′) and this is also interesting.

The next Lemma will be the key tool to prove that if the curvature tensor vanishes then the
manifold is locally flat.

Lemma 1. Let U be an open set in Rn with a C1 metric g. Let us denote (y1, . . . , yn) the standard
coordinate system of Rn. Let (x1, . . . , xn) be an arbitrary coordinate system. Suppose that the metric
satisfies g( ∂

∂xi
, ∂
∂xj

) = δij , i.e, the metric is flat in the coordinates (x1, . . . , xn). Then the coordinates

(x1, . . . , xn) satisfy this overdetermined system: for all λ = 1, . . . , n

∂

∂yk
[(
∂xλ
∂y1

, . . . ,
∂xλ
∂yn

)] = (
∑
γ

∂xλ
∂yγ

Γγ1k, . . . ,
∑
γ

∂xλ
∂yγ

Γγnk)
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Proof. Let us write gij = g( ∂
∂yi
, ∂
∂yj

). Then the metric can be written g =
∑

i,j gijdyi ⊗ dyj . On the

other hand we have the functions xα(y1, . . . , yn) so

dxα =
∑
i

∂xα
∂yi

dyi.

The metric is flat in the (x1, . . . , xn) coordinates if and only if g =
∑

α dxα ⊗ dxα. If we substitute
dxα in terms of dyi, we see that this is equivalent to

g =
∑
α

(
∑
i

∂xα
∂yi

dyi)⊗ (
∑
j

∂xα
∂yj

dyj)

=
∑
i,j

(
∑
α

∂xα
∂yi

∂xα
∂yj

)dyi ⊗ dyj

so the metric is flat in the (xi) coordinates if and only if for every i, j we have

gij =
∑
α

∂xα
∂yi

∂xα
∂yj

. (9)

This is a system of PDE’S, but this system does not accomodate to Frobenious theorem. However,
some manipulations will allow us to put it that way. First of all we can give an equivalent formulation
of system (9) which will be useful later. Consider the matrixes A = (aij) = (∂xi∂yj

) and G = (gij). Then

(9) says that
At ·A = G

which is equivalent to G−1 = A−1 · (At)−1 and hence to

A ·G−1 ·At = I

where I is the identity matrix. If we read this last matrix identity, it just mean that∑
i,j

gij
∂xµ
∂yi

∂xν
∂yj

= δµν (10)

Now we will derive from system 9 another easier to work with. We first differentiate respect to yk
and obtain

∂gij
∂yk

=
∑
α

∂2xα
∂yk∂yi

∂xα
∂yj

+
∑
α

∂xα
∂yi

∂2xα
∂yk∂yj

Now we write the same equation changing the indexes (i, j, k) for (j, k, i) and for (k, i, j) (note this is
a cyclic permutation) and get

∂gjk
∂yi

=
∑
α

∂2xα
∂yi∂yj

∂xα
∂yk

+
∑
α

∂xα
∂yj

∂2xα
∂yi∂yk

∂gki
∂yj

=
∑
α

∂2xα
∂yj∂yk

∂xα
∂yi

+
∑
α

∂xα
∂yk

∂2xα
∂yj∂yi

.

and when we sum, cancellations occur in such a way that

[jk, i] =
1

2
(
∂gij
∂yk
−
∂gjk
∂yi

+
∂gki
∂yj

) =
∑
α

∂xα
∂yi

∂2xα
∂yk∂yj

.
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Now we have the following identities∑
γ

Γγjk
∂xλ
∂yγ

=
∑
i,γ

giγ
∂xλ
∂yγ

[jk, i] =
∑
i,γ,α

giγ
∂xλ
∂yγ

∂xα
∂yi

∂2xα
∂yk∂yj

=
∑
α

∂2xα
∂yk∂yj

(
∑
i,γ

∂xα
∂yi

∂xλ
∂yγ

giγ) =
∑
α

∂2xα
∂yj∂yk

δαλ =
∂2xλ
∂yj∂yk

where we have used equation 10. This prove what we wanted.

Remark 5. With the notation of the previous lemma, let αλ = (∂xλ∂y1
, . . . , ∂xλ∂yn

), αλ : Rn → Rn. We
have just seen that for all λ = 1, . . . , n, the function αλ satisfies the system of PDE’S given by

∂αλ
∂yk

(y) = fk(y, αλ(y)) , k = 1, . . . , n (11)

where fk : Rn × Rn → Rn is given by

fk(y, z) = (f1
k (y, z), . . . , fnk (y, z)) = (

∑
γ

zγΓγ1k(y), . . . ,
∑
γ

zγΓγnk(y)).

We have n solutions α1, . . . αn of this system so that α1(y), . . . αn(y) are linearly independent as
vectors in Rn in some neighborhood U of say y0 ∈ Rn, since they are the rows of the differential of
the chart (x1, . . . , xn). As the fk(y, z) are linear in the variable z it follows that linear combinations
of solutions of the system 11 are also solutions. In particular we have a solution α of the system 11
satisfying any initial condition α(y0) = v0 ∈ Rn. Then the functions fk must satisfy the integrability
conditions

∂fk
∂yl

(y, z)− ∂fl
∂yk

(y, z) +

n∑
µ=1

fµl (y, z)
∂fk
∂zµ

(y, z)−
n∑
µ=1

fµk (y, z)
∂fl
∂zµ

(y, z) = 0 ∈ Rn

for k, l = 1 . . . , n. In this case, looking at the components f jk(y, z) =
∑

γ Γγjk(y)zγ this integrability
conditions are ∑

γ

∂Γγjk
∂yl

(y)zγ −
∑
γ

∂Γγjl
∂yk

(y)zγ +
∑
µ,γ

ΓµjkΓ
γ
µlzγ −

∑
µ,γ

ΓµjlΓ
γ
µkzγ = 0 (12)

for j, k, l = 1, . . . n, for all y ∈ U, z ∈ Rn. By linearity in z, equation 12 is true for all z ∈ Rn if and
only if it is true for z = ei the canonical basis of Rn, and putting z = eγ for each γ we obtain

Rγlkj =
∂Γγjk
∂yl

(y)−
∂Γγjl
∂yk

+
∑
µ

(ΓµjkΓ
γ
µl − ΓµjlΓ

γ
µk) = 0 , γ = 1, . . . , n (13)

and this is precisely to say that Rγlkj = 0 for all l, k, j, γ = 1, . . . , n. This calculation shows how the
components of the curvature tensor arises naturally (well, as natural as the calculations above) as
something that must vanish for the metric to be plane. Now the point is that the process we have
done is reversible in the sense that if R vanishes we can recover the coordinate system (x1, . . . , xn) in
which the metric is plane.

Definition 1. We say that a Riemannian manifold (M, g), with g ∈ C2, is locally flat if around each
point there are C3 coordinates (x1, . . . , xn) in which the metric is flat, i.e, g( ∂

∂xi
, ∂
∂xj

) = gij = δij .
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Theorem 3. Let (M, g) be a Riemanian manifold with g ∈ C2. Then (M, g) is locally flat if and only
if the curvature tensor R vanishes.

Proof. Suppose that around every point of M there are C3 coordinates in which the metric is flat.
Then working on these coordinates gij ∈ C2, and Γkij = 0 for all i, j, k and then Rlijk = 0 for all i, j, k, l,

so R = 0 as (3, 1) tensor. Note that we need the coordinates to be at least C3 in order to differentiate
the metric twice.

Now suppose R = 0. Since this is a local question we can assumeM = U is an open neighborhood of
0 ∈ Rn with the standard coordinate system (y1, . . . , yn) and the components of the metric gij : U → R
are C2 functions. If we look at the proof of the lemma and the remark below, we just want to go back
and recover the coordinates (x1, . . . , xn).

Step 1: First we claim that there are C2 functions h = (h1, . . . , hn) with any desired initial
conditions (h1(0), . . . , hn(0)) satisfayng the equation

∂

∂yk
[(h1, . . . , hn)] = (

∑
γ

hγΓγ1k, . . . ,
∑
γ

hγΓγnk) ; k = 1, . . . , n (14)

This is because the integrability conditions of this system are precisely Rlijk = 0 as we just saw in
the remark 5 and lemma 1 . We can choose then n solutions h1, . . . , hn of that system such that
X1 = h1(0), . . . , Xn = hn(0) are n orthonormal vectors respect to the metric gij(0).

Step 2. If a function h = (h1, . . . , hn) satisfies the system 14, then there is a function x : U → R
(maybe in a smaller neighborhood of 0) such that

∂x

∂yj
(y) = hj(y) (15)

In terms of tensor lenguage, this is the same as saying that the 1-form

η = h1dy1 + · · ·+ hndyn

is exact. The existence of the function x is because the integrability conditions of the system 15 above
are as simple as

∂hj

∂yk
=
∂hk

∂yj
for k, j = 1, . . . , n

and this is true because h satisfies the system 14, and then

∂hj

∂yk
=
∑
γ

Γγjkh
γ =

∑
γ

Γγkjh
γ =

∂hk

∂yj

since (by the simmetry of the connection) Γγjk = Γγkj .

Now choose functions xα, α = 1, . . . , n, with hjα = ∂xα
∂yj

. Then the functions xα satisfy

∂2xα
∂yj∂yk

=
∑
γ

Γγjk
∂xα
∂yγ

.

Note that these are the equations of lemma 1. So we have a vectorial function given by (x1, . . . , xn)
such that its differential at 0 is the matrix whose rows are the vectors X1, . . . , Xn, and by the inverse
function theorem we conclude that (x1, . . . , xn) is a coordinate system in a neighborhood of 0.
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Step 3. We claim that (x1, . . . , xn) is the desired coordinate system. It is sufficient to see equation
10 of lemma 1, i.e. that

g(dxµ, dxν) :=
∑
i,j

gij
∂xµ
∂yi

∂xν
∂yj

= δµν .

We know this is true at 0 because of the choice of the initial conditions, so if we show that all its
partial derivatives are 0, we are done.

∂

∂yk
(
∑
i,j

gij
∂xµ
∂yi

∂xν
∂yj

) =
∑
i,j

∂gij

∂yk

∂xµ
∂yi

∂xν
∂yj

+
∑
i,j

gij
∂2xµ
∂yk∂yi

∂xν
∂yj

+
∑
i,j

gij
∂xµ
∂yi

∂2xν
∂yk∂yj

=
∑
i,j

∂gij

∂yk

∂xµ
∂yi

∂xν
∂yj

+
∑
i,j

gij(
∑
γ

Γγik
∂xµ
∂yγ

)
∂xν
∂yj

+
∑
i,j

gij
∂xµ
∂yi

(
∑
γ

Γγjk
∂xν
∂yγ

)

we switch the summation index γ by i and j respectively in the second and third summand to obtain

∂

∂yk
(
∑
i,j

gij
∂xµ
∂yi

∂xν
∂yj

) =
∑
i,j

∂xµ
∂yi

∂xν
∂yj

[
∂gij

∂yk
+
∑
γ

(gγjΓiγk + gγiΓjγk)] = 0

by the following claim.

Claim. We have the identity

0 =
∂gij

∂yk
+
∑
l

(gljΓilk + gilΓjlk).

To see this recall the definition of the symbols

[lk,m] =
1

2
(
∂glm
∂yk

+
∂gkm
∂yl

− ∂glk
∂ym

).

From this it is clear that

[lk,m] + [mk, l] =
∂glm
∂yk

; Γjlk =
∑
m

gjm[lk,m]

Recall that if we differentiate the identity
∑

m g
mjglm = δlj , we get∑

m

∂gmj

∂yk
glm + gmj

∂glm
∂yk

= 0.

Now we compute what we wanted∑
l

gilΓjlk + gljΓilk =
∑
l

gil
∑
m

gjm[lk,m] +
∑
l

gjl
∑
m

gim[lk,m]

=
∑
l,m

gilgjm[lk,m] +
∑
m,l

gilgjm[mk, l] =
∑
l,m

gilgjm([lk,m] + [mk, l])

=
∑
l

gil
∑
m

gjm
∂glm
∂yk

= −
∑
l

gil
∑
m

∂gjm

∂yk
glm

= −
∑
m

∂gjm

∂yk

∑
l

gilglm = −
∑
m

∂gjm

∂yk
δim = −∂g

ij

∂yk

and this gives the claim and prove the theorem.
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So we have seen that the curvature tensor characterizes when a Riemannian manifold is locally flat
when the metric is regular enough to define the curvature. We observe that this proof is motivated
by the lemma 1 and remark 5 where we saw how the system 14 arises when looking for local flatness
of the metric.

§4. Curvature and Local Conformal Flatness for C3 Metrics.

In this section we will be interested in a weaker condition than local flatness. Now we wonder when
a Riemannian manifold is locally conformally flat.

Definition 2. A Riemannian manifold (M, g), is locally conformally flat if for every point p ∈ M
there exists a C4 coordinate system (x1, . . . , xn) : U ⊂M → V ⊂ Rn in a neighborhood U of p and a
function u : U → R such that, when expressed in coordinates, g( ∂

∂xi
, ∂
∂xj

)(x) = gij(x) = e2u(x)δij for

every x ∈ V . In other words, g = e2u
∑

i dxi ⊗ dxi.

Remark 6.
(1) We observe that this is the same as saying that there exists a positive function λ : U → R such

that g = λ
∑

i dxi ⊗ dxi, but the exponential formulation will prove to be useful for computations.
Note also that the definition is valid for any matric, with no regularity restrictions.

(2) Directly form the definition, we see that a Riemannian manifold (M, g) with g ∈ C2 is locally
conformally flat if and only if for every point p ∈ M there exists a C4 coordinate system x =
(x1, . . . , xn) : U → V ⊂ Rn in a neighborhood U of p and a continuous function u : U → R such that,
expressed in the x coordinates, we have that the metric g′ := e2ug =

∑
i dxi ⊗ dxi is diagonal. As

g ∈ C2 and the coordinate system x is C4, we see that gij are C2, and, this implies that u = −1
2 log(gij)

is also C2, so the metric g′ (defined only locally) is C2. Therefore we can apply 3 to conclude that
(M, g) is locally conformally flat if and only if the metric g′ has curvature tensor R′ = 0.

(3) Note that, if we add that g ∈ C3 to the hypothesis of the definition, the vector fields ∂
∂xi

are

C3 since the coordinates are C4, so the functions gij are C3, and then u ∈ C3.

In view of the previous remark, our strategy for detecting conformal flatness of a Riemannian
manifold (M, g) (in pressence of enough regulariry) will be to define a new metric g′ = e2ug for a
certain unknown function u and see if we can find u such that the curvature R′ associated to g′

vanishes. This will boil down to solve a differential equation for the unknown u involving second
partial derivatives of u. The integrability conditions for this system will require one more derivative,
so we need at least C3 regularity to solve the system. This is the reason why we require that regularity
in the definition.

To study the expression of the curvatore under conformal change, we first need to discuss how
the Riemann curvature tensor can split into a sum of others tensors, and this lead us to the study of
tensors having similar algebraic properties as the curvature tensor.

4.1. Descomposition of Curvature Tensors

Definition 3. Let E be a vector space, and E∗ its dual. We define

⊗nE∗ = {m - multilinear linear forms β : En → R}

SnE∗ = {symmetric m - multilinear forms σ : En → R}

ΛnE∗ = {antisymmetric m - multilinear forms α : En → R}.

Let a, b ∈ E∗. We define its tensorial product a⊗ b such that

(a⊗ b)(x, y) = a(x)b(y)
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so we have the tensorial product

⊗ : E∗ × E∗ → ⊗2E∗ : (a, b) 7→ a⊗ b

We define its symmetric product a ◦ b such that

(a ◦ b)(x, y) =
1

2
[a(x)b(y) + a(y)b(x)]

so we have the symmetric product

◦ : E∗ × E∗ → S2E∗ : (a, b) 7→ a ◦ b

We define its antisymmetric product a ∧ b such that

(a ∧ b)(x, y) =
1

2
[a(x)b(y)− a(y)b(x)]

so we have the antisymmetric product

∧ : E∗ × E∗ → Λ2E∗ : (a, b) 7→ a ∧ b

Suppose E is finite dimensional. If β ∈ ⊗2E∗ then β is a linear combination of tensorial products of
elements of E∗. To see this, choose a basis {e1, . . . , en} of E and let {e∗1, . . . , e∗n} be the dual basis.
Then

β =
∑
i,j

β(ei, ej)e
∗
i ⊗ e∗j

because both coincide when evaluated in each (ei, ej).

It also holds that if σ ∈ S2E∗ then σ is a linear combination of symmetric products of elements of
E∗. Indeed, by the previous line and taking into account that σ(ei, ej) = σ(ej , ei) we have

σ =
∑
i,j

σ(ei, ej)e
∗
i ⊗ e∗j =

∑
i

σ(ei, ei)e
∗
i ◦ e∗i +

∑
i<j

2σ(ei, ej)e
∗
i ◦ e∗j

For last, if α ∈ Λ2E∗ then α is a linear combination of antisymmetric products of elements of E∗.
Indeed, by the previous line and taking into account that σ(ei, ej) = −σ(ej , ei) we have

σ =
∑
i,j

σ(ei, ej)e
∗
i ⊗ e∗j =

∑
i<j

2σ(ei, ej)e
∗
i ∧ e∗j

This fact, though basic, is important because it explains the notation, and usually it is not explicitly
stated. Observe that although we have only defined the products in the case m = 2 for simplicity, all
these products can be defined for any m, with analogous results, but the proof is longer.

We are interested in the following space

Definition 4. We define the space

S2(Λ2E∗) := {r ∈ ⊗4E∗ : r(x, y, z, t) = r(z, t, x, y) = −r(y, x, z, t) = −r(x, y, t, z)}
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Remark 7. Note that the notation suggests that the space Λ2E∗ could be regarded as the dual of
some vector space Λ2E. This is indeed true. The space Λ2E is defined in a similar way as E⊗E. We
remind how space E ⊗ E is defined.

We define the free vector space E × E over R, denoted by F(E × E), whose elements are finite
‘formal linear combinations’ of elements of E × E where the sum and product by scalars are not the
sum and product by scalars that E has in every coordinate, but are just formal operations. More
explicitly, given generic elements a, b ∈ F(E × E)

a =
∑
i,j

λij(ei, ej); b =
∑
k,l

αkl(ek, el)

then we define a+ b as

a+ b =
∑
i,j

λij(ei, ej) +
∑
k,l

αkl(ek, el); λa =
∑
i,j

λλij(ei, ej)

and we force this sum to be commutative and distributive respect scalar multiplication so F(E × E)
is a vector space. Note that this is the same as considering the vector space of mappings E × E →
K : (ei, ej) 7→ λij such that λij is non zero only for a finite number of (ei, ej) equipped with its usual
operations.

Now, we define

E ⊗ E :=
F(E × E)

A

i.e, the quotient space of F(E × E) by the subespace A generated by elements of type

(x1 + x2, y)− (x1, y)− (x2, y); (x, y1 + y2)− (x, y1)− (x, y2); (λx, y)− (x, λy); (x, λy)− λ(x, y).

This is the same as considering in F(E × E) the equivalence relation generated by the relations

(x1 + x2, y) ∼ (x1, y) + (x2, y); (x, y1 + y2) ∼ (x, y1) + (x, y2); (λx, y) ∼ (x, λy) ∼ λ(x, y).

If we add to this equivalenve relation the condition (x, y) ∼ −(y, x) (i.e, if we include elements of the
type (x, y) + (y, x) as generators of A), we get the space Λ2E. We denote x∧ y ∈ Λ2E the equivalence
class of (x, y) ∈ E × E. The relations above just mean that

(x1 + x2) ∧ y = x1 ∧ y + x2 ∧ y ; x ∧ (y1 + y2) = x ∧ y1 + x ∧ y2

(λx) ∧ y = x ∧ (λy) = λ(x ∧ y) ; x ∧ y = −y ∧ x.

Now we claim that Λ2E∗ = (Λ2E)∗. To see this, given α ∈ Λ2E∗ we define α′ ∈ (Λ2E)∗ by

α′(
∑
γ,µ

λγµ(xγ ∧ yµ)) =
∑
γ,µ

λγµα(xγ , yµ).

and it is obvious that α′ is well defined if and only if α is antisymmetric and bilinear.
In the other way, given α′ ∈ (Λ2E)∗ we define α ∈ Λ2E∗ by α(x, y) = α′(x ∧ y), which is

antisymmetric and bilinear by definition of the equivalence class x ∧ y.

Now we claim that the space S2(Λ2E∗) are just the symmetric bilinear forms defined on Λ2E×Λ2E.
In other words, we claim that

S2(Λ2E∗) = S2((Λ2E)∗).

This should be true if we want the notation to be consistent because we defined first S2(Λ2E∗) in
an apparently arbitrary manner, and later it turned out that Λ2E∗ = (Λ2E)∗, but ,as we saw before,
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S2((Λ2E)∗) has a natural definition, so both definitions should agree. To see this, given r ∈ S2(Λ2E∗)
we define r′ ∈ S2((Λ2E)∗) by

r′(
∑
µ,ν

λµν(xµ ∧ yν),
∑
η,γ

δηγ(zη ∧ tγ)) =
∑
ν,µ,η,γ

λµνδηγr(xµ, yν , zη, tγ)

which is obviusly bilinear and symmetric because r(x, y, z, t) = r(z, t, x, y).

In the other way, given r′ ∈ S2((Λ2E)∗) we define r ∈ S2(Λ2E∗) by

r(x, y, z, t) = r′(x ∧ y, z ∧ t)

and it is straighforward to see that r(x, y, z, t) = −r(y, x, z, t), r(x, y, z, t) = −r(x, y, t, z) and r(x, y, z, t) =
r(z, t, x, y), so r satisfies the requirements to be in S2(Λ2E∗) .

As a consequence of this, r ∈ S2(Λ2E∗) if and only if r is a linear combination of symmetric
products of elements of Λ2E∗, where the symmetric product of Λ2E∗ is just the inherited from the
symmetric product on (Λ2E)∗, i.e, for every α1, α2 ∈ Λ2E∗,

(α1 ◦ α2)(x, y, z, t) =
1

2
[α1(x, y)α2(z, t) + α1(z, t)α2(x, y)]

so the elements of the type α1 ◦ α2 as above are the typical elements in S2(Λ2E∗).

We know that the curvature tensor r ∈ S2(Λ2E∗) but r satisfies one more algebraic property which
can not be derived from the others, the Bianchi identity given by

r(x, y, z, t) + r(y, z, x, t) + r(z, x, y, t) = 0

so it seems natural the following.

Definition 5. We define the bianchi map by

b : S2(Λ2E∗)→ ⊗4E∗ : r 7→ b(r); b(r)(x, y, z, t) =
1

3
[r(x, y, z, t) + r(y, z, x, t) + r(z, x, y, t)]

and we call C := ker(b) the space of curvature tensors on E.

There is another important map called the Ricci contraction, which we now define.

Definition 6. Fix a metric g on the vector space E. Then we define the Ricci contraction c by

c : C → S2E∗ : r 7→ c(r); c(r)(y, z) =

n∑
i=1

r(ei, y, z, ei)

if {e1, . . . , en} is an orthonormal basis of (E, g). To see that it is well defined we must check that
c(r)(y, z) does not depend on the basis chosen and that it is symmetric. It does not depend on the
basis because if we define R by

R : E3 → E : (x, y, z) 7→ R(x, y)z := R(x, y, z)

by the condition g(R(x, y)z, t) = r(x, y, z, t) for all t ∈ E, then it is claer that R is a linear map
between vector spaces, and the map

R(·, y)z : E → E : x 7→ R(x, y)z
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is an endomorphism of E, so its trace does not depend on the basis. Now it is clear that the trace of
R(·, y)z respect to the basis {e1, . . . , en} is∑

i

g(R(ei, y)z, ei) =
∑
i

r(ei, y, z, ei) = c(y, z)

which proves that the definition of c does not depend on the basis. Now we must see that c(r) is
symmetric. Indeed,

c(r)(y, z) =

n∑
i=1

r(ei, y, z, ei) =

n∑
i=1

r(z, ei, ei, y) = −
n∑
i=1

r(ei, z, ei, y)

=
n∑
i=1

r(ei, z, y, ei) = c(r)(z, y).

where we have used all the properties of the tensors in S2(Λ2E∗).

Definition 7. We call W = ker(c) the space of Weyl tensors on E, which are the curvature tensors
with Ricci contraction zero. Since Ricci contraction is a kind of trace in the first and fourth variables,
we will say that the Weyl tensors are those curvature tensors with zero trace.

Finally we define the trace of a symmetric (2, 0)-tensor.

Definition 8. We define tha trace map as Tr : S2(E∗)→ R such that if s ∈ S2(E∗) then

Tr(s) =
∑
i

s(ei, ei)

where {ei} is an orthonormal basis of E. This is well defined since if we consider the (1, 1)-tensor S
given by the condition g(S(x), y) = s(x, y) then

Tr(s) =
∑
i

s(ei, ei) =
∑
i

g(S(ei), ei)

is just the trace of the endomorphism S with respect to the basis {ei}, and this trace we know that
does not depend on the basis.

Remark 8. In fact, we do not need the symmetry to define the trace. It can be defined in exactly the
same way for non-symmetric two-tensors. The only difference is that if we choose the (1, 1)−tensor
S′ given by g(S′(x), y) = s(y, x) then S′ = S if and only if s is symmetric. But in any case S and
S′ have the same trace as endomorphisms, so the final result does not depend on any choice and it is
well defined then.

Recall that the Ricci contraction takes a curvature tensor and returns a symmetric (2,0) tensor.
Now we want to reverse the process. For this, we define the following.

Definition 9. We define the Kulkarni-Nomizu product ? : S2(E) × S2(E) → C such that if h, k ∈
S2(E), then

(h? k)(x, y, z, t) = h(x, z)k(y, t)− h(x, t)k(y, z) + k(x, z)h(y, t)− k(x, t)h(y, z)
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This product is well defined, i.e, (h? k) ∈ C. We check the Bianchi identity and leave the rest, which
are even easier.

(h? k)(x, y, z, t) + (h? k)(y, z, x, t) + (h? k)(z, x, y, t)

= [h(x, z)k(y, t)− h(x, t)k(y, z) + k(x, z)h(y, t)− k(x, t)h(y, z)]

+[h(y, x)k(z, t)− h(y, t)k(z, x) + k(y, x)h(z, t)− k(y, t)h(z, x)]

+[h(z, y)k(x, t)− h(z, t)k(x, y) + k(z, y)h(x, t)− k(z, t)h(x, y)]

= [A−B + C −D] + [E − C + F −A] + [D − F +B − E] = 0

Besides, it is obvious that h? k = k ? h so ? is commutative, and it is bilinear since (h1 + h2) ? k =
h1 ? k + h2 ? k and the same for the second entry. So it qualifies as a (commutative) product.

Now we can prove the result involving the descomposition of a curvature tensor.

Proposition 1. Let (E, g) be a vector espace E with a metric g, dim(E) ≥ 3. Then C = W
⊕

(g ?
S2(E∗))

Proof. Given a curvature tensor r ∈ C, we must find a symmetric (2, 0)-tensor s and a Weyl tensor w
such that

r(x, y, z, t) = w(x, y, z, t) + g(x, z)s(y, t)− g(x, t)s(y, z) + s(x, z)g(y, t)− s(x, t)g(y, z)

Assuming this is true, we take Ricci contraction and obtain

c(r)(y, z) =
∑
i

r(ei, y, z, ei)

= 0 +
∑
i

[g(ei, z)s(y, ei)− g(ei, ei)s(y, z) + s(ei, z)g(y, ei)− s(ei, ei)g(y, z)]

= s(y, z)− ns(y, z) + s(y, z)− g(y, z)
∑
i

s(ei, ei) = (2− n)s(y, z)− g(y, z)Tr(s)

where we used that, as {ei} is an orthonormal basis, z =
∑

i g(ei, z)ei. Now we take the trace and
obtain

Tr(c(r)) = (2− n)Tr(s)− nTr(s) = (2− 2n)Tr(s)

Thinking of r being the Riemann curvature tensor, we call Scal := Tr(c(r)) and we get that if the
descomposition desired is true, necessarily

Tr(s) =
Scal

2− 2n
.

Then, returning to the first equality, we must have

s(y, z) =
1

2− n
[c(r)(y, z) + g(y, z)Tr(s)] =

1

2− n
[c(r)(y, z) +

Scal

2− 2n
g(y, z)]

which is symmetric because r is a curvature tensor. Besides this two identities are consistent since,
with this definition of s, we have indeed that

Tr(s) =
1

2− n
[Scal +

Scal

2− 2n
n] =

[(2− 2n) + n]Scal

(2− n)(2− 2n)
=

Scal

2− 2n

So s is completely determined by r, and s = 1
2−n [c(r) + Scal

2−2ng].



Conformal Geometry. Conformal Flatness fow Low Regular Metrics. 23

We have obtained who must be s, and now we just set w := r− g? s, which is a curvature tensor
because is the sum of two curvature tensors. Obviously, r = w + g ? s, and we must check that w is
a Weyl tensor. But this follows directly if we look at how s was obtained, since s was defined so that
c(r) = c(s? g), and then c(w) = 0.

So every curvature tensor r admits a descomposition r = w+s?g for some Weyl tensor w and some
symmetric (2, 0)-tensor s. Besides, we saw when we obtained s that it is uniquely determined, and so
is w, so this descomposition is unique. This proves that W and g ? S2(E∗) have zero intersection as
vector spaces, because if r ∈ W∩(g?S2(E∗)), then r admits the two descompositionsr = r+0 = 0+r
so r = 0. We conclude that C =W

⊕
(g ? S2(E∗)), as we wanted.

Remark 9. If dim(E) = 2 the proof above does not work, but this case is easier, since every curvature
tensor can be descomposed r = −1

2Scal(g ? g). To see this, it is enough to see that

r(x, y, x, y) = −1
2Scal(g ? g)(x, y, x, y) = −Scal

2
(g(x, x)g(y, y)− g(x, y)g(x, y))

if x, y are a basis of E. This is because, by the simmetries of curvature tensors, this implies that both
coincide evaluated on any permutation of the basis {x, y}, and hence on E by linearity. To check this,
we remind that the number

K =
r(x, y, x, y)

g(x, x)g(y, y)− g(x, y)g(x, y)

is independet of the basis chosen, and it is called the sectional curvature. The denominator is not zero
because x, y are not proportional, so the Cauchy Schwartz inequality is strict. Besides, we know that
that for an orthonormal basis {e1, e2} of E,

Scal = Tr(c(r)) = c(r)(e1, e1) + c(r)(e2, e2) = r(e1, e1, e1, e1) + r(e2, e1, e1, e2)

+r(e1, e2, e2, e1) + r(e2, e2, e2, e2) = −2r(e1, e2, e1, e2) = −2K

which yields the claim.

In dimension 3 the situation is simpler. We show in the next proposition that in this case the only
curvature tensor with zero Ricci contraction is the zero tensor, so in dimension 3 the space of Weyl
tensors is W = {0}.

Proposition 2. If dim(E) = 3 then W = 0, i.e, all the curvature tensors with Ricci contraction zero
are zero.

Proof. Let w ∈ W, and pick {e1, e2, e3} an orthonormal basis. We know that, as w has Ricci contrac-
tion zero, for all x, y

c(w)(x, y) = w(e1, x, y, e1) + w(e2, x, y, e2) + w(e3, x, y, e3) = 0.

Let’s see w = 0 restricted to the basis {e1, e2, e3}. Remind that w(x, x, y, z) = w(y, z, x, x) = 0 by the
symmetries of curvature tensors. We have

r(w)(e1, e1) = w(e2, e1, e1, e2) + w(e3, e1, e1, e3) = 0

r(w)(e1, e2) = w(e3, e1, e2, e3) = 0

r(w)(e1, e3) = w(e2, e1, e3, e2) = 0

r(w)(e2, e2) = w(e1, e2, e2, e1) + w(e3, e2, e2, e3) = 0

r(w)(e2, e3) = w(e1, e2, e3, e1) = 0

r(w)(e3, e3) = w(e1, e3, e3, e1) + w(e2, e3, e3, e2) = 0
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and then it follows that

r(w)(e1, e1) + r(w)(e2, e2) = 2w(e2, e1, e1, e2) + r(w)(e3, e3) = 2w(e2, e1, e1, e2) = 0

and from this we conclude that w(e3, e1, e1, e3) = w(e2, e3, e3, e2) = 0.

This shows that when we substitute in w only two members of the basis, the result is zero. If
we substitute the three members, one of them must appear twice, and then modulo sign we have
three options w(e1, e2, e1, e3), w(e2, e1, e2, e3), w(e3, e1, e3, e2), all of them zero because r(w)(e1, e2) =
r(w)(e1, e3) = r(w)(e2, e3) = 0. So w restricted to the basis is zero, and hence w = 0 by linearity.

Remark 10. All these results about curvature tensors have been proved in a general setting. However,
the particular case in which we are interested is when we have (M, g) a Riemannian manifold with
dim(M) ≥ 3 and r is its Riemann curvature tensor. Then the Ricci contraction c(r) of r is the well
known Ricci tensor so we call Ric := c(r). The trace Tr(c(r)) = Tr(Ric) of the Ricci tensor is called
the scalar curvature, and we write Scal := Tr(Ric). The proposition below just show us that if we
define

s :=
1

2− n
[Ric+

Scal

2− 2n
g]; w := r − g ? s

then s is a symmetric (2, 0)-tensor, w is a Weyl tensor, and r = w + s? g.

Definition 10. Given a Riemannian manifold (M, g). With notations as in the previous Remark 10,
we call w the Weyl tensor and s the Schouten tensor . Note that they are unique fixed g.

Remark 11. If the opposite sign convention for the curvature r is chosen, then Ricci tensor is defined
by contracting on the second and fourth entries instead of the first and fourth. This way, whathever
choice of the sign of the curvature is picked, we obtain the same Ricci tensor, and the same scalar
curvature. However, if we choose the opposite sign convention for the curvature r then the Schouten
and the Weyl tensors change sign, since if r = w + s ? g then −r = −w + (−s) ? g. So do not
be susprised if you find these tensors defined with the opposite sign in other references (this will be
because the opposite sign for the curvature has been chosen).

4.2. Conformal Change of the Curvature Tensor

Now we can discuss how the curvature changes under conformal transformation. We begin with a
definition.

Definition 11. Let (M, g) be a Riemannian manifold, and let u ∈ Ck for k ≥ 1. We define the
gradient of u as the vector field grad(u) such that

g(X, grad(u)) = du(x)

for every vector field X in M . Working in coordinates it is easy to see that grad(u) ∈ Ck−1.

In the next Lemma we show how the Levi-Civita conection changes when the metric is conformally
perturbed.

Lemma 2. Let (M, g) be a Riemannian manifold. Suppose g ∈ C2 and let u be a C2 function defined
in some neighborhood. Set g′ = e2ug ∈ C2. Denote by ∇ and ∇′ the Levi-Civita connections of g and
g′ respectively. Let B(X,Y ) = ∇′XY −∇XY . Then B has the expression

B(X,Y ) = du(X)Y + du(Y )X − g(X,Y )grad(u)
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Proof. First we claim that as ∇ and ∇′ are symmetric conections, then B is a symmetric (2, 1) tensor.
Indeed for f ∈ C∞(M) and X,Y vector fields on M , we have

B(X, fY ) = ∇′XfY −∇XfY = X(f)Y + f∇′XY −X(f)Y − f∇XY

= f(∇′XY −∇XY ) = fB(X,Y )

That B is C∞(M) linear in its first entry is because the connections are, so is a linear combination of
connections. Let us see B is symmetric.

B(X,Y ) = ∇′XY −∇XY = ∇′YX − [X,Y ]−∇YX + [X,Y ] = B(Y,X).

Now we want to find an explicit expression of B.

As ∇′ is the Levi-Civita connection for g′, we have for every X,Y, Z vector fields on M

0 = (∇′Xg′)(Y, Z) = ∇′X(g′(Y,Z))− g′(∇′XY, Z)− g′(Y,∇′XZ)

= X(e2ug(Y,Z))− e2u[g(∇′XY,Z) + g(Y,∇′XZ)]

= 2X(u)e2ug(Y,Z) + e2uX(g(Y, Z))− e2u[g(∇XY +B(X,Y ), Z) + g(Y,∇XZ +B(X,Z))]

= 2X(u)e2ug(Y,Z) + e2u[g(∇XY,Z) + g(Y,∇XZ)]

−e2u[g(∇XY,Z) + g(B(X,Y ), Z) + g(Y,∇XZ) + g(Y,B(X,Z))]

= e2u[2X(u)g(Y, Z)− g(B(X,Y ), Z)− g(Y,B(X,Z))]

We make this calculation 3 times switching cyclically X,Y, Z and conclude

g(B(X,Y ), Z) + g(Y,B(X,Z)) = 2X(u)g(Y, Z)

g(B(Y,Z), X) + g(Z,B(Y,X)) = 2Y (u)g(Z,X)

g(B(Z,X), Y ) + g(X,B(Z, Y )) = 2Z(u)g(X,Y )

If we make the signed sum and use the symmetry of B, we have

2[X(u)g(Y, Z) + Y (u)g(Z,X)− Z(u)g(X,Y )]

= g(B(X,Y ), Z) + g(Y,B(X,Z)) + g(B(Y,Z), X)

+g(Z,B(Y,X))− g(B(Z,X), Y )− g(X,B(Z, Y )) = 2g(B(X,Y ), Z)

so we conclude that

g(B(X,Y ), Z) = X(u)g(Y,Z) + Y (u)g(Z,X)− Z(u)g(X,Y )

= X(u)g(Y, Z) + Y (u)g(Z,X)− g(Z, grad(u))g(X,Y )

= g(X(u)Y + Y (u)X − g(X,Y )grad(u), Z)

Then, necessarily

B(X,Y ) = X(u)Y + Y (u)X − g(X,Y )grad(u)

and this proves the Lemma.

Definition 12. Let (M, g) be a Riemannian manifold, and let u ∈ Ck for k ≥ 2. We define the Hessian
of u as the symmetric (2, 0)-tensor acting on vector fields X,Y by Hess(u)(X,Y ) := g(∇Xgrad(u), Y ).
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It is symmetric since

Hess(u)(X,Y ) := g(∇Xgrad(u), Y ) = X(g(grad(u), Y ))− g(grad(u),∇XY )

= X(Y (u))− (∇XY )(u) = Y (X(u)) + ([X,Y ])(u)− (∇XY )(u)

= Y (X(u))− (∇YX)(u) =
1

2
[X(Y (u))− (∇XY )(u) + Y (X(u))− (∇YX)(u)]

Also, working in coordinates we easily see that Hess(u) ∈ Ck−2.

The next Lemma will be crucial, and shows how the curvature tensor changes when the metric is
conformally perturbed.

Lemma 3. Let (M, g) be a Riemannian manifold and let g′ = e2ug. Denote r and r′ the curvature
tensors associated to g and g′ respectively. Then

r′ = e2u(r + bu ? g)

where bu is the symmetric (2, 0)-tensor given by

bu(x, y) = Hess(u)(x, y)− du(x)du(y) +
1

2
g(grad(u), grad(u))g(x, y)

Proof. Denote by ∇ and ∇′ the Levi-Civita connections of g and g′ respectively. Let B = ∇′ − ∇.
First we will see how are related the (3, 1) curvature tensors of g and g′, denoted respectively by R
and R′. We will use color underline to show the terms that cancel out.

R′(X,Y )Z = ∇′X∇′Y Z −∇′Y∇′XZ −∇′[X,Y ]Z

= ∇′X(∇Y Z +B(Y, Z))−∇′Y (∇XZ +B(X,Z))−∇[X,Y ]Z −B([X,Y ], Z)

= [∇X +B(X, ·)](∇Y Z +B(Y,Z))− [∇Y +B(Y, ·)](∇XZ +B(X,Z))

−∇[X,Y ]Z −B([X,Y ], Z)

= ∇X∇Y Z +B(X,∇Y Z) +∇X(B(Y,Z)) +B(X,B(Y, Z))−∇Y∇XZ −B(Y,∇XZ)

−∇Y (B(X,Z))−B(Y,B(X,Z))−∇[X,Y ]Z −B([X,Y ], Z)

= ∇X∇Y Z +B(X,∇Y Z) + (∇XB)(Y, Z) +B(∇XY,Z) +B(Y,∇XZ)

+B(X,B(Y,Z))−∇Y∇XZ −B(Y,∇XZ)− (∇YB)(X,Z)−B(∇YX,Z)

−B(X,∇Y Z)−B(Y,B(X,Z))−∇[X,Y ]Z −B([X,Y ], Z)

= R(X,Y )Z + (∇XB)(Y,Z) +B(X,B(Y,Z))− (∇YB)(X,Z)−B(Y,B(X,Z))

The blue terms cancel since ∇XY −∇YX = [X,Y ]. We conclude that

R′(X,Y )Z −R(X,Y )Z = (∇XB)(Y, Z)− (∇YB)(X,Z) +B(X,B(Y,Z))−B(Y,B(X,Z))

= A1 −A2 +A3 −A4

Until now everything has been formal, and we have not used the special form that B has. In the
previous lemma, we saw that for every X,Y vector fields on M ,

B(X,Y ) = du(X)Y + du(Y )X − g(X,Y )grad(u) = X(u)Y + Y (u)X − g(X,Y )grad(u).
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Then

A1 = (∇XB)(Y,Z) = ∇X(B(Y, Z))−B(∇XY,Z)−B(Y,∇XZ)

= ∇X [Y (u)Z + Z(u)Y − g(Y, Z)grad(u)]− [(∇XY )(u)Z + Z(u)∇XY − g(∇XY, Z)grad(u)]

−[Y (u)∇XZ + (∇XZ)(u)Y − g(Y,∇XZ)grad(u)]

= X(Y (u))Z + Y (u)∇XZ +X(Z(u))Y + Z(u)∇XY

−[g(∇XY,Z) + g(Y,∇XZ)]grad(u)− g(Y,Z)∇Xgrad(u)− (∇XY )(u)Z

−Z(u)∇XY + g(∇XY,Z)grad(u)− Y (u)∇XZ − (∇XZ)(u)Y + g(Y,∇XZ)grad(u)

= X(Y (u))Z +X(Z(u))Y − g(Y,Z)∇Xgrad(u)− (∇XY )(u)Z − (∇XZ)(u)Y

so if W is another vector field we have

g(A1,W ) = g((∇XB)(Y,Z),W ) = [XY (u)− (∇XY )(u)]g(Z,W )

+[XZ(u)− (∇XZ)(u)]g(Y,W )− g(Y, Z)g(∇Xgrad(u),W )

= g(Z,W )Hess(u)(X,Y ) + g(Y,W )Hess(u)(X,Z)− g(Y,Z)Hess(u)(X,W )

The term g(A2,W ) is obtained by just switching the letters X and Y in the expression of g(A1,W ),
so

g(A2,W ) = g((∇YB)(X,Z),W )

= g(Z,W )Hess(u)(Y,X) + g(X,W )Hess(u)(Y,Z)− g(X,Z)Hess(u)(Y,W )

We conclude that
g(A1 −A2,W )

= g(Y,W )Hess(u)(X,Z)− g(Y, Z)Hess(u)(X,W )

−g(X,W )Hess(u)(Y, Z) + g(X,Z)Hess(u)(Y,W )

We go now with the term A3

A3 = B(X,B(Y,Z)) = X(u)B(Y, Z) +B(Y,Z)(u)X − g(X,B(Y,Z))grad(u)

= X(u)(Y (u)Z + Z(u)Y − g(Y,Z)grad(u))

+[Y (u)Z(u) + Z(u)Y (u)− g(Y, Z)(grad(u))(u)]X

−[Y (u)g(X,Z) + Z(u)g(X,Y )− g(Y, Z)g(X, grad(u))]grad(u)

= X(u)Y (u)Z +X(u)Z(u)Y −X(u)g(Y,Z)grad(u)

+2Y (u)Z(u)X − g(Y,Z)g(grad(u), grad(u))X

−Y (u)g(X,Z)grad(u)− Z(u)g(X,Y )grad(u) + g(Y,Z)X(u)grad(u)

= X(u)Y (u)Z +X(u)Z(u)Y + [2Y (u)Z(u)− g(Y,Z)|grad(u)|2g]X

−[Y (u)g(X,Z) + Z(u)g(X,Y )]grad(u)

and then

g(B(X,B(Y,Z)),W ) = X(u)Y (u)g(Z,W ) +X(u)Z(u)g(Y,W ) + 2Y (u)Z(u)g(X,W )

−g(Y, Z)|grad(u)|2gg(X,W )− Y (u)g(X,Z)W (u)− Z(u)g(X,Y )W (u) = g(A3,W )

The term g(A4,W ) is obtained switching the letters X and Y in the expression of g(A3,W ), so

g(A4,W ) = Y (u)X(u)g(Z,W ) + Y (u)Z(u)g(X,W ) + 2X(u)Z(u)g(Y,W )

−g(X,Z)|grad(u)|2gg(Y,W )−X(u)g(Y,Z)W (u)− Z(u)g(Y,X)W (u)
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So it follows that

g(A3 −A4,W ) = X(u)Z(u)g(Y,W ) + 2Y (u)Z(u)g(X,W )

−g(Y, Z)|grad(u)|2gg(X,W )− Y (u)g(X,Z)W (u)− Y (u)Z(u)g(X,W )

−2X(u)Z(u)g(Y,W ) + g(X,Z)|grad(u)|2gg(Y,W ) +X(u)g(Y,Z)W (u)

So finally we get

g(R′(X,Y )Z,W ) = g(R(X,Y )Z,W ) + g(A1 −A2,W ) + g(A3 −A4,W )

= r(X,Y, Z,W )

+g(Y,W )Hess(u)(X,Z)− g(Y, Z)Hess(u)(X,W )

−g(X,W )Hess(u)(Y, Z) + g(X,Z)Hess(u)(Y,W )

+X(u)Z(u)g(Y,W ) + 2Y (u)Z(u)g(X,W )− g(Y,Z)|grad(u)|2gg(X,W )− Y (u)g(X,Z)W (u)

−Y (u)Z(u)g(X,W )− 2X(u)Z(u)g(Y,W ) + g(X,Z)|grad(u)|2gg(Y,W ) +X(u)g(Y,Z)W (u)

= r(X,Y, Z,W ) + (Hess(u) ? g)(X,Y, Z,W )

−X(u)Z(u)g(Y,W ) + Y (u)Z(u)g(X,W )− Y (u)W (u)g(X,Z) +X(u)W (u)g(Y,Z)

−g(Y,Z)|grad(u)|2gg(X,W ) + g(X,Z)|grad(u)|2gg(Y,W )

= r(X,Y, Z,W ) + (Hess(u) ? g)(X,Y, Z,W )− [(du⊗ du) ? g](X,Y, Z,W )

+[(
1

2
|grad(u)|2gg) ? g](X,Y, Z,W )

and then
r′(X,Y, Z,W ) = g′(R′(X,Y )Z,W ) = e2ug(R′(X,Y )Z,W )

= e2u[r(X,Y, Z,W ) + (bu ? g)(X,Y, Z,W )

where bu = hess(u)− du⊗ du+ 1
2 |grad(u)|2gg, as we wanted.

Corollary 1. Let (M, g) be a Riemannian manifold with g ∈ C2, and let w and s be the Weyl and
Schouten tensors defined in 10. Put g′ := e2ug for some function u ∈ C2. Denote also K for the
sectional curvature of (M, g). We have

(1) The Weyl and Scouten tensors w′ and s′ of g′ are given by

w′ = e2uw; s′ = s+ bu = s+ hess(u)− du⊗ du+
1

2
|grad(u)|2gg

(2) The (3, 1) Weyl tensors W and W ′ of g and g′ are equal, W = W ′, so W is conformally
invariant.

(3) The sectional curvature K ′ of (M, g′) is given by

K ′(σ(x, y)) = e−2u[K(σ(x, y))− Tr(bu|σ(x,y))]

Proof. With the same notation as below, let r′ the Riemann curvature tensor of g′. Suppose dim(M) ≥
3. Then we know that r′ descomposes in a unique way as r′ = w′ + s′ ? g′, being w′ the Weyl tensor
of r′ and s′ the Schouten tensor of r′. Let r = w + s? g be the corresponding descomposition for the
Riemann curvature tensor r associated to g. Then by the previous lemma

r′ = w′ + s′ ? g′ = e2u(r + bu ? g) = e2u(w + s? g + bu ? g) = e2uw + (s+ bu) ? g′
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Now, e2uw is a Weyl tensor because w is, so by uniqness of the descomposition, we deduce

w′ = e2uw; s′ = s+ bu = s+ hess(u)− du⊗ du+
1

2
|grad(u)|2gg

and this concludes how the Weyl and Schouten tensors change under conformal change of the metric.
If we consider the (3, 1)-Weyl tensors W and W ′ of g and g′, we have

g′(W ′(x, y)z, t)) = e2ug(W ′(x, y)z, t)) = w′(x, y, z, t) = e2uw(x, y, z, t) = e2ug(W (x, y)z, t)

and we conclude that W ′ = W under conformal change of the metric.
Let us see how the sectional curvature K changes. Given linearly independet vectors x, y ∈ TpM ,

denote σ(x, y) the plane spanned by them. Let {e1, e2} be an orthonormal basis respect to g of σ(x, y).
Denote K(σ(x, y)) and K ′(σ(x, y)) for the sectional curvatures of g and g′ respectively. Then

r′(e1, e2, e1, e2) = e2u(r + bu ? g)(e1, e2, e1, e2)

= e2u[r(e1, e2, e1, e2) + bu(e1, e1)g(e2, e2)− bu(e1, e2)g(e2, e1) + g(e1, e1)bu(e2, e2)− g(e1, e2)bu(e2, e1)]

= e2u[r(e1, e2, e1, e2) + bu(e1, e1) + bu(e2, e2)] = e2u[r(e1, e2, e1, e2) + Tr(bu|σ(x,y))]

and therefore

K ′(σ(x, y)) =
r′(e1, e2, e1, e2)

g′(e1, e1)g′(e2, e2)− g′(e1, e2)2

=
e2u[r(e1, e2, e1, e2) + Tr(bu|σ(x,y))]

e4u − 0
= e−2u[K(σ(x, y))− Tr(bu|σ(x,y))]

This proves the claim.

Note that if the opposite sign for the curvature tensor is chosen, the Weyl and the Schouten tensors
change sign, so the transformation behaviour in this case would be −w′ = e2u(−w) and −s′ = −s− bu
, as can be seen in the references.

Definition 13. Let (M, g) be a Riemannian manifold, and let u ∈ Ck for k ≥ 2. We define ∆u, the
Laplace-Beltrami operator (which we may just call Laplacian), which is defined as

∆ : Ck(M)→ Ck−2(M) : u 7→ ∆u := Tr(Hess(u)).

Working in coordinates it is easy to see that ∆u ∈ Ck−2(M).

Remark 12. From the previous Corollary 1 we see in particular that if dim(M) = 2, then

Tr(bu|σ(x,y)) = Tr(bu) = Tr(Hess(u))− du(e1)2 − du(e2)2 + |grad(u)|2g = Tr(Hess(u)) = ∆u

since du(e1)2 + du(e2)2 = g(grad(u), e1)2 + g(grad(u), e2)2 = |grad(u)|2g.
We conclude that if dim(M) = 2 then

K ′(σ(x, y)) = e−2u[K(σ(x, y))−∆(u))

In addition, we know from remark 9 that if dim(M) = 2 the curvature has a simple expression, more
precisely r = K(g ? g) and r′ = K ′(g′ ? g′), so under conformal change

r′ = e−2u[K −∆u](e2ug ? e2ug) = e2u[K −∆u](g ? g)
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Definition 14. We define the divergence of a vector field X as div(X) = Tr(∇(·)X), i.e, the trace of
the endomorphism Y 7→ ∇YX. This way we have the divergence operator

div : Γ(TM)→ C∞(M) : X 7→ div(X)

where Γ(TM) is the set of C∞ sections of the tangent bundle of M , which is the same as the set of
C∞ vector fields on M . Therefore we have

div(X) =
∑
i

g(∇eiX, ei) for every orthonormal basis {ei}

Remark 13. Let us see what is the expression of the gradient, divergence and Laplacian in local
coordinates. First note that, although usually the gradient is defined for smooth functions, it makes
sense for C1 functions. This way, the divergence makes sense for C1 vector fields, and the Laplacian
for C2 functions.

Secondly we recall an equivalent formula for the Laplacian, given by

∆u = Tr(Hess(u)) =
∑
i

Hess(u)(ei, ei) =
∑
i

g(∇eigrad(u), ei) = div(grad(u)).

Now let u ∈ C1, and write, for unknown ai

grad(u) =
∑
i

ai
∂

∂xi
.

To obtain who the ai are, we must impose du(X) = g(X, grad(u)) for every X vector field. By
linearity, it is enough to check that in any basis, and we choose the basis { ∂

∂xi
}. Now,

du

(
∂

∂xj

)
=

∂u

∂xj
= g

(
grad(u),

∂

∂xj

)
=
∑
i

aigij

as this hols for every j = 1, . . . , n, we have the matricial system(
∂u

∂xj

)
= (gij)(ai) equivalent to (ai) = (gij)(

∂u

∂xj
)

and we get that

ai =
∑
j

gij
∂u

∂xj
so grad(u) =

∑
i

(
∑
j

gij
∂u

∂xj
)
∂

∂xi

Now let X be a C1 vector field. In local coordinates,

X =
∑
i

ai
∂

∂xi
and then ∇ ∂

∂xj

X =
∑
i

(
∂ai
∂xj

+
∑
k

akΓ
i
kj

)
∂

∂xi

so we conclude that

div(X) =
∑
j

(
∂aj
∂xj

+
∑
k

akΓ
j
kj

)
=
∑
j

∂aj
∂xj

+
∑
k,j

akΓ
j
kj

Suming up, if u ∈ C2, we have

∆u = div(grad(u)) =
∑
j

∂

∂xj
[
∑
l

gjl
∂u

∂xl
] +
∑
k,j

(
∑
l

gkl
∂u

∂xl
)Γjkj

=
∑
j,l

(gjl
∂2u

∂xl∂xj
+
∂gjl

∂xj

∂u

∂xl
) +

∑
k,j,l

gkl
∂u

∂xl
Γjkj

(16)

and this is the expression in local coordinates of the Laplacian.



Conformal Geometry. Conformal Flatness fow Low Regular Metrics. 31

Now we can solve our problem and determine necessary and suficient conditions for a manifold to
be locally conformally flat, at least in presence of enough regularity. We start with surfaces.

Theorem 4. Let (M, g) be a two dimensional Riemannian manifold with g ∈ C2,α for some 0 < α ≤ 1
(see 21 for the definition of Holder spaces). Then (M, g) is locally conformally flat.

Proof. (Sketch of proof). Let (x, U) ve a smooth coordinate system. By hipothesis, gij ∈ C2,α in these
coordinates. We saw above that if we put g′ = e2ug for some unkwon function u, then K ′ = K + ∆u,
being K and K ′ the sectional curvatures of (M, g) and (M, g′). We mentioned above that in surfaces
the sectional curvature K determines the curvature tensor r. Then r′ = 0 if and only if K ′ = 0, and
this is equivalent to solve the following equation for x ∈ U :

∆u(x) =
∑
j,l

(gjl
∂2u

∂xl∂xj
+
∂gjl

∂xj

∂u

∂xl
) +

∑
k,j,l

gkl
∂u

∂xl
Γjkj = −K(x)

We have a linear PDE for u, and if we prove the local existence of a solution u ∈ C2, we are done,
because in that case we know by Theorem 3 that in some coordinate system (maybe different) we have
g′ij = δij so g = e−2uδij . As the coefficients of this system are Cα, it can be proved that there exists a

solution u ∈ C2,α(Ω), though we shall not do it here.

4.3. Conformal Flatness for Regular Metrics. Weyl-Schouten Theorem

We will focus on detecting local conformal flatness in the case where (M, g) has dimension n ≥ 3, and
g is regular enough to justify all the computations. We shall see that the regularity we will need is
g ∈ C3, since all our computations will require at most three derivatives of g.

Note that a necessary condition for (M, g) to be locally conformally flat is that its Weyl tensor
vanishes. Indeed, if (M, g) is locally conformally flat, then there exists a C3 coordinate system
(x1, . . . , xn) an a C2 function u such that the metric g′ = e2ug satisfies g′ij = δij in this coordinate

system. As g and g′ are C2 is this coordinates, we can define its curvature and Weyl tensors r, w
and w′, r′ respectively. As r′ = 0 then w′ = 0. We saw that under conformal change the Weyl tensor
transforms as w′ = e2uw so w must be zero.

We already saw that the Weyl tensor is always zero when dim(M) = 3, so this necessary condition
is always satisfied in dimension three. We will see that this condition is not enough for a three
manifold, but it is required that another tensor vanishes (note that otherwise every three manifold
would be locally conformally flat). However, if dim(M) ≥ 4 the condition w = 0 will turn out to be
sufficient, though in an indirect way as we will see.

Suppose then that we have our Riemannian manifold (M, g) and that the Weyl tensor w = 0. We
look for a C3 function u locally defined on M such that the metric g′ = e2ug has curvature tensor
r′ = 0.

As w = 0, then w′ = 0, so by the descomposition r′ = w′ + s′ ? g we see that r′ = 0 is equivalent
to s′ = 0. Then, by the transformations formulas given in 1 we must find an u such that locally it
solves the equation

s′ = s+ bu = s+ hess(u)− du⊗ du+
1

2
|grad(u)|2gg = 0 (17)

and this is the system that we must solve to prove that (M, g) is conformally flat. We note first that
in system 17 there are no terms depending on u, but everything depends on the derivatives of u. Then
it looks reasonable to make a change du = α. Before substitution, we must relate first Hess(u) and
du. One may expect from calculus on Rn that ∇du = Hess(u). Indeed, this is true.
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Lemma 4. Let (M, g) be a Riemannian manifold, and let u ∈ C2. Then we have ∇du = Hess(u).

Proof. We compute

(∇Xdu)(Y ) = X(du(Y ))− du(∇XY ) = X(g(grad(u), Y ))− g(grad(u),∇XY )

= g(∇Xgrad(u), Y ) + g(grad(u),∇XY )− g(grad(u),∇XY ) = g(∇Xgrad(u), Y )

= Hess(u)(X,Y )

and this proves the Lemma.

From the lemma above we see that system (17) really is the same as

∇du− du⊗ du+
1

2
|grad(u)|2gg = −s (18)

For simplicity of natotion, before going further solving system (18), it is convenient to establish
the following definition.

Definition 15. Let (M, g) be a Riemannian manifold. We define the metric on 1-forms γ, β by putting
g(γ, β) = g(γ#, β#) being

b : TM → T ∗M : x 7→ g(x, ·) = xb

# = b−1 : T ∗M → TM : α 7→ α# such that g(α#, ·) = α(·)

the musical isomorphisms. We denote this isomorphisms b and # to show that they respectively lower
and raise the index, as b and # lower and raise the frequency of notes in music.

Coming back to equation (18), we make the substitution du = α, and noting that α# = du# =
grad(u), we get

∇α− α⊗ α+
1

2
|α|2gg = −s (19)

We must check whether we lose information with the change du = α, i.e, if every α satisfayng the
system (19) is exact. If we see this, we can reverse the process and solve the system (18). We remind
that by definition, a one form α on M is exact if there exists a function u defined on M such that
α = du.

By the well known Poincaré Lemma swe know that if dα = 0 then α is locally exact. But we do
not need to use that result, since we can give a direct proof of this using our integrability conditions.

Proposition 3. Let α be a 1-form on a manifold M and suppose dα = 0. Then for every x ∈ M
there exists U ⊂M an open set, and there exists a function u : U → R such that α = du

Proof. Suppose that α = a1dx1 + · · ·+ andxn in coordinates, so

dα = (
∂a1

∂x2
dx2 ∧ dx1 + · · ·+ ∂a1

∂xn
dxn ∧ dx1) + · · ·+ (

∂an
∂x1

dx1 ∧ dxn + · · ·+ ∂an
∂xn−1

dxn−1 ∧ dxn)

=
∑
i<j

(
∂aj
∂xi
− ∂ai
∂xj

)dxi ∧ dxj = 0 if and only if
∂aj
∂xi
− ∂ai
∂xj

= 0 for every i 6= j

and these are just the integrebility conditions for the system

∂u

∂xi
= ai, i = 1, . . . , n

so there exists a locally defined such function u, and obviusly du = α.
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Then, coming back to our system (19), let us see that the change du = α does not lose information.
In view of the Proposition 3 below, we must show that dα = 0.

Indeed, as α satisfies the system (19), we have

∇α = α⊗ α− 1

2
|α|2gg − s

and then ∇α is symmetric, i.e,

(∇α)(X,Y ) = (∇Xα)(Y ) = α(X)α(Y )− 1

2
|α|2gg(X,Y )− p(x, y) = (∇α)(Y,X) = (∇Y α)(X)

This implies that dα = 0, as the next proposition shows.

Proposition 4. Let α be a 1-form on a manifold M . Then α is exact if and only if ∇α is symmetric.

Proof. Let α = a1dx1 + · · ·+ andxn in coordinates.

Suppose first that ∇α is symmetric. Then

(dα)(∂i, ∂j) =
∂aj
∂xi
− ∂ai
∂xj

= ∂i[α(∂j)]− ∂j [α(∂i)]

= (∇∂iα)(∂j) + α(∇∂i∂j)− (∇∂jα)(∂i)− α(∇∂j∂i) = α([∂i, ∂j ]) = 0

and then dα = 0.

Suppose now that dα = 0 so for all i, j we have

(dα)(∂i, ∂j) =
∂aj
∂xi
− ∂ai
∂xj

= 0.

Then, noting that ∇i∂j = ∇j∂i, it follows

(∇∂iα)(∂j) =
∂aj
∂xi
− α(∇∂i∂j) =

∂ai
∂xj
− α(∇∂j∂i) = (∇∂jα)(∂i)

and then ∇α is symmetric as we wanted to prove.

So we have seen that in order to solve the system (17), we can focus on solving the simpler system
given by

∇α− α⊗ α+
1

2
|α|2gg = s (20)

To do this we shall express system (20) in local coordinates. First note that if we express in cordintes
α =

∑
i aidxi we have

(∇α)(
∂

∂xi
,
∂

∂xj
) := (∇ ∂

∂xi

α)(
∂

∂xj
) =

∂

∂xi
[α(

∂

∂xj
)]− α(∇ ∂

∂xi

∂

∂xj
)

=
∂aj
∂xi
− α(

∑
k

Γkij
∂

∂xk
) =

∂aj
∂xi
−
∑
k

Γkijak

So system (20) reads as

∂aj
∂xi

=
∑
k

Γkijak + aiaj −
1

2
|α|2ggij − sij := f ji (x, a1(x), . . . , an(x)).



34

We know how to compute the integrability conditions for this system. Let’s call for the moment

b := α⊗ α− 1

2
|α|2gg − s and bij = b(

∂

∂xi
,
∂

∂xj
) (21)

The integrability conditions are obtained by forcing that

∂2aj
∂xl∂xi

=
∑
k

∂Γkij
∂xl

ak +
∑
k

Γkij
∂ak
∂xl

+
∂bij
∂xl

=
∂2aj
∂xi∂xl

=
∑
k

∂Γklj
∂xi

ak +
∑
k

Γklj
∂ak
∂xi

+
∂blj
∂xi

(22)

We substitute in (22)
∂ak
∂xi

by
∑
m

Γmikam + bik

to obtain∑
k

∂Γkij
∂xl

ak +
∑
k,m

ΓkijΓ
m
lkam +

∑
k

Γkijblk +
∂bij
∂xl

=
∑
k

∂Γklj
∂xi

ak +
∑
k,m

ΓkljΓ
m
ikam +

∑
k

Γkljbik +
∂blj
∂xi

(23)

and switching index of summation, we finally get

∑
k

[
∂Γkij
∂xl
−
∂Γklj
∂xi

+
∑
m

(ΓmijΓ
k
lm − ΓmljΓkim)

]
ak +

∑
k

Γkijblk −
∑
k

Γkljbik +
∂bij
∂xl
−
∂blj
∂xi

= 0 (24)

Now, we note that

(∇∂lb)(∂i, ∂j)− (∇∂ib)(∂l, ∂j)

=
∂bij
∂xl
− b(∇∂l∂i, ∂j)− b(∂i,∇∂l∂j)−

∂blj
∂xi

+ b(∇∂i∂l, ∂j) + b(∂l,∇∂i∂j)

=
∂bij
∂xl
− b(∂i,

∑
k

Γklj∂k)−
∂blj
∂xi

+ b(∂l,
∑
k

Γkij∂k)

=
∑
k

Γkijblk −
∑
k

Γkljbik +
∂bij
∂xl
−
∂blj
∂xi

Then, by the computation above and the expression of Rlijk given in 8, we see that equation (24) is
the same as ∑

Rklijak + (∇∂lb)(∂i, ∂j)− (∇∂ib)(∂l, ∂j)

= α(R(∂l, ∂i)∂j) + (∇∂lb)(∂i, ∂j)− (∇∂ib)(∂l, ∂j) = 0

which is equivalent by tensoriality to

α(R(X,Y )Z) + (∇Xb)(Y,Z)− (∇Y b)(X,Z) = 0 (25)

for every vector fields X,Y, Z
Note that the conditions given in (25) are not the integrability conditions yet. This is just the

condition for the second order partial derivatives of the functions ai to be the same. Observe that b
contains terms which depend on the ai, so ∇b will have terms depending on derivatives of the ai. Now
we must insert the real expression of b given in (21), and substitute again the partial derivatives of the
ai as we did before to obtain equations on which only terms on the ai appears, without derivatives.
Then we set the a′is as variables, and we are done, those are the integrability conditions for the system
(20) (we explained why the integrability conditions are given by this procedure in Remark 2).
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The previous somewhat strange manipulation was done to obtain (25), which will allow us to work
without coordinates, and this will make clearer the calculations. Therefore, instead of substituting
in coordinates the partial derivatives of the a′is as we have done until now, we will substitute ∇α by
b = α ⊗ α − 1

2 |α|
2
gg − s whenever ∇α appears. Note that both substitutions are equivalent. Now we

compute. When terms are underlined on the same color is bacause they cancel, or because they can
be summed conveniently.

(∇Xb)(Y,Z) = X(b(Y, Z))− b(∇XY,Z)− b(Y,∇XZ)

= X[α(Y )α(Z)− 1
2g(α#, α#)g(Y,Z)− s(Y,Z)]

−α(∇XY )α(Z) + 1
2 |α|

2
gg(∇XY,Z) + s(∇XY,Z)

−α(Y )α(∇XZ)) + 1
2 |α|

2
gg(Y,∇XZ) + s(Y,∇XZ)

= α(Z)X(α(Y )) + α(Y )X(α(Z))− g(∇Xα#, α#)g(Y,Z)

−1
2g(α#, α#)(g(∇XY, Z) + g(Y,∇XZ))−X(s(Y,Z))− α(∇XY )α(Z)

+1
2 |α|

2
gg(∇XY, Z) + s(∇XY, Z)− α(Y )α(∇XZ)) + 1

2 |α|
2
gg(Y,∇XZ) + s(Y,∇XZ)

= α(Z)(∇Xα)(Y ) + α(Y )(∇Xα)(Z)− g(∇Xα#, α#)g(Y,Z)− (∇Xs)(Y,Z) = (∗)

Now we note that ∇Xα# = (∇Xα)#, since

(∇Xα)(Y ) = X(α(Y ))− α(∇XY ) = X(g(α#, Y ))− g(∇XY, α#)

= g(∇Xα#, Y ) + g(α#,∇XY )− g(∇XY, α#) = g(∇Xα#, Y )

then coming back to (∗) we obtain

(∇Xb)(Y, Z) = (∗) = α(Z)(∇Xα)(Y ) + α(Y )(∇Xα)(Z)−∇Xα(α#)g(Y, Z)− (∇Xs)(Y,Z)

= α(Z)[α(X)α(Y )− 1
2 |α|

2
gg(X,Y )− s(X,Y )] + α(Y )[α(X)α(Z)− 1

2 |α|
2
gg(X,Z)− s(X,Z)]

−g(Y, Z)[α(X)α(α#)− 1
2 |α|

2
gg(X,α#)− s(X,α#)]− (∇Xs)(Y, Z)

= 2α(X)α(Y )α(Z)− 1
2α(Z)|α|2gg(X,Y )− α(Z)s(X,Y )− 1

2α(Y )|α|2gg(X,Z)− α(Y )s(X,Z)

−g(Y, Z)[α(X)|α|2g − 1
2 |α|

2
gα(X)− s(X,α#)]− (∇Xs)(Y,Z)

= 2α(X)α(Y )α(Z)− 1
2α(Z)|α|2gg(X,Y )− α(Z)s(X,Y )− 1

2α(Y )|α|2gg(X,Z)− α(Y )s(X,Z)

−1
2g(Y, Z)α(X)|α|2g + g(Y,Z)s(X,α#)− (∇Xs)(Y, Z)

in these last expressions we have already substituted all the terms involving partial derivatives of α.
Note that when making the commutator (∇Xb)(Y,Z) − (∇Y b)(X,Z), all symmetric terms in (X,Y )
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cancel so we do not even write them. For the integrability conditions, we have

0 = (∇Xb)(Y,Z)− (∇Y b)(X,Z) + α(R(X,Y )Z)

= −1
2α(Y )|α|2gg(X,Z)− α(Y )s(X,Z)− 1

2g(Y,Z)α(X)|α|2g + g(Y,Z)s(X,α#)− (∇Xs)(Y, Z)

+1
2α(X)|α|2gg(Y, Z) + α(X)s(Y,Z) + 1

2g(X,Z)α(Y )|α|2g − g(X,Z)s(Y, α#) + (∇Y s)(X,Z)

+α(R(X,Y )Z)

= −g(Y, α#)s(X,Z) + g(Y,Z)s(X,α#) + g(X,α#)s(Y, Z)− g(X,Z)s(Y, α#)

+(∇Y s)(X,Z)− (∇Xs)(Y,Z) + r(X,Y, Z, α#)

= (g ? s)(X,Y, α#, Z)− r(X,Y, α#, Z) + (∇Y s)(X,Z)− (∇Xs)(Y, Z)

= −w(X,Y, α#, Z) + (∇Y s)(X,Z)− (∇Xs)(Y, Z).

Finally we have to put the functions ai as variables, which is the same as putiing α# := T as an
arbitrary vector field. Thus we have finally obtained the integrability conditions of system (20), which
are

(∇Y s)(X,Z)− (∇Xs)(Y,Z)− w(X,Y, T, Z) = 0 (26)

for every vector fields X,Y, Z, T . This motivates the following definition.

Definition 16. Let (M, g) be a Riemannian manifold and let s be its Schouten tensor. We define the
Cotton tensor as c(X,Y, Z) := (∇Xs)(Y, Z)− (∇Y s)(X,Z).

Note that, by the simmetries of w, the integrability conditions in (26) read now as w(X,Y, Z, T ) =
c(X,Y, Z) for every vector fields X,Y, Z, T . Now we can state the main Theorem in this section.

Theorem 5. Let (M, g) be a Riemannian manifold with zero Weyl tensor w. Let s and c be its
Schouten and Cotton tensors. Then (M, g) is locally conformally flat if and only if (∇Y s)(X,Z) −
(∇Xs)(Y, Z) = 0 for every vector fields X,Y, Z. So we are saying that (M, g) with zero Weyl tensor
is locally conformally flat if and only if its Cotton tensor vanishes, i.e, c(X,Y, Z) = 0 for every vector
fields X,Y, Z.

Proof. We make a review of the proof which has been done above. As we have seen, (M, g) is locally
conformally flat if and only if the system

∇du− du⊗ du+
1

2
|grad(u)|2gg = −s (27)

admits solution locally. As we saw above, this happens if and only if the system

∇α− α⊗ α+
1

2
|α|2gg = −s (28)

admits solution locally. We proved that the integrability conditions for the system (28) are w(X,Y, Z, T ) =
c(X,Y, Z) for every vector fields X,Y, Z, T . We are supposing that w = 0, so system (28) is locally solv-
able if and only if the integrability conditions are satisfied, if and only if the Cotton tensor c = 0.

Note that it could happen that c = 0 but w 6= 0, so we need both to be zero for conformal flatness.
However, in dimension greater than 3, it happens that the condition w = 0 implies that c = 0. To see
this we need to make some hard computations.

In Riemannian geometry there is a very useful trick to make computations that involve tensors.
The idea is that fixed a point p ∈M , we can construct coordinates around p that behave nicely at p.
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Given this, if we want to prove that two tensors are equal, it will be enough to prove that they are
equal when evaluated at each fixed point p, and then we can use this special coordinates (depending
on p) to see the equality at p. Then, as p is arbitrary, the tensors must be equal. To construct these
coordinates, we need some definitions first.

Definition 17. Let (M, g) be a Riemannian manifold, and let p ∈M .
(1) A curve γ : [0, 1] → M is called a geodesic if the mapping t → ∇γ′(t)γ′(t) is identically zero.

This condition expressed in coordinates becomes a second order linear system of differential equations
for the coordinates γj(t) of γ, which has a unique solution (γ1(t), . . . , γn(t)) in we fix the initial data
γ(0) = p and γ′(0) = v for some v ∈ TpM .

(2) The exponential map at p is the map expp : TpM → M : v 7→ γp,v(1) where γp,v(t) is the
unique geodesic such that γ(0) = p and γ′(0) = v. It is straighforward to see that the differential
d0expp : TpM → TpM is the identity, so, by the Inverse Function Theorem (IFT) on manifolds, the
exponential defines a diffeomorphism between a neighborhood U of 0 ∈ TpM and a neighborhhod V
of p ∈M .

Remark 14. In the definition of (1), note that in order to define ∇γ′(t)γ′(t) we would need to extend
γ′(t) to a vector field on M and see that it is independent of the extension, which is easy to see. The
intuitive reason is that ∇XY express the rate of change (in some sense) of Y along X, so it is to be
expected that the value of ∇XY at p only depens on the values of Y along any curve whose tangent
vector at p is X(p). In particular the value of ∇γ′(t)γ′(t) at the point p = γ(t) only depens on the
values of Y = γ′(t) at any curve whose tangent vector at p is γ′(t), and of course one such curve is
γ(t), where Y = γ′(t) is indeed defined, so the definition is correct.

On the other hand, in the definition of (2), note that we are not sure whether the geodesic γp,v(t)
is defined at t = 1. However, Theorem 1 says that there exists ε > 0 small enough and c > 0 so that
for all |v| < ε, then γp,v(c) is defined. By reescaling the parameter, we see that γp,cv(1) = γp,v(c), so
if |v| < ε

c the exponential map is well defined.

Lemma 5. Let (M, g) be a Riemannian manifold. For each point p ∈M there exists a neighborhood
of p on which there exists:

(1) A system of normal coordinates at p , i.e., a coordinates system (x1, . . . , xn) such that

(∇ ∂
∂xi

∂

∂xj
)(p) = 0 for each i, j = 1, . . . , n (29)

(2) A geodesic frame based at p , i.e., an orthonormal frame E1, . . . , En such that

(∇EiEj)(p) = 0 for each i, j = 1, . . . , n (30)

Proof. To see (1), select an orthonormal basis {v1, . . . , vn} of TpM . Define π : TpM → Rn as a
linear isometry sending vi to the corresponding vector ei of the canonical basis of Rn. Now consider
x := π ◦ (expp)

−1 : M → Rn, whose differential at p is π, so x defines a system of coordinates. Besides,
it is easy to see that condition (29) is satisfied. For details, see [1], Vol.I, page 169.

The assertion (2) is in Exercise 7, Chapter 3 of [2]. The proof is not difficult, but it would require
more definitions (covariant differentiation and parallel transport) and it is not of our interest going
into there in this work.

Note that in a geodesic frame we have gij = δij , but do not have in general [ei, ej ] = 0, since in
general this frame can not be expressed as the partial derivatives of some coordinate system. So one
can not have it all: either the brackets are zero or the metric is the identity.
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Lemma 6. (Second Bianchi Identity) Let (M, g) be a Riemannian manifold, and r its curvature
tensor. For every vector fields X,Y, Z, V,W we have

(∇W r)(X,Y, Z, V ) + (∇Zr)(X,Y, V,W ) + (∇V r)(X,Y,W,Z) = 0 (31)

Proof. First note that

(∇W r)(X,Y, Z, V ) = W (r(X,Y, Z, V ))− r(∇WX,Y, Z, V )− r(X,∇WY, Z, V )

−r(X,Y,∇WZ, V )− r(X,Y, Z,∇WV )

= W (r(Z, V,X, Y ))− r(Z, V,∇WX,Y )− r(Z, V,X,∇WY )

−r(∇WZ, V,X, Y )− r(Z,∇WV,X, Y ) = (∇W r)(Z, V,X, Y )

so, changing X by V and Y by W , equation 31 is equivalent to

(∇Zr)(X,Y, V,W ) + (∇Xr)(Y, Z, V,W ) + (∇Y r)(Z,X, V,W ) = 0. (32)

Now, since ∇r is a tensor, it is enough to prove 32 evaluated in a generic but fixed point p ∈M . For
it, we choose a system of normal coordinates (x1, . . . , xn) around p, and we have

(∇∂kr)(∂i, ∂j , ∂l, ∂m)(p) = (∂k[g(R(∂i, ∂j)∂l, ∂m)])(p)

= g(∇∂k∇∂i∇∂j∂l −∇∂k∇∂j∇∂i∂l, ∂m)(p)

so if we make the cyclic permutation on the tuple of index (i, j, k) we obtain

(∇∂kr)(∂i, ∂j , ∂l, ∂m)(p) + (∇∂ir)(∂j , ∂k, ∂l, ∂m)(p) + (∇∂jr)(∂k, ∂i, ∂l, ∂m)(p) = g(∗, ∂m)(p)

where ∗ equals to

[∇∂k∇∂i∇∂j∂l −∇∂k∇∂j∇∂i∂l +∇∂i∇∂j∇∂k∂l −∇∂i∇∂k∇∂j∂l +∇∂j∇∂k∇∂i∂l −∇∂j∇∂i∇∂k∂l](p)

= [R(∂k, ∂i)∇∂j∂l +R(∂j , ∂k)∇∂i∂l +R(∂i, ∂j)∇∂k∂l](p) = 0

and by tensoriality this gives 32 when evaluated at p.

Of course, the use of normal coordinates and geodesic frames is not necessary, but it simplifies the
calculations.

Definition 18. Given a Riemannian manifold (M, g), the divergence of a symmetric (2, 0)-tensor s is
the (1, 0)-tensor given by

div(s)(x) =
∑
i

(∇eis)(x, ei) = Tr(∇s(·)(x, ·))

where {ei} is any orthonormal basis. It is independent of the basis because is the trace of the (2, 0)-
tensor Tr(∇s(·)(x, ·)).

If s is not symmetric the definition splits into two, because in this case Tr(∇s(·)(x, ·)) and
Tr(∇s(·)(·, x)) can be different so we have two divergences depending on the choice.

We are interested in a particular form that takes the Second Bianchi Identity when contracted.

Corollary 2. (Once contracted Bianchi Identity) Let (M, g) a Riemannian manifold and let X,Y, V
be arbitrary fixed vector fields. Define the (2, 0)-tensor

∇(·)r(X,Y, V, ·) : (Z,W ) 7→ (∇Zr)(X,Y, V,W )

then we have that
Tr(∇r(·, X, Y, V, ·)) = (∇XRic)(Y, V )− (∇YRic)(X,V ) (33)
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Proof. We shall see (33) at a generic point p ∈M . Choose a geodesic frame {Ei} centered at p. Recall
that in this frame we have by tensoriality, that

(∇XEi)(p) = 0

for every vector field X. Now we remind the Second Bianchi Identity

(∇Zr)(X,Y, V,W ) + (∇Xr)(Y, Z, V,W ) + (∇Y r)(Z,X, V,W ) = 0. (34)

Set Z = W = Ei in (34) and sum over i to obtain

0 = (∇Eir)(X,Y, V,Ei) + (∇Xr)(Y,Ei, V, Ei) + (∇Y r)(Ei, X, V,Ei) = A+B + C

Note first that A = Tr(∇r(·, X, Y, V, ·)). Besides, when evaluating everything at p, we have

B = (∇Xr)(Y,Ei, V, Ei) = X[r(Y,Ei, V, Ei)]− r(∇XY,Ei, V, Ei)

−r(Y,∇XEi, V, Ei)− r(Y,Ei,∇XV,Ei)− r(Y,Ei, V,∇XEi)

= X[r(Y,Ei, V, Ei)]− r(∇XY,Ei, V, Ei)− r(Y,Ei,∇XV,Ei)

= −X[Ric(Y, V )] +Ric(∇XY, V ) +Ric(Y,∇XV ) = −(∇XRic)(Y, V ).

Finally, by an analogous calculation,

C = (∇Y r)(Ei, X, V,Ei) = (∇YRic)(X,V )

and this yields (33).

Corollary 3. (Twice Contracted Second Bianchi Identity) Let (M, g) a Riemannian manifold, Ric
and Scal its Ricci tensor and scalar curvature respectively. Then

div(Ric) =
1

2
∇Scal =

1

2
d(Scal).

Proof. We take Ei a geodesic frame based at a generic point p ∈M . From the Second Bianchi Identity,
putting in equation 31 X = V = Ei and Y = Z = Ej , and summing over i, j, we have

0 =
∑
i,j

(∇W r)(Ei, Ej , Ej , Ei) + (∇Ejr)(Ei, Ej , Ei,W ) + (∇Eir)(Ei, Ej ,W,Ej)

on the other hand, taking into account that (∇EiEj)(p) = 0 for all i, j, we have (everything is evaluated
at p)

div(Ric)(W ) =
∑
i

(∇EiRic)(W,Ei) =
∑
i

Ei[Ric(W,Ei)]−Ric(∇EiW,Ei)

=
∑
i,j

Ei[r(Ej ,W,Ei, Ej)]− r(Ej ,∇EiW,Ei, Ej) =
∑
i,j

(∇Eir)(Ej ,W,Ei, Ej)

and we have too that (evaluated at p)

(∇Scal)(W ) = ∇WScal =
∑
i,j

W [r(Ei, Ej , Ej , Ei)] =
∑
i,j

(∇W r)(Ei, Ej , Ej , Ei)

since by tensoriality, for general W , (∇WEi)(p) = 0 for each i.
Recall now that along the way we have proved without explicit mention that for each X fixed, the

tensor (∇Xr) has the same symmetries that r. So we conclude that

0 = (∇Scal)(W )− 2div(Ric)(W )

which yields the result.
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Now we prove that if dim(M) ≥ 4 then w = 0 imply c = 0. First we need two lemmas.

Lemma 7. Given a (2, 0)-tensor s on a Riemannian manifold (M, g) then Tr(∇Y s) = d(Tr(s))(Y )
for every vector field Y .

Proof. To see this, we first show that Tr(∇Y s) = d(Tr(s))(Y ) for every (2, 0)-tensor. For this we use
our geodesic frame {Ei} based at p, that verifies (∇YEi)(p) = 0. We have, evaluating at p

Tr(∇Y s) =
∑
i

(∇Y s)(Ei, Ei) =
∑
i

Y [s(Ei, Ei)] = Y [tr(s)] = d(Tr(s))(Y )

and this proves the Lemma.

Lemma 8. For the Schouten tensor s of a Riemannian Manifold (M, g) we have

d(Tr(s))(Y ) = div(s)(Y ) =
d(Scal)(Y )

2− 2n

for every vector field Y .

Proof. d(Tr(s))(Y ) = div(s)(Y ). For this, we first recall the definition of the Schouten tensor

s :=
1

2− n
[Ric+

Scal

2− 2n
g].

Recall the contracted second bianchi identity div(Ric) = 1
2d(Scal)

div(s)(Y ) =
1

2− n
div(Ric)(Y ) +

1

2− n
1

2− 2n
div(Scal · g)(Y )

=
1

2− n
1

2
d(Scal)(Y ) +

1

2− n
1

2− 2n

∑
i

(∇Ei(Scal · g))(Y,Ei)

=
1

2(2− n)
d(Scal)(Y ) +

1

2− n
1

2− 2n

∑
i

Ei[Scal · g(Y,Ei)]− (Scal · g)(∇EiY,Ei)

=
1

2(2− n)
d(Scal)(Y ) +

1

2− n
1

2− 2n

∑
i

g(Y,Ei)Ei[Scal]

=
1

2(2− n)
d(Scal)(Y ) +

1

2− n
1

2− 2n
Y [Scal]

=
d(Scal)(Y )

2(2− n)
+

d(Scal)(Y )

2(2− n)(1− n)
=
d(Scal)(Y )

2(1− n)
.

On the other hand,

Tr(s) =
1

2− n
[Tr(Ric) +

Scal

2− 2n
Tr(g)] =

Scal

2− n
+

n · Scal
(2− 2n)(2− n)

=
Scal

2− 2n
.

Finally we conclude that

d(Tr(s))(Y ) =
d(Scal)(Y )

2− 2n
= div(s)(Y )

which proves the lemma.

Lemma 9. Let s be the Schouten tensor of a Riemannian manifold M . Then we have

Tr((∇(·)s? g)(Y,Z, V, ·)) + Tr((∇Y s? g)(Z, ·, V, ·))

+Tr((∇Zs? g)(·, Y, V, ·)) = (3− n)c(Y,Z, V )
(35)
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Proof. We consider a geodesic frame {Ei} based at some arbitrary point p ∈M . Then we have

Tr((∇(·)s? g)(Y,Z, V, ·)) =
∑
i

(∇Eis? g)(Y, Z, V,Ei) := A

Tr((∇Y s? g)(Z, ·, V, ·)) =
∑
i

(∇Y s? g)(Z,Ei, V, Ei) := B

Tr((∇Zs? g)(·, Y, V, ·)) =
∑
i

(∇Zs? g)(Ei, Y, V, Ei) := C

(36)

We compute each of the sumands separately. First the term A.

A =
∑
i

(∇Eis? g)(Y,Z, V,Ei)

=
∑
i

(∇Eis)(Y, V )g(Z,Ei)− (∇Eis)(Y,Ei)g(Z, V )

+g(Y, V )(∇Eis)(Z,Ei)− g(Y,Ei)(∇Eis)(Z, V )

= (∇Zs)(Y, V )− g(Z, V )div(s)(Y ) + g(Y, V )div(s)(Z)− (∇Y s)(Z, V )

the last equality because in this frame Z =
∑

i g(Z,Ei)Ei and Y =
∑

i g(Y,Ei)Ei. Now we compute
B.

B =
∑
i

(∇Y s? g)(Z,Ei, V, Ei)

=
∑
i

(∇Y s)(Z, V )g(Ei, Ei)− (∇Y s)(Z,Ei)g(Ei, V )

+g(Z, V )(∇Y s)(Ei, Ei)− g(Z,Ei)(∇Y s)(Ei, V )

= n(∇Y s)(Z, V )− (∇Y s)(Z, V ) + g(Z, V )Tr(∇Y s)− (∇Y s)(Z, V )

= (n− 2)(∇Y s)(Z, V ) + g(Z, V )Tr(∇Y s)
Finally we compute C.

C =
∑
i

(∇Zs? g)(Ei, Y, V, Ei)

=
∑
i

(∇Zs)(Ei, V )g(Y,Ei)− (∇Zs)(Ei, Ei)g(Y, V )

+g(Ei, V )(∇Zs)(Y,Ei)− g(Ei, Ei)(∇Zs)(Y, V )

= (∇Zs)(Y, V )− Tr(∇Zs)g(Y, V ) + (∇Zs)(Y, V )− n(∇Zs)(Y, V )

= (2− n)(∇Zs)(Y, V )− Tr(∇Zs)g(Y, V )

so we find that

0 = A+B + C

= (∇Zs)(Y, V )− g(Z, V )div(s)(Y ) + g(Y, V )div(s)(Z)− (∇Y s)(Z, V )

+(n− 2)(∇Y s)(Z, V ) + g(Z, V )Tr(∇Y s)

+(2− n)(∇Zs)(Y, V )− Tr(∇Zs)g(Y, V )

= (3− n)(∇Zs)(Y, V ) + (n− 3)(∇Y s)(Z, V )

+g(Z, V )[Tr(∇Y s)− div(s)(Y )] + g(Y, V )[div(s)(Z)− Tr(∇Zs)]

= (n− 3)((∇Y s)(Z, V )− (∇Zs)(Y, V )) = (n− 3)c(Y, Z, V )
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where in the last equality we have used that Tr(∇Y s) − div(s)(Y ) = 0, as proved in lemma 7 and
8.

Lemma 10. Let (M, g) be a Riemannian manifold, w its Weyl tensor and s its Schouten tensor. Then
we have the following identities

(∇Y s)(Z, V ) =
1

2− n
[(∇YRic)(Z, V ) +

(dScal)(Y )

2− 2n
g(Z, V )] (37)

Tr((∇Y w)(Z, ·, V, ·))− Tr((∇Zw)(Y, ·, V, ·)) = 0 (38)

Proof. We compute first (37). Recall that by definition

s(Z, V ) =
1

2− n
[Ric(Z, V ) +

Scal

2− 2n
g(Z, V )]

so it follows that

(∇Y s)(Z, V ) = Y [s(Z, V )]− s(∇Y Z, V )− s(Z,∇Y V )

=
1

2− n
[(∇YRic)(Z, V ) +

Y [Scal]

2− 2n
g(Z, V )] +

1

2− n
{ Scal

2− 2n
Y [g(Z, V )]}

− 1

2− n
[
Scal

2− 2n
g(∇Y Z, V )− Scal

2− 2n
g(Z,∇Y V )]

=
1

2− n
[(∇YRic)(Z, V ) +

Y [Scal]

2− 2n
g(Z, V )]

since Y [g(Z, V )] = g(∇Y Z, V ) + g(Z,∇Y V ).
Now, to see (38), let {Ei} be a geodesis frame centered at an arbitrary point p ∈M . Then

Tr((∇Y w)(Z, ·, V, ·)) =
∑
i

(∇Y w)(Z,Ei, V, Ei)

=
∑
i

(∇Y r)(Z,Ei, V, Ei)− (∇Y s? g)(Z,Ei, V, Ei)

=
∑
i

(∇Y r)(Z,Ei, V, Ei)− (∇Y s)(Z, V )g(Ei, Ei)

+(∇Y s)(Z,Ei)g(Ei, V )− g(Z, V )(∇Y s)(Ei, Ei) + g(Z,Ei)(∇Y s)(Ei, V )]

=
∑
i

[(∇Y r)(Z,Ei, V, Ei)] + (−n+ 2)(∇Y s)(Z, V )− g(Z, V )Tr(∇Y s)

=
∑
i

[(∇Y r)(Z,Ei, V, Ei)] + (∇YRic)(Z, V ) +
Y [Scal]

2− 2n
g(Z, V )− g(Z, V )

Y [Scal]

2− 2n

=
∑
i

[(∇Y r)(Z,Ei, V, Ei)] + (∇YRic)(Z, V )

by lemma 8. Then, switching Z and Y and substracting we have∑
i

(∇Y w)(Z,Ei, V, Ei)−
∑
i

(∇Zw)(Y,Ei, V, Ei)

=
∑
i

[(∇Y r)(Z,Ei, V, Ei)− (∇Zr)(Y,Ei, V, Ei)] + (∇YRic)(Z, V )− (∇ZRic)(Y, V )

=
∑
i

[(∇Y r)(Z,Ei, V, Ei) + (∇Zr)(Ei, Y, V, Ei)] + (∇YRic)(Z, V )− (∇ZRic)(Y, V )

=
∑
i

[−(∇Eir)(Y, Z, V,Ei)] + (∇YRic)(Z, V )− (∇ZRic)(Y, V ) = 0
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where we have used the Second Bianchi Identity and the once contracted Second Bianchi Identity in
the two final steps, given in Lemma 6 and Corollary 2.

Remark 15. Note that, as the tensors ∇Y w and w has the same symmetries, equation (38) is
equivalent to

Tr((∇Y w)(Z, ·, V, ·)) + Tr((∇Zw)(·, Y, V, ·)) = 0 (39)

Lemma 11. Let s and t be two (2, 0)-tensors on a Riemannian manifold (M, g). Then for every vector
field X

∇X(s? t) = ∇Xs? t+ s?∇Xt (40)

Proof. We compute in normal coordinates with partial derivatives {∂i}i, based at an arbitrary point
p ∈M . Recall that in these coordinates we have (∇∂i∂j)(p) = 0 so evaluating at p we have

∂i[s(∂j , ∂k)] = (∇∂is)(∂j , ∂k)

and the same is valid fot the tensor t. We conclude that, evaluating at p,

(∇∂i(s? t))(∂j , ∂k, ∂l, ∂m) = ∂i[(s? t)(∂j , ∂k, ∂l, ∂m)]

= ∂i[s(∂j , ∂l)t(∂k, ∂m)− s(∂j , ∂m)t(∂k, ∂l) + t(∂j , ∂l)s(∂k, ∂m)− t(∂j , ∂m)s(∂k, ∂l)]

= (∇∂is? t+ s?∇∂it)(∂j , ∂k, ∂l, ∂m)

and by tensoriality we have (40).

Lemma 12. Let (M, g) be a Riemnnian manifold and let w and c be its Weyl and Cotton tensors.
Then

Tr(∇(·)w)(Y, Z, V, ·) = (n− 3)c(Y, Z, V ) (41)

for every vector fields Y,Z, V .

Proof. First note that by equation (40) we have (∇X)(s ? g) = (∇Xs) ? g. Now we use the Second
Bianchi identity to get

0 = (∇Xr)(Y,Z, V,W ) + (∇Y r)(Z,X, V,W ) + (∇Zr)(X,Y, V,W )

= (∇Xs? g)(Y,Z, V,W ) + (∇Y s? g)(Z,X, V,W ) + (∇Zs? g)(X,Y, V,W )

+(∇Xw)(Y, Z, V,W ) + (∇Y w)(Z,X, V,W ) + (∇Zw)(X,Y, V,W ).

We put X = W = Ei, sum over i, and obtain

0 = (3− n)c(Y,Z, V ) + Tr(∇(·)w)(Y,Z, V, ·)

where we used Lemma 9 and Lemma 10 above.

Theorem 6. (Weyl-Schouten) Let (M, g) be a Riemannian manifold with g ∈ C3 and dim(M) ≥ 3.
(1) If dim(M) ≥ 4, (M, g) is locally conformally flat if and only if its Weyl tensor w vanishes.
(2) If dim(M) = 3, (M, g) is locally conformally flat if and only if its Cotton tensor c vanishes.

Proof. To see (1), suppose dim(M) ≥ 4. If w = 0, by equation (41), we see that c = 0, and by theorem
5 this implies that (M, g) is locally conformaly flat. On the other hand, if (M, g) is locally conformaly
flat we know, by the conformal transformation of the Weyl tensor, that w = 0.

To see (2), suppose dim(M) = 3. We know that if in this case the Weyl tensor is always zero.
Then, if c = 0 we apply Theorem 5 and conclude that (M, g) is locally conformaly flat. On the other
hand, if (M, g) is locally conformaly flat, the integrability conditions of the system expressing this fact
were obtained in the proof of Theorem 5, and these conditions just mean c = 0.
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Remark 16. Note that, although the Weyl tensor requires g ∈ C2 to be defined, here we need g ∈ C3

because we need the Cotton tensor to vanish in order to solve the system in theorem 5, and the Cotton
tensor involves third derivatives of g.

We have seen in Theorem 6 that if dim(M) = 3 being conformally flat is equivalent to the condition
that the Cotton tensor c vanishes, since these are the integrability conditions of the system related
to conformal flatness. This suggests that the Cotton tensor may have, at least in dimension 3, a nice
transformation behaviour under conformal change of the metric. This is what we shall prove now. For
the moment we will not use this transformation behaviour, but later it will be used.

Proposition 5. (Conformal change of the Cotton tensor) Let (M, g) be a Riemannian manifold and c
its Cotton tensor. Under conformal change of the metric g′ := e2ug the Cotton tensor c′ of g′ satisfies

c′(X,Y, Z) = c(X,Y, Z)− w(X,Y, Z, grad(u))

Proof. This will be a long computation. We saw before that under conformal change the Schouten
tensor and the covariant derivative change in the following way

s′ = s+ bu = s+ hess(u)− du⊗ du+
1

2
|grad(u)|2gg

∇′XY = ∇XY +B(X,Y ) = ∇XY + du(X)Y + du(Y )X − g(X,Y )grad(u)

For any (2, 0) tensor t let us denote C(t) and C′(t) for the (3, 0)-tensors given by

C(t)(X,Y, Z) := (∇Xt)(Y, Z)− (∇Y t)(X,Z)

C′(t)(X,Y, Z) := (∇′Xt)(Y, Z)− (∇′Y t)(X,Z)

The letter C is chosen since it is some kind of conmutator of ∇. Note that in particular the Cotton
tensor is derived from the schouten tensor in this way, so c = C(s) and c′ = C′(s′). That said, we just
compute

(∇′Xs′)(Y,Z) = X[s′(Y, Z)]− s′(∇′XY, Z)− s′(Y,∇′XZ)

= X[s(Y, Z) + bu(Y,Z)]− (s+ bu)(∇XY +B(X,Y ), Z)− (s+ bu)(Y,∇XZ +B(X,Z))

= X[s(Y, Z)]− s(∇XY, Z)− s(Y,∇XZ) +X[bu(Y,Z)]− bu(∇XY,Z)− bu(Y,∇XZ)

−s(B(X,Y ), Z)− s(Y,B(X,Z))− bu(B(X,Y ), Z)− bu(Y,B(X,Z))

= (∇Xs)(Y,Z) + (∇Xbu)(Y,Z)− s(B(X,Y ), Z)− s(Y,B(X,Z))− bu(B(X,Y ), Z)− bu(Y,B(X,Z))

So interchanging the rolls of X and Y and substracting we have

c′(X,Y, Z) = c(X,Y, Z) + C(bu)(X,Y, Z) + [s(X,B(Y, Z))− s(Y,B(X,Z))]

+[bu(X,B(Y,Z))− bu(Y,B(X,Z))]

= c(X,Y, Z) + C(bu)(X,Y, Z) + E(X,Y, Z) + F (X,Y, Z)

(42)

Being E(X,Y, Z) := s(X,B(Y,Z))−s(Y,B(X,Z)) and F (X,Y, Z) := bu(X,B(Y, Z))−bu(Y,B(X,Z)).
We will patiently compute each of the four terms. First we shall compute each of the sumands of
C(bu) = C(Hess(u))− C(du⊗ du)− 1

2C(|grad(u)|2gg). First we have

(∇XHess(u))(Y, Z) = X[g(∇Y grad(u), Z)]− g(∇Zgrad(u),∇XY )− g(∇Y grad(u),∇XZ)

= g(∇X∇Y grad(u), Z) + g(∇Y grad(u),∇XZ)− g(∇Zgrad(u),∇XY )− g(∇Y grad(u),∇XZ)

= g(∇X∇Y grad(u), Z)− g(∇Zgrad(u),∇XY )
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Again, interchanging the rolls of X and Y and substracting we have

C(Hess(u))(X,Y, Z) = g(∇X∇Y grad(u)−∇Y∇Zgrad(u), Z)− g(∇Zgrad(u),∇XY −∇YX)

= g(R(X,Y )grad(u)), Z) + g(∇[X,Y ]grad(u), Z)− g(∇Zgrad(u), [X,Y ])

= g(R(X,Y )grad(u)), Z) +Hess(u)([X,Y ], Z)−Hess(u)(Z, [X,Y ]) = −R(X,Y, Z, grad(u))

For the second summand we have

(∇Xdu⊗ du)(Y, Z) = X[du(Y )du(Z)]− du(∇XY )du(Z)− du(Y )du(∇XZ)

= X[g(grad(u), Y )]du(Z) + du(Y )X[g(grad(u), Z)]− g(∇XY, grad(u))du(Z)− du(Y )g(∇XZ, grad(u))

= [g(∇Xgrad(u), Y ) + g(grad(u),∇XY )]du(Z) + du(Y )[g(∇Xgrad(u), Z) + g(grad(u),∇XZ)]]

−g(∇XY, grad(u))du(Z)− du(Y )g(∇XZ, grad(u))

= Hess(u)(X,Y )du(Z) + du(Y )Hess(u)(X,Z)

So interchanging the rolls of X and Y and substracting

C(du⊗ du)(X,Y, Z) = du(Y )Hess(u)(X,Z)− du(X)Hess(u)(Y,Z)

For the third summand we have

1

2
(∇Xg(grad(u), grad(u))g)(Y, Z) = g(∇Xgrad(u), grad(u))g(Y,Z) +

1

2
|grad(u)|2gX[g(Y,Z)]

−1

2
|grad(u)|2gg(∇XY,Z)− 1

2
|grad(u)|2gg(Y,∇XZ) = Hess(u)(X, grad(u))g(Y,Z)

And this implies that

1

2
C(|grad(u)|2gg)(X,Y, Z) = Hess(u)(X, grad(u))g(Y,Z)−Hess(u)(Y, grad(u))g(X,Z)

Summing up the expressions of the three sumands we see that the first term is

C(bu)(X,Y, Z) = C(Hess(u))(X,Y, Z)− C(du⊗ du)(X,Y, Z) +
1

2
C(|grad(u)|2gg)(X,Y, Z)

= −r(X,Y, Z, grad(u)) + du(X)Hess(u)(Z, Y )− du(Y )Hess(u)(X,Z)

+Hess(u)(X, grad(u))g(Y, Z)−Hess(u)(Y, grad(u))g(X,Z)

This ends with the first term. Now we go for the term F

bu(X,B(Y,Z)) = Hess(u)(X, du(Y )Z + du(Z)Y − g(Y,Z)grad(u))

−du(X)du
(
du(Y )Z + du(Z)Y − g(Y,Z)grad(u)

)
+

1

2
|grad(u)|2gg(X, du(Y )Z + du(Z)Y − g(Y,Z)grad(u))

= du(Y )Hess(u)(X,Z) + du(Z)Hess(X,Y )− g(Y, Z)Hess(u)(X, grad(u))

−2du(X)du(Y )du(Z) +
1

2
|grad(u)|2g{du(Y )g(X,Z) + du(Z)g(X,Y ) + g(Y,Z)du(X)}

By the simmetry in X,Y of the summands of the last line, this yields that

F (X,Y, Z) := bu(X,B(Y,Z))− bu(Y,B(X,Z)) = du(Y )Hess(u)(X,Z)

−du(X)Hess(u)(Y,Z) + g(X,Z)Hess(u)(Y, grad(u))− g(Y,Z)Hess(u)(X, grad(u))



46

Note that C(bu)(X,Y, Z) + F (X,Y, Z) = −r(X,Y, Z, grad(u)) since a lot of cancellations occur. Now
we compute the term E.

s(X,B(Y, Z)) = s(X, du(Y )Z + du(Z)Y − g(Y, Z)grad(u))

= du(Y )s(X,Z) + du(Z)s(X,Y )− g(Y,Z)s(X, grad(u))

Using that du(X) = g(grad(u), X) we see that

E(X,Y, Z) := s(X,B(Y,Z))− s(Y,B(X,Z)) = g(Y, grad(u))s(X,Z)− g(X, grad(u))s(Y,Z)

−g(Y, Z)s(X, grad(u)) + g(X,Z)s(Y, grad(u)) = (s? g)(X,Y, Z, grad(u))

Finally we use that −r = −w − s? g, so coming back to (42) we see that

c′(X,Y, Z) = c(X,Y, Z) + C(bu)(X,Y, Z) + E(X,Y, Z) + F (X,Y, Z)

= c(X,Y, Z)− w(X,Y, Z, grad(u))

This at last proves the Proposition.

Corollary 4. In a Riemannian manifold (M, g) of dimension 3 the Cotton tensors is conformally
invariant. Note that this is not true in dimension ≥ 4 since in this case the Weyl tensor does not
necessarily vanish.

4.4. Consequences of the Weyl-Schouten Theorem.

We shall see now how the Weyl-Schouten tensor applies to the Riemannian Manifold with constant
sectional curvature. We need first a lemma.

Lemma 13. Let (M, g) a Riemannian manifold with constant sectional curvature K ≡ k. Then

r = k(g ? g) = − Scal

(n− 1)n
(g ? g)

Proof. The second equality follows since, for an orthonormal frame {Ei}, we have

−Scal =
∑
i,j

r(Ei, Ej , Ei, Ej) = n(n− 1)k.

Let us see the first equality. Put r′ := k(g ? g). We remind that

k = K =
r(x, y, x, y)

g(x, x)g(y, y)− g(x, y)2
=

r(x, y, x, y)

(g ? g)(x, y, x, y)

So we have that r and r′ are two curvature tensors such that r′(x, y, x, y) = r(x, y, x, y) for every
x, y ∈ TM . We shall see that this implies r = r′. Indeed, we have that, being t any of r or r′,

t(x+ z, y, x+ z, y) = t(x, y, x, y) + 2t(x, y, z, y) + t(z, y, z, y).

As we know that r(x+ z, y, x+ z, y) = r′(x+ z, y, x+ z, y), it follows that

r(x, y, z, y) = r′(x, y, z, y). (43)

With t as before we have

t(x, y + u, z, y + u) = t(x, y, z, y) + t(x, y, z, u) + t(x, u, z, y) + t(x, u, z, u).
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so, by (43) this implies that r(x, y, z, u) + r(x, u, z, y) = r′(x, y, z, u) + r′(x, u, z, y) which is equivalent
to

r(x, y, z, u)− r′(x, y, z, u) = r′(x, u, z, y)− r(x, u, z, y) = r(y, z, x, u)− r′(y, z, x, u).

If we define s(x, y, z, u) := r(x, y, z, u)− r′(x, y, z, u), then we just saw that s(x, y, z, u) = s(y, z, x, u)
so s is invariant under cyclic permutations of the first three entries. But then

3(r − r′)(x, y, z, t) = 3s(x, y, z, t) = s(x, y, z, t) + s(y, z, x, t) + s(z, x, y, t) = 0

the last equality because r and r′ satisfy the Bianchi identity. This proves that r = r′.

Corollary 5. If (M, g) is a Riemannian manifold of constant sectional curvature K ≡ k with g ∈ C3

then (M, g) is locally conformally flat.

Proof. By the lema above, r = k(g ? g) = w + s ? g and from the uniqueness of the descomposition
we have that w = 0 and s = kg. Then ∇s = 0, so the Cotton tensor vanishes and we can apply the
Weyl-Schouten theorem.

Example 2. Consider a Riemannian surface (M, g) and let M ′ := (M × I, g′ = g×ds2). The product
metric acts as follows. Every x′ ∈ T(p,s)M

′ is uniquely descomposed as x′ = x+a(x) ∂∂s where x = π1(x′)
is the proyection onto TpM and a(x) = π2(x′) onto I. Then g × ds2(x′, y′) = g(x, y) + a(x)a(y). We
compute in a product chart (x1, x2, s). For simplicity, put x3 := s. It is clear that in this chart the
metric g′ is, in matrix notation  g11 g12 0

g12 g22 0
0 0 1


and note that gij do not depend on x3. From this and the formula for the Christoffel symbols Γkij of
g′ we have

Γ3
ij =

1

2
g3l[∂iglj + ∂jgli − ∂lgij ] =

1

2
[∂ig3j + ∂jg3i − ∂3gij ] = 0

Γk3j =
1

2
gkl[∂3glj + ∂jgl3 − ∂lg3j ] = 0

and the Christoffel symbols of g and g′ coincide if i, j, k ∈ {1, 2}. Then, ∇′∂i∂j = ∇∂i∂j if j, k ∈ {1, 2}
and ∇′∂i∂3 = ∇′∂3

∂j = 0 for all i, j.

This implies that the (3, 1) curvature tensors of g′ and g, respectively R′ and R, coincide when
evaluated in the set {∂1, ∂2}, and R′(∂3, ∂j)∂k = R′(∂i, ∂j)∂3 = 0 for every i, j, k.

The same occurs for r and r′, i.e, r′ = r in the plane spanned by {∂1, ∂2} and r′ = 0 in L{∂3} and
by tensoriality r′(x′, y′, z′, t′) = r(x, y, z, t). This is commonly expressed by saying that r′ = π∗1r is the
pullback of r by π1 : M × I →M . This notation allows us to make calculations easier. For instance,
note that g′ = π∗1g + π∗2ds

2.

On the other hand, as M is a surface, its sectional curvature K becomes a function and we have
r = K(g ? g). Note too that (π∗2ds

2 ? π∗2ds
2)(x, y, z, t) = 2a(x)a(z)a(y)a(t)− 2a(x)a(t)a(y)a(z) = 0.

Combining these facts we have

r′ = π∗1r = π∗1K(g ? g) = (π∗1K)(π∗1g − π∗2ds2) ? (π∗1g + π∗2ds
2) = (π∗1K)(π∗1g − π∗2ds2) ? g′

so the Weyl and Schouten tensors are w′ = 0 (as we know since dim(M ′) = 3) and s′ = (π∗1K)(π∗1g −
π∗2ds

2). Let us compute the Cotton tensor.

(∇′∂iπ
∗
1g)(∂j , ∂k) = ∂i[g(π1(∂j), π1(∂k))]− g(π1(∇′∂i∂j), π1(∂k))− g(π1(∂j), π1(∇′∂i∂k)) = 0
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because if i, j, k ∈ {1, 2} then (∇′∂iπ
∗
1g) = (∇∂ig) = 0, and the case when any of i, j, k is 3 is obvious.

We have too that

(∇′∂iπ
∗
2ds

2)(∂j , ∂k) = ∂i[ds
2(π2(∂j), π2(∂k))]− ds2(π2(∇′∂i∂j), π2(∂k))− ds2(π2(∂j), π2(∇′∂i∂k)) = 0

so by tensoriality it follows that ∇π∗1g = ∇π∗2ds2 = 0.
On the other hand, as π∗1K does not depend on x3, for any vector field X ′ = X + a(X ′)∂3 ∈ TM ′

we have X ′(π∗1K) = dK(X). We finally conclude that

∇′X′s′ = dK(X)(π∗1g − π∗2ds2)

and the Cotton tensor is given by

c(∂i, ∂j , ∂k) = pi∗1dK(∂i)(π
∗
1g(∂j , ∂k)− π∗2ds2(∂j , ∂k))− pi∗1dK(∂j)(π

∗
1g(∂i, ∂k)− π∗2ds2(∂i, ∂k))

in particular for j ∈ {1, 2}
c(∂3, ∂j , ∂3) = dK(∂j)

and from this it is obvious than C ≡ 0 if and only if K is constant, i.e, (M × I, g × ds2) is locally
conformally flat if and only if M has constant sectional curvature. Thus we can construct a lot of
three manifolds which are not locally conformally flat by taking a surface with not constant sectional
curvature and making the product with an interval.

§5. Analytic Tool-Box.

Now we adress the cuestion of characterize when a Riemannian manifold (M, g) is locally conformally
flat when g is not regular enough to directly apply the Weyl-Schouten theorem, i.e, when the metric
is less regular than C3.

We could make sence of the Weyl tensor w for C1 metrics for example by considering distributional
derivatives of the metric and then we can wonder if w = 0 implies that (M, g) is locally conformally
flat.

Our strategy here will be to find suitable coordinates around any point in such a way that, when
expressed in these coordinates, the equation w(g) = 0 of the Weyl tensor being zero as a distribution,
viewed as a PDE which g satisfies, is elliptic. This will allow us to apply regularity results and
conclude that in these coordinates the metric is in fact more regular than expected. Then we can
apply the previous results about local conformal flatness for C3 metrics.With this aim at mind we
shall use n-harmonic coordinates, which are coordinates that satisfy a Laplacian type equation. These
coordinates are optimal when dealing with regularity results, as we shall see.

First of all we collect some results of elliptic regularity. These results will provide us some of the
technical machinery we will need.

5.1. Differential Operators, Holder Spaces and Elliptic Regularity

From now on we will use the multiindex notation to express iterated partial derivatives of functions,
so for a multiindex α = (α1, . . . , αn) ∈ Nn we denote |α| = α1 + · · ·+ αn and ∂α := ∂α1

1 . . . ∂αnn . Also
we denote Dj := −i∂j and put Dα := Dα1

1 . . . Dαn
n . Sometimes, when we are only interested in the

ordr of differentiation, we will write ∂l and Dl to mean respectively ∂α and Dα for some arbitrary
multiindex α ∈ Nn with |α| = l.

Definition 19. Let Ω ⊂ Rn be an open set. Consider an operator L of the form

p(x, ∂) =
∑
|α|≤m

aα(x)∂α (44)
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acting on functions u ∈ C∞(Ω) as follows

p(x, ∂)u(x) =
∑
|α|≤m

aα(x)∂αu(x) (45)

where aα are functions on Ω not necessarily regular. Suppose that there exists α with |α| = m such
that aα is not the zero function. Then we say that L is a differential operator of order m .

The principal part of p(x, ∂), which we shall denote pm(x, ∂), is defined to be its higher order
terms, i.e,

pm(x, ∂) =
∑
|α|=m

aα(x)∂α

When dealing with differential operators the letter α will usually refer to a multiindex ,i.e, an
element of Nn.

Definition 20. Let p(x, ∂) be a differential operator of order m. For ξ = (ξ1, . . . , ξn) ∈ Rn and α ∈ Nn
denote

ξα = ξα1
1 . . . ξαnn

With this notation, we define the symbol of p(x, ∂) as

p(x, ξ) =
∑
|α|≤m

aα(x)ξα (46)

and the principal symbol as

pm(x, ξ) =
∑
|α|=m

aα(x)ξα (47)

Furthermore, we say that p(x, ∂) is elliptic if for every ξ 6= 0 the principal symbol pm(x, ξ) never
vanishes as a function on x ∈ Ω.

Finally, we say that p(x, ∂) is uniformly elliptic if |pm(x, ξ)| ≥ C|ξ|m for some C > 0.
Recall that if p(x, ξ) is elliptic in Ω × Rn, with Ω compact, then we can take the constant as

C = sup{|p(x, ξ)| : x ∈ Ω, |ξ| = 1} > 0, so p(x, ξ) is actually uniformly elliptic in Ω× Rn.

The typical example of uniformly elliptic operator of order 2 is the usual Laplacian on R2, p(x, ∂) =
∆ whose principal symbol is p2(x, ∂) = |ξ|2.

We define now a class of functions well behaved for elliptic regularity.

Definition 21. Let 0 ≤ α ≤ 1, k,m, n ∈ N, and Ω ⊂ Rn an open set. We define the holder space
Ck,α(Ω), or simply Ck+α(Ω), as the functions u = (u1, . . . , um) : Ω → Rm with continuous partial
derivatives until order k such that the following two conditions hold:

‖u‖Ck(Ω) :=
∑
|α|≤k

‖∂αu‖L∞(Ω) <∞

[u]Cα(Ω) :=
∑
|α|=k

sup
x,y∈Ω

|∂αu(x)− ∂αu(y)|
|x− y|α

<∞

and we define ‖u‖Ck,α(Ω) := ‖u‖Ck(Ω) + [u]Cα(Ω). From the definition it is straighforward that u ∈
Ck,α(Ω) if and only if all its components ui ∈ Ck,α(Ω).

Some remarks about notation. When Ω = Rn we may denote Ck+α for the Holder spaces Ck,α(Ω).
Also, if s ∈ R, s ≥ 0, we denote Cs for the Holder space Ck+δ where s = k + δ for k ∈ N, 0 ≤ δ < 1.
Note that when s = k ∈ N there could be confussion between functions with k continuous derivatives
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(not necessarily bounded), and functions in the Holder space Ck, because both sets are denoted by
the symbol Ck. That’s why we will try to write Ck+0 for the holder space, though we will probably
forget, and hope the context will clarify the ambiguity. Also we may denote Ck+1 for the Holder space
Ck,1. Finally, if k = ∞ we denote C∞+0 the space of smooth functions with derivatives bounded in
Rn. Note that we allow the bound to become arbitrarily large as the order of the derivative increases,
so in this space we do not have the norm ‖ · ‖C∞+0 .

Now we estate the main theorem we will need.

Theorem 7. (Elliptic regularity in Holder spaces) Let L be an elliptic differential operator of order
m with coefficients aα(x) defined is some open set Ω ⊂ Rn. Let l ≥ 0 be an integer, and let 0 < δ < 1.
Assume that u ∈ Wm,p(Ω) satisfies the equation Lu(x) = f(x) for a.e. x ∈ Ω, with f, aα ∈ C l,δ(Ω).
Then in fact u ∈ C l+m,δ(Ω).

The statement of this Theorem can be found in [5], Appendix J. The proof is spread over various
references cited there. The case in which m is even (which covers the cases we need here) is done in
[16], Appendix 5. Such proof makes use of the fact that every linear elliptic equation with constant
coeficcients aα admits a fundamental solution K(y) which is regular outside the origin 0 ∈ Rn and
has a pole in 0 of certain order. This fact is well known for the Laplacian, and the construction of the
fundamental solution for the general case can be found in [17], Chapther III.

The strategy to deal with variable coefficients aα(x) is to freeze these coefficients at one fixed
point x0, so one has a fundamental solution Kx0(y) = K(x0, y). Besides, one can check from the
explicit formula of K(x0, y) that it depends on x0 with the same regularity than aα(x0). Finally,
some manipulations allow to write our solution u(x) ∈ Wm,p(Ω) as a convolution of K(x, y) with
the function f(x) = Lu(x), plus lower order terms that can be controlled. From this expression of
u and from the C l,δ dependence of K(x, y) in the x-variable, we can deduce, via Sobolev Embeding
Theorems, the regularity desired for u.

This theorem shows that things work properly when treating elliptic equations in Holder spaces
with Holder exponent δ > 0, i.e, solutions gain all the regularity that naturally allow the coeficcients
aα and f . This nice behaviour of elliptic equations is no longer true if we work with continuous
functions (i.e, with Holder exponent δ = 0), as the following example shows.

Example 3. In this example we show that

u(x, y) = (x2 − y2)(−log|(x, y)|)
1
2

is a function such that u ∈W 2,p(B1) for all 1 ≤ p <∞, ∆u is continuous but u /∈ C2(B1). First note
that u is defined in some neighborhood of (0, 0), for example B1, after setting u(0, 0) = 0. A tedious
computation shows that

ux(x, y) = 2x(−log|(x, y)|)
1
2 + (−log|(x, y)|)−

1
2
−x(x2 − y2)

2(x2 + y2)

uxx(x, y) = 2(−log|(x, y)|)
1
2 − 2x2

x2 + y2
(−log|(x, y)|)−

1
2

−x
2(x2 − y2)

4(x2 + y2)2
(−log|(x, y)|)−

3
2 +

1

2

(x2 − y2)2

(x2 + y2)2
(−log|(x, y)|)−

1
2

uxy(x, y) =
xy(x2 − y2)

4(x2 + y2)2
[(−log|(x, y)|)−

1
2 − 4(−log|(x, y)|)

1
2 ]

Now, using 2ab ≤ a2+b2 and triangle inequality, we see that the terms 2x2

x2+y2 , x
2|x2−y2|

(x2+y2)2 = x2

x2+y2
|x2−y2|
x2+y2 ,

xy(x2−y2)
4(x2+y2)2 and (x2−y2)2

(x2+y2)2 are bounded as (x, y) → (0, 0), so they can be substituted by constants near
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(0, 0) to compute that both uxy(x, y) and uxx(x, y) tend to ∞ as (x, y) → (0, 0). Nevertheless the
function u has symmetries which, when computing its laplacian, cancel out the unbounded terms.

Indeed, u(x, y) = −u(y, x), so the first and second variables play an antisymmetric role. Hence,
(∂1u)(x, y) = −(∂2u)(y, x) and (∂11u)(x, y) = −(∂22u)(y, x). Then we have

∆u(x, y) = uxx(x, y)− uxx(y, x) = 2
y2 − x2

x2 + y2
(−log|(x, y)|)−

1
2 +

y4 − x4

4(x2 + y2)2
(−log|(x, y)|)−

3
2

=
y2 − x2

4(x2 + y2)
[8(−log|(x, y)|)−

1
2 + (−log|(x, y)|)−

3
2 ]

so ∆u(x, y)→ 0 if (x, y)→ (0, 0), and this shows that, defining f(x, y) := ∆u(x, y) for (x, y) 6= (0, 0)
and f(0, 0) := 0, then ∆u = f almost everywhere, with f continuous, but u /∈ C2(B1).

However we claim that u ∈ W 2,p for each 1 ≤ p < ∞. To see this, note that u and the first
derivatives of u are continuous since in polar coordinates (r, θ) they are controlled near (0, 0) by

r(−log(r))
1
2 which tends to 0 as r → 0. For the second derivatives of u, in polar coordinates we

see that, near (0, 0), they are controlled by (−log(r))
1
2 which is the typical example of a function in

Lp(0, 1) for every 1 ≤ p <∞ but not in L∞(0, 1).

Note then that theorem 7 tell us that this can only happen because f := ∆u is not Cα(B1) for
any α > 0, i.e, near (0, 0) f oscillates too quickly.

5.2. Fourier Analysis, Pseudodifferential Operators and Elliptic Regularity

We will need for some purposes sharper elliptic regularity results, stated in other spaces of functions.
For this we make a quick review of the basic results from Fourier analysis and distributions that we
will need.

Definition 22. Let Ω ⊂ Rn. We will denote D(Ω) := C∞c (Ω) for the smooth functions with compact
support in Ω equipped with the topology of test functions. We say that a secuence ϕn → ϕ in
D(Ω) if there exists a compact set K ⊂ Ω such that supp(ϕn) ⊂ K for all n ∈ N, and for each
multiindex α ∈ Nn we have ‖∂αϕn − ∂αϕ‖L∞(Ω) → 0 as n → ∞. This convergence comes from a
certain topology, but this topology is neither straightforward nor very useful, so we will stick to the
notion of convergence. Besides it can be proved that in this topology a function is continuous if and
only if it is sequentially continuous, and this is all we need.

We say that a linear functional u : D(Ω) → C is a distribution if it is continuous with respect to
this notion of convergence. We will denote D′(Ω) for the space of distributions in Ω. It can be seen
that u ∈ D′(Ω) if and only if for each compect K ⊂ Ω there are a constant CK and a natural number
nK such that |u(ϕ)| ≤ CK

∑
|α|≤nK ‖∂

αϕ‖L∞ for every ϕ ∈ D(Ω) with support in K.

Remark 17. Every function f in L1
loc(Rn) can be identified with the distribution given by (If , ϕ) :=∫

fϕdx. We mean by this that the map f → If is inyective. Indeed, if the set E := {f > 0}
has positive measure, we consider the convolutions φε := ρε ? χE , being ρε ⊂ C∞c (Rn) a standard
aproximattion of the dirac δ. As (If , χE) > 0 it is easy to prove that for ε > 0 small we have also
(If , φε) > 0, and we are done.

Definition 23. Given U ⊂ Rn two open sets with U ⊂ Rn, note that D(U) ⊂ D(Rn). Then, given
u ∈ D′(Rn) we define the restriction of u to U as u|U := u|D(U).

Remark 18.
(1) Obviously if φ is a function defined in Rn, we have that Iφ|U = Iφ|U .
(2) Also we have (Dαu)|U = Dα[u|U ].
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Definition 24. A function ϕ ∈ C∞(Rn) is a Schwartz function, if for every multiindex β ∈ Nn we
have that ∂βϕ(x) is a rapidly decreasing function , which means that for every multiindex α ∈ Nn

[ϕ]α,β := sup{|xα∂βϕ(x) : x ∈ Rn} <∞.

We denote the space of Schwartz functions as S(Rn), or simply S.

In the space S we define convergence as follows. A sequence ϕj → ϕ in S if for every α, β ∈ Nn
we have that [ϕj −ϕ]α,β → 0 as j →∞. It can be proved that this topology is metrizable, and in fact
it is given by the metric d : S × S → C such that

d(ϕ, φ) :=
∑

α,β∈Nn
2−|α|−|β|

[ϕ− φ]α,β
1 + [ϕ− φ]α,β

.

It is easy to prove that with this topology a linear form u : S → C is continuous if and only if there
are constants C and N such that for every ϕ ∈ S we have

|(u, ϕ)| ≤ C
∑

|α|+|β|≤N

[ϕ]α,β.

If a linear form u satisfies the estimate above, then u ∈ S ′ and we say that u is a tempered distribution
.

Remark 19. The fourier transform satisfies F : S → S. Then, its transpose map F ′ : S ′ → S ′ acts
on S ′ by (F ′(u), ϕ) := (u,F(ϕ)) for all u ∈ S ′ and ϕ ∈ S. As the fourier inversion formula holds in S,
by this definition it also holds on S ′. However, this abstract definition of F ′ has more meaning than
one would expect. As we know, S can be regarded as a subset of S ′ via the embeeding

ι : S → S ′ : ϕ 7→ Iϕ

(Iϕ, φ) :=

∫
ϕφdx

Then, one then might wonder if F ′(Iϕ) = IF [ϕ], and this is indeed true by Plancharel theorem: for
each φ ∈ S we have

(F ′(Iϕ), φ) =

∫
ϕφ̂dx =

∫
ϕ̂φdx = (IF [ϕ], φ).

Therefore F ′ : S ′ → S ′ is actually an extension of F : S → S to all S ′. This is why F ′ is written as
F : S ′ → S ′.

This allows us to define the Fourier transform on a class of functions much larger than S. For
example, the polinomials are embeded in S ′ via the same mapping than embeds S, so although
polinomials are far from being integrable, we can extend the classical definition of Fourier transform
to polinomials, and more generally to functions that growth at infinity like a polinomial.

In general given a map T : S → S we can always define T ′ : S ′ → S ′ by putting (T ′u, ϕ) := (u, Tϕ).
But if we have the additional fact that T ′ extends T in the sense that T ′ = T when restricted to S,
then we can directly write T : S ′ → S ′ as an extension of T .

For example if p is a polinomial or a function with the same asymptotic growth, we can take
T (ϕ) := pϕ, the multiplication operator by p, and then we have T ′ = T : S ′ → S ′, since T ′ obviously
extends T to all S ′.

Another important example follows by considering T (ϕ) = Dαφ for some α ∈ Nn. Integrating by
parts we see that (−1)|α|T ′ = T : S ′ → S ′ extends T to S ′. Therefore we can differentiate tempered
distributions. It is straighforward to check that all the classic formulas relating derivation and Fourier
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transforms are true in the space of tempered distributions. It is enough to note that they are true in
S and we have defined this operators in S ′ via his actions on S.

Recall also that a similar discussion can be done substituting the space S(Rn) by D(Ω) with Ω ⊂ Rn
an open set and S ′(Rn) by D′(Ω), so we can differentiate distributions and multiply distributions by
smooth functions. Therefore given a differential operator p(x,D) =

∑
aα(x)Dα, we can make sense

of p(x,D)u if u ∈ D′(Ω) and the aα(x) are smooth. However in general we cannot define the Fourier
transform of a distribution even when we imposse the obvious technichal assumption Ω = Rn, since
F : D(Rn)→ S(Rn) and F(D(Rn)) is not contained in D(Rn).

Definition 25. A function a ∈ C∞(Rn) is said to be slowly increasing if for all multiindex α ∈ Nn
there exists kα ∈ N and Cα > 0 such that

|∂αa(x)| ≤ Cα(1 + |x|)kα .

The vectorial space of slowly incresing functions is denoted by O(Rn). The typical examples are
polinomials.

If a ∈ O(Rn), and ϕ ∈ S(Rn), we define the operator a(D) : S → S as

a(D)ϕ(x) := F−1[a(ξ)F(ϕ)(ξ)](x).

Note that when a(ξ) = ξα we have the well known result F [Dαu](ξ) = ξαF(u)(ξ) so this definition
generalizes this fact.

Also note that a(D)′ = a(D) : S ′ → S ′, i.e, a(D) can be extended to S ′ by duality. To see this,
given ϕ, φ ∈ S we compute

(a(D)′Iϕ, φ) = (Iϕ, a(D)φ) =

∫
ϕ(x)F−1[a(ξ)F(φ)(ξ)](x)dx

=

∫
a(ξ)F−1[ϕ](ξ)F [φ](ξ)dξ =

∫
φ(x)F [a(ξ)F−1[ϕ](ξ)](x)dx

=

∫
φ(x)F [[F ◦ F−1][a(ξ)F−1[F−1 ◦ Fϕ](ξ)](x)dx

=

∫
φ(x)(−[F−1][a(ξ)[−Fϕ](ξ)](x))dx = (Ia(D)ϕ, φ)

Notation is awful, but we used that the Fourier inversion formula holds for the functions a(ξ)F−1[ϕ](ξ) ∈
S, ϕ(x) ∈ S, and the fact that F ◦ F = −Id = F−1 ◦ F−1 in S.

Now we introduce more spaces of functions, the Zigmund Spaces Cs∗ . These spaces are an slighter
generalization of the Holder spaces for positive exponent s. However they are also defined for negative
exponent. It is more convenient to work with them rather than Holder spaces because they have
nicer properties respect to the Fourier transform. For example, we will prove that the distributional
derivative of a Cs∗ function lies in the space Cs−1

∗ for every s ∈ R, so Zigmund spaces accomodate well
to the world of distributions, while Holder spaces do not.

Definition 26. Take any family of functions ϕj ∈ Cc(Rn) for j ≥ 0 such that:
(1)ϕ0 is a radial function, Supp(ϕ0) ⊂ {|ξ| ≤ 1} and ϕj(ξ) = ϕ(2−jξ) for j ≥ 1. Note that, in

particular, Supp(ϕj) ⊂ {2j−2 ≤ ξ ≤ 2j}.
(2) For all |ξ| ∈ Rn we have

∑
j≥0 ϕj(ξ)

2 = 1. Any family {ϕj} which satisfies these properties is
called a Littlewood-Paley partition of unity . The existence of such a family of functions is classical
and easy to prove.
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Definition 27. For s ∈ R we define the Zigmund spaces Cs∗(Rn), or simply Cs∗ , as follows. Consider
as in 26 a Littlewood-Pailey partition of unity ϕj , j ≥ 0. A tempered distribution u ∈ S ′ is said to be
in the Zigmund space Cs∗ if we have that

‖u‖Cs∗(Rn) := sup
k∈N

2ks‖ϕk(D)u‖L∞ <∞

One can check that ‖ · ‖Cs∗ is indeed a norm.

One can also define these spaces for functions u = (u1, . . . , um) : Rn → Rm. Note that in this case
we have, integrating on each component, that ϕk(D)u = (ϕk(D)u1, . . . , ϕk(D)um) is an Rm valued
function, so the definition is analogous.

Remark 20. (1) By the definition of the norm ‖ · ‖Cr∗ in 27, it follows that for s < r we have Cr∗ ⊂ Cs∗
with continuous inclusion.

(2) As we shall see later, for s > 0, (and only in this case), these spaces can be defined also in
terms of difference quotients in a similar way than Holder spaces.

(3) The definition we give above in 27 coincides with the definition of the Besov spaces Bs
∞,∞,

which are a particular case of a two parameter scale of function spaces Bs
p.q for p, q ≥ 1 and s ∈ R.

See [19] for more on these spaces.

We have a nice characterization of the Zigmund spaces for s > 0, which we state below.

Theorem 8. Let s > 0, s /∈ Z, and let u ∈ S ′(Rn) be a tempered distribution. Descompose s = k+ δ
with k ∈ N and 0 < δ < 1. Then u ∈ Cs∗(Rn) if and only if u ∈ Cs(Rn) = Ck,δ(Rn). Moreover the
norms ‖ · ‖Cs∗ and ‖ · ‖Cs are equivalent.

Proof. A very straightforward and readable proof of this can be found in the lecture notes [22], page
55.

When s ∈ N, the Zigmund spaces are larger than Holder spaces, but still they can be characterized
in terms of (more elaborated) difference quotients.

Theorem 9. Let s = k ∈ N. Then Ck,0(Rn) ⊂ Ck∗ (Rn). Moreover, for a tempered distribution
u ∈ S′(Rn) we have that u ∈ Ck∗ (Rn) if and only if u ∈ Ck−1,0(Rn) and

[u]Ck∗ (Rn) :=
∑
|α|=k−1

sup

{
|∂αu(x+ h)| − 2∂αu(x) + ∂αu(x− h)

|h|
: x, h ∈ Rn, h 6= 0

}
<∞

Moreover, the norm ‖ · ‖Ck∗ (Rn) is equivalent to the norm ‖ · ‖′
Ck∗ (Rn)

:= ‖ · ‖Ck−1,0(Rn) + [·]Ck∗ (Rn)

Proof. Again this result can be found in [22], page 57.

Remark 21. In virtue of these characterizations for the Zigmund spaces Cs∗(Rn) for s > 0, we will
think of these spaces just as Holder spaces when s > 0 is not integer. Also if 1 ≤ s = k ∈ N we will
think of these spaces equipped with the norm ‖ · ‖′

Ck∗ (Rn)
defined in Theorem 9 above.

Corollary 6. If k ∈ N, the inclusions Ck,0(Rn) ⊂ Ck−1,1(Rn) ⊂ Ck∗ (Rn) are continuous, i.e, there
exist constants C1, C2 such that ‖ · ‖Ck∗ (Rn) ≤ C1‖ · ‖Ck−1,1(Rn) ≤ C2‖ · ‖Ck,0(Rn).

Proof. This is straighforward from Theorem 9. Indeed, let u ∈ Ck,0(Rn). Let α ∈ Nn with |α| = k−1.
By the mean value theorem, for any h, x ∈ Rn we have

|∂αu(x+ h)− ∂αu(x)| ≤ |h|C(
∑
|β|=k

‖∂βu‖L∞(Rn))
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and taking supremum on h this yields that ‖u‖Ck(Rn) ≥ C1‖u‖Ck−1,1(Rn). For the second inclusion,
note that by the triangle inequality we have [u]Ck∗ (Rn) ≤ 2[u]Ck−1,1(Rn), and therefore ‖ · ‖′

Ck∗ (Rn)
≤

C‖ · ‖Ck,0(Rn). Note that ‖ · ‖′
Ck∗ (Rn)

is equivalent to ‖ · ‖Ck∗ (Rn), and this gives the claim.

The inclusions from Corollary 6 above are strict. First let us see the intuitive reason why it is
logical to expect that the space C1

∗ (Rn) is bigger than the space C0,1(Rn) of Lipschitz continuous
functions. Suppose f ∈ C1(R). Then by Taylor’s theorem

f(x+ h) = f(x) + hf ′(x) + o(h) ; f(x− h) = f(x)− hf ′(x) + o(h) as h→ 0

If we sum, we see that f(x+h)−2f(x)+f(x+h) = o(h) as h→ 0, while we only have f(x+h)−f(x) =
O(h) as h→ 0. So if h is small the difference quotient considered to define C1

∗ is smaller than the one
considered to define C0,1. For h large we estimate both difference quotients by 2‖f‖L∞ .

We conclude from this that, at least for C1 functions, the difference quotient of C1
∗ (Rn) is much

smaller as h → 0 than the one of C0,1(Rn), so it is reasonable that the first difference quotients are

bounded for a larger class of functions. In fact, it can be proved that the function f(x) =
∑

k≥0 2−kei2
kx

is not Lipschitz continuous, but f ∈ C1
∗ (R).

The characterization given in Theorems 8 and 9 of the Zigmund spaces for positive exponent s
allow us to define them in an arbitrary open set, this time in terms of difference quotients (note that
the classical Fourier transform does not make sense for functions whose domain is an open set, so the
definition given in Rn in terms of the Fourier transform cannot be generalized here in a straightforward
manner).

Definition 28. Let Ω ⊂ Rn be open. Let k ∈ N and 0 < δ < 1 and put s = k + δ. We define the
Zigmund space Ck∗ (Ω) as the functions u ∈ Ck−1,0(Ω) such that

[u]Ck∗ (Ω) :=
∑
|α|=k−1

sup

{
|∂αu(x+ h)| − 2∂αu(x) + ∂αu(x− h)

|h|
: x, x+ h, x− h ∈ Ω

}
<∞

and the space Ck∗ (Ω) is equipped with the norm ‖u‖Ck∗ (Ω) := ‖u‖Ck−1,0(Ω) + [u]Ck∗ (Ω).

We define the Zigmund space Cs∗(Ω) as the Holder space Cs(Ω) = Ck,δ(Ω).

We need to define also the Zigmund spaces in open sets for s ≤ 0. In fact, the following definition
makes sense for all s ∈ R and generalizes the definition given above for positive exponent.

Definition 29. Let Ω ⊂ Rn be an open set, and let s ∈ R. We define the Zigmund spaces Cs∗(Ω) as
the distributions u ∈ D′(Ω) such that there exists an v ∈ Cs∗(Rn) with v|Ω = u as distributions. We
define the norm

‖u‖Cs∗(Ω) := inf{‖v‖Cs∗(Rn) : v ∈ Cs∗(Rn), v|Ω = u}

Remark 22. We have defined twice the Zigmund spaces Cs∗(Ω) for s > 0. It can be proved that both
definitions 28 and 29 are equivalent for s > 0 (i.e, both norms are equivalent). This fact can be found
in [19], Section 3, page 90.

The next Theorem asserts basically that all the results true for the Zigmund spaces Cs∗(Rn) are
also true for the spaces Cs∗(Ω) if Ω has a regular boundary. The reason is that if f ∈ Cs∗(Ω) we can
extend f to some function Ef ∈ Cs∗(Rn), and the norm ‖Ef‖Cs∗(Rn) is equivalent to the norm ‖f‖Cs∗(Ω).

Theorem 10. Let Ω ⊂ Rn be an open set with smooth boundary. Then there exists a bounded and
linear operator

E : Cs∗(Ω)→ Cs∗(Rn) : f 7→ Ef

such that Ef |Ω = f as distributions for all f ∈ Cs∗(Ω). We call E an extension operator. Recall that
we have ‖f‖Cs∗(Ω) ≤ ‖Ef‖Cs∗(Rn) ≤ ‖E‖‖f‖Cs∗(Ω)
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Proof. See [19], Section 3.3.4, page 200.

We shall see now some properties of Zigmund and Holder spaces that will prove to be very useful.
We will try to give the simpler proofs here (which usually apply for positive and non-integer exponent).
For negative exponent (and in some cases for integer exponent also) we will just state the properties
we will need and refer to [19] for the proofs.

Lemma 14. Let 0 ≤ s, r ≤ 1. Suppose f ∈ C0,s(Ω) and g ∈ C0,r(Ω). Then fg ∈ C0,t(Ω) being
t = min{s, r}, and

‖fg‖C0,t(Ω) ≤ 2‖f‖C0,s(Ω)‖g‖C0,r(Ω)

Proof. We use the standard trick to control products. Suppose first |h| ≤ 1

|f(x)g(x)− f(x+ h)g(x+ h)| = |f(x)[g(x)− g(x+ h)] + g(x+ h)[f(x)− f(x+ h)]|

≤ ‖f‖C0,s(Ω)‖g‖C0,r(Ω)[|h|r + |h|s] ≤ 2‖f‖C0,s(Ω)‖g‖C0,r(Ω)|h|t

If |h| ≥ 1, proceeding as above we see that

|f(x)g(x)− f(x+ h)g(x+ h)| ≤ 2‖f‖C0,s(Ω)‖g‖C0,r(Ω) ≤ 2‖f‖C0,s(Ω)‖g‖C0,r(Ω)|h|t

and this proves the lemma.

Remark 23. Note that in the Lemma 14 above we could have taken s = r and prove that fg ∈ Cs(Ω),
since for s ≤ r we clearly have Cs(Ω) ⊂ Cr(Ω) with continuous inclusion.

Corollary 7. Let k ∈ N, 0 ≤ s ≤ 1. Suppose f, g ∈ Ck,s(Ω). Then fg ∈ Ck,s(Ω)

Proof. If k = 0 it is an inmediante consequence of the Lemma 14 above. So suppose k ≥ 1, so f and
g are Lipschitz. Firstly, it is clear that fg ∈ Ck(Ω). Besides if α ∈ Nn is such that |α| = k, we have

Dα[fg] =
∑

|η|+|β|=k

DηfDβg

In the above sum all the terms DβgDηf are C1,0 except the terms gDαf , which is at least C0,s by
Lemma 14, and the term fDαg, which is at least C0,s for the same reason. We see that Dα[fg] is
C0,s, and this proves the Corollary.

Now we want to see under what conditions the product of two functions in some Zigmund space
lies in other Zigmund space. First we need to define what we mean by the pointwise product of a Cr∗
and a Cs∗ function for general r, s ∈ R. If r, s > 0 we know how to define the pointwise product since
we deal with continuous functions. But for negative exponents we deal with tempered distributions,
so we need to be more careful. In fact it is known that there is no way to extend the usual product
of functions to the space of all distributions. For example, the pointwise product of two L1 functions
could not be in L1

loc. So we have to live with it and define the product whenever it makes sense. Before
defining this product we need some results.

Definition 30. Let u ∈ D′(Rn). We define its support and denote supp(u) for the complement
of the biggest open set U ⊂ Rn such that u|U = 0. It is straightforward that if u is a continuous
function this definition coincides with the traditional definition of support, i.e, in this case we have
supp(u) = {u 6= 0}.

Remark 24. If ϕ ∈ D(Rn) and u ∈ D′(Rn) then supp(ϕu) ⊂ supp(ϕ). To see this note that if ϕ|V = 0
in some open set V ⊂ Rn, then also (uϕ)|V = 0 since ϕD(V ) = 0 in all Rn.
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Definition 31. Let λ ∈ R. We define the dilation operator dλ acting on a function f : Rn → C by
dλ[f ](x) := f(λx). It is straigtforward that dλ : D(Rn)→ D(Rn) and dλ : S(Rn)→ S(Rn).

Proposition 6. The Zigmund Spaces Cr∗(Rn) with r ∈ R are Banach spaces. Moreover, the conver-
gence in the Cr∗(Rn) norm implies weak convergence in S ′.

Proof. The proof can be found in [19], 2.3.3, page 48.

Corollary 8. If Ω ⊂ Rn is open, the Zigmund Spaces Cr∗(Ω) with r ∈ R are Banach spaces. Moreover,
the convergence in the Cr∗(Ω) norm implies weak convergence in D′(Ω).

Proof. In this proof we make the typical use of the extension operator E. If un ⊂ Cr∗(Ω) is a Cauchy
sequence, then by linearity and boundness of E, we have also that Eun is a Cauchy sequence in Cr∗(Rn)
so Eun → v ∈ Cr∗(Rn) by Proposition 6 above. Now, by definition of the norm Cr∗(Ω) we have

‖un − v|Ω‖Cr∗(Ω) ≤ ‖Eun − v‖Cr∗(Rn) → 0

so we see that un → v|Ω in Cr∗(Ω), as desired. Finally, as Eun → v weekly in S ′, then un → v|Ω weekly
in D′(Ω) and this proves the Corollary.

Definition 32. (Product in S ′)
(1) Let ϕ ∈ D(Rn) such that ϕ = 1 in B(0, 1) = {x ∈ Rn : |x| = 1} and ϕ = 0 outside B(0, 2).

Given g ∈ S ′ we consider the family of functions given by gj := F−1d2−j [ϕ]Fg. Note that d2−j [ϕ]Fg
is a distribution with compact support. Recall here the Payley-Wiener-Schwartz Theorem, which says
that the Fourier transform of a distribution with compact support is an slowly increasing C∞ function,
so is in O(Rn).

Therefore gj ∈ O(Rn), and the product gju makes sense for any u ∈ S ′. That said, we define the
product gu := limj gju whenever this limit exists in S ′ (in the weak topology). Note that with this
definition it could happen that limj gju converged in some Zigmund space or not, so even though u
and g are in some Zigmund spaces, its product does not have to belong necessarily to any Zigmund
space.

(2) Let g ∈ Cr∗(Ω) and u ∈ Cs∗(Ω). Consider extensions ĝ ∈ Cr∗(Rn) and û ∈ Cs∗(Rn). We define
the product gu as gu := (ĝû)|Ω ∈ D′(Ω) whenever the product ĝû is well defined in S ′. In the next
remark we prove this product does not depend on the extensions.

Remark 25. In (1) of 32, it can be checked that the product gu does not depend on the particular
choice of ϕ ∈ D(Rn), that it is conmutative (so it can be defined considering uj instead of gj) and
that it is associative respect to the usual sum of distributions. Moreover, when the product ug is well
defined in a different sense (for example if u ∈ O(Rn), or if both u, g are continuous or L2 functions),
then both definitions of ug coincide. See [19], 2.6.1, for details.

Also, in (2) it can be checked that this definition does not depend on the choice of the extensions
û and ĝ. As we did not find this in the references, let us see why. Let ϕ ∈ D(Ω). Then

(ûĝ, ϕ) = lim
j

(û, gjϕ) = lim
j

(u, gjϕ) does not depend on û

(ûĝ, ϕ) = lim
j

(ĝ, ujϕ) = lim
j

(g, ujϕ) does not depend on ĝ

Note that although uj and gj do depend on the extensions, we see from here that (ûĝ, ϕ) does not.
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Lemma 15. Let s ∈ R and let r > |s|. Then Cr∗(Rn)Cs∗(Rn) ⊂ Cs∗(Rn).

This means that for every g ∈ Cr∗(Rn) and u ∈ Cs∗(Rn) the product ug (pointwise product of
tempered distributions as defined in 32 above) belongs to Cs∗(Rn). Moreover we have

‖ug‖Cs∗(Rn) ≤ C‖g‖Cr∗(Rn)‖u‖Cs∗(Rn)

for some constant C.

Proof. See [20], 2.6.1, page 128.

We can change Rn by an arbitrary open set Ω in the Lemma 15 above and get the same result.

Corollary 9. Let s ∈ R and let r > |s|. Then Cr∗(Ω)Cs∗(Ω) ⊂ Cs∗(Ω).

So for every g ∈ Cr∗(Ω) and u ∈ Cs∗(Ω) the product ug belongs to Cs∗(Ω) and we have

‖ug‖Cs∗(Rn) ≤ C‖g‖Cr∗(Rn)‖u‖Cs∗(Rn)

for some constant C.

Proof. Consider extensions ĝ ∈ Cr∗(Rn) and û ∈ Cs∗(Rn). Then, by definition of ug and 15 we have
that

ûĝ ∈ Cs∗(Rn) and ‖ug‖Cs∗(Ω) ≤ ‖ûĝ‖Cs∗(Rn) ≤ C‖ĝ‖Cr∗(Rn)‖û‖Cs∗(Rn)

Now if we take the infimum over the extensions we get

‖ug‖Cs∗(Ω) ≤ C‖g‖Cr∗(Ω)‖u‖Cs∗(Ω)

as desired.

The Lemma 15 above can be sharpened when the exponets satisfy r = s > 0. Note that in this
case we deal with continuous functions so the pointwise product is well defined in a classic sense and
coincides with the product of tempered distributions.

Lemma 16. Let r > 0 and Ω ⊂ Rn be an open set. Suppose u, g ∈ Cr∗(Ω). Then ug ∈ Cr∗(Ω). So
ug ∈ Cr∗(Ω) is an algebra under pointwise multiplication.

Proof. For non integer r we already know this by Corollary 7 above. It remains to see the case r ∈ N.
The proof can be found in [20], 2.6.2, page 133.

Lemma 17. Let k ∈ N and 0 ≤ α ≤ 1. Suppose |f(x)| ≥ c > 0 for all x ∈ Ω.
(1) If f ∈ Ck,α(Ω) then f−1 = 1

f ∈ C
α(Ω).

(2) If f ∈ Ck+2
∗ (Ω) then f−1 = 1

f ∈ C
k+2
∗ (Ω)

Proof. Let us prove (1). First suppose k = 0. We compute

| 1

f(x)
− 1

f(y)
| = |f(y)− f(x)|

|f(y)f(x)|
≤ 1

c2
|x− y|α

and this proves the lemma for k = 0. Now suppose k ≥ 1. We have

D1(f−1) = −f−2D1f if k = 1

D2(f−1) = 2f−3D1fD1f + f−4D2f if k = 2

Dk(f−1) = {sum of products of derivatives of f of order ≤ k − 1} + (−1)k−1f−2kDkf



Conformal Geometry. Conformal Flatness fow Low Regular Metrics. 59

If k = 1 we see from the formula above that D1(f−1) is Cα since f−2 is C1 and D1f is Cα. If k = 2,
we know that f−3, f−4 and D1f are C1 and from the formula above it follows that D2(f−1) is Cα.
For general k follows applying induction.

Now let us see (2). If k + 2 = 2, then f ∈ C2
∗ ⊂ C1, so the formula for D1(f−1) above is valid. As

f−2 is C1 and D1f is C1
∗ , its product also is C1

∗ by Lemma 16, so D1(f−1) ∈ C1
∗ and we are done.

If k + 2 = 3, then f−1 is C2 and the formula above for D2(f−1) holds. The first summand in
that formula is C1. For the second summand, as D2f is C1

∗ and f−4 is C2 , again by Lemma 16 we
conclude that D2(f−1) is C1

∗ , so f ∈ C3
∗ and we are done.

For general k it follows by induction.

Lemma 18. Let Ω ⊂ Rn, V ⊂ Rm be two open sets. Let f : Ω → V be Holder of exponent α, with
0 < α ≤ 1, and let g : V → Rk be Holder of exponent β, with 0 < β ≤ 1. Then g ◦ f : Ω → Rk is
Holder of exponent αβ.

Proof. Recall that for every t, s ∈ V we have by definition that |g(t)− g(s)| ≤ [g]β|t− s|β, so

|g(f(x))− g(f(x+ h))| ≤ [g]β|f(x)− f(x+ h)|β ≤ [g]β[f ]βα|h|αβ

and this gives that [g ◦ f ]αβ ≤ [g]β[f ]βα, so the lemma is proved.

Note that this result is optimal, since taking f(x) = xα, g(x) = xβ, both defined in [0, 1], we see
that g ◦ f(x) = xαβ, and this function is not Cγ for any γ > αβ, since xαβx−γ →∞ as x→ 0.

Lemma 19. Let U ⊂ Rm, Ω ⊂ Rn be open sets. Let k ∈ N. Let α ∈ [0, 1]. The Holder spaces are
closed for composition. The Zigmund spaces of exponent s > 1 are also closed for composition. More
precisely:

(1) If k ≥ 1, f ∈ Ck,α(U), g ∈ Ck,α(Ω;U) then f ◦ g ∈ Ck,α(Ω) (false if k = 0)
(2) If r > 1, f ∈ Cr∗(U), g ∈ Cr∗(Ω;U) then f ◦ g ∈ Cr∗(Ω)

Proof. First we prove (1). By the chain rule it is clear that f ◦ g ∈ Ck(Ω). Then

D1(f ◦ g) = (D1f ◦ g)D1g ∈ Cα if k = 1

D2(f ◦ g) = (D2f ◦ g)D1gD1g + (D1f ◦ g)D2g if k = 2

Dk(f ◦ g) = (Dkf ◦ g)D1g . . .D1g + (Dk−1f ◦ g)D2gD1g . . .D1g + · · ·+ (D1f ◦ g)Dkg

(48)

For k = 1 we claim that D1(f ◦ g) ∈ Cα(U). To see this note that D1f ◦ g is a composition of a
Lipschitz function g and a Cα function D1f so by Lemma 18 we have D1f ◦ g ∈ Cα.

For k = 2, looking at the formula above for D2(f ◦ g) we see that both summands are Cα since
they are a product of a Cα and a C1 function (note that D2f ◦ g is Cα again by Lemma 18).

For general k, the only summands we have to pay attention in the formula for Dk(f ◦ g) are the
first and the last, because the others are C1. These summands are Cα by the same argument as in
the case k = 2. Thus f ◦ g is Ck,α, and the result is proved.

The proof of (2) is considerably more difficult. The case when g is real valued can be found in the
relatively recent paper [23]. For the case where g is vector valued we do not have any reference yet,
but according to an expert on Besov spaces the result is true. Recall that the hipothesis of r > 1 is
crucial. In [23] it is proved that C1 ◦ C1

∗ is not contained in C1
∗ .

Now we shall introduce a class of operators which generalize differential operators. They are called
pseudodifferential operators. As usual, by expanding the class of operators we get some nice properties
such as closeness under certain operations (composition, multiplication, and more). Working with
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pseudodifferential operators we can also define ellipticity, and we can improve some results of elliptic
regularity.

Let p(x, ξ) =
∑
|α|≤m aα(x)ξα be the symbol of the differential operator of order m given by

p(x,D) =
∑
|α|≤m aα(x)Dα. Note that here we use D instead of ∂ beacause we are going to use

Fourier analysis, so it is more confortable to work with D to avoid constants in the formulas. By the
inversion Fourier formula we have that for f ∈ S, denoting f̂(ξ) := F(f)(ξ), we have

f(x) =

∫
f̂(ξ)e2πix·ξdξ. (49)

And if we apply P (x,D) we obtain that

P (x,D)f(x) =

∫
p(x, ξ)f̂(ξ)e2πix·ξdξ. (50)

So a differential operator can be recovered from its symbol p(x, ξ), which is a polinomial in ξ. Imagine
that we want to find a composition inverse q(x,D) of p(x,D). Then we could think of an operator
q(x,D) which acts on functions as in (49) but changing p(x, ξ) for q(x, ξ) := p(x, ξ)−1, the multiplica-
tive inverse of p(x, ξ). Whenever this can be done, q(x,D) is an inverse of p(x,D). But note that the
operator q(x,D) defined this way is not differential, since its symbol q(x, ξ) is not a polinomial in ξ.
That’s why we introduce the following.

Definition 33. Given m ∈ R, ρ, δ ∈ [0, 1], we define the class of symbols Smρ,δ as

Smρ,δ := {p(x, ξ) ∈ C∞(Rn × Rn) : |Dβ
xD

α
ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−ρ|α|+δ|β|}

for every x ∈ Rn and multiindexes α, β ∈ Nn, where 〈ξ〉 := (1 + |ξ|2)
1
2 .

Any element p(x, ξ) ∈ Smρ,δ is called a symbol, and it defines an operator

p(x,D) : S → S : ϕ 7→ p(x,D)(ϕ)

p(x,D)ϕ(x) =

∫
p(x, ξ)ϕ̂(ξ)e2πix·ξdξ.

(51)

We will denote OPSmρ,δ, for this class of operators p(x,D).
To see that p(x,D)ϕ ∈ S, recall that for each multiindex β ∈ Nn we can differentiate under the

integral sign in (51) because the derivatives Dβ
x of both p(x, ξ) and e2πix·ξ have a polinomial growth

in ξ, so we have absolute convergence. Doing so and integrating by parts we get

|xαDβ
x [p(x,D)ϕ(x)]| ≤ |

∫
Dβ
xp(x, ξ)ϕ̂(ξ)xαe2πix·ξ + Cβp(x, ξ)ϕ̂(ξ)ξβxαe2πix·ξdξ|

= |
∫

[Dβ
xp(x, ξ) + Cβp(x, ξ)ξ

β]ϕ̂(ξ)Dα
ξ [e2πix·ξ]dξ|

= |
∫
e2πix·ξDα

ξ [{Dβ
xp(x, ξ) + Cβp(x, ξ)ξ

β}ϕ̂(ξ)]dξ|

≤
∑

|γ|+|λ|≤|α|

∫
|Dβ

xD
γ
ξ p(x, ξ) + CβD

γ
ξ [p(x, ξ)ξβ]||Dλ

ξ ϕ̂(ξ)|dξ

≤ Cα,β〈ξ〉m+|β|+δ|β|
∑
|λ|≤|α|

∫
|Dλϕ̂(ξ)|dξ ≤ Cα,β

(52)

and this proves that p(x,D)ϕ(x) ∈ S.
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Now we can ask whether p(x,D) can be extended to S ′ in such a way that p(x,D) = p(x,D)′ when
restricted to S. This time it is not possible in general. If we look at the proof that a(D) = a(D)′

in (25), it was crucial that the symbol a(ξ) did not depend on x. In this case we can still define
p(x,D)′ : S ′ → S ′, but if u, ϕ ∈ S we have

(p(x,D)′u, ϕ) = (u, p(x,D)ϕ) =

∫ ∫
u(x)p(x, ξ)ϕ̂(ξ)e2πix·ξdξdx

= [ Fubini ] =

∫
ϕ̂(ξ)u(ξ)dξ =

∫
ϕ(x)F [u](x)dx

(53)

The last step is not justified, because we are not sure wheter u(ξ) has a Fourier transform, being

u(ξ) :=

∫
p(y, ξ)u(y)e2πiy·ξdy

In any case, even when the last step is valid, it is easy to check that, as p(y, ξ) depends on y, in general
F [u](x) 6= p(x,D)u(x). In the next proposition we analize the cases when the last step is valid, and
then we can extend p(x,D) to S ′. But note that possibly this extension does not coincide with the
transpose map p(x,D)′.

This fact is related with one important property of pseudodifferential operators: the L2-adjoint of
a pseudodifferential operator is pseudodifferential, but it is not easy to see and of course the symbol
of the adjoint is not the conjugate of the symbol.

Proposition 7. If p(x,D) ∈ OPSmρ,δ for m ∈ R, ρ ∈ [0, 1] and 0 ≤ δ < 1, then we have p(x,D) : S ′ →
S ′.

Proof. As in the calculation (53) , we see that if ϕ, φ ∈ S, considering ϕ ∈ S ′, we have

(p(x,D)Iϕ, φ) := (P (x,D)ϕ, φ) = (ϕ̂, φ)

So p(x,D) can be extended to S ′ if and only if for any u ∈ S ′ we can make sense of (û, φ), which
happens if and only if φ ∈ S, being, as before,

φ(ξ) :=

∫
p(y, ξ)φ(y)e2πiy·ξdy (54)

Take α, β ∈ Nn. We claim that if we apply Dα
ξ to the integrand of (54) and multiply it by ξβ, the

result is integrable, so the formal derivation is true. Indeed, formal differentiation yields

|ξβDα
ξ φ(ξ)| = |

∫
CβD

α
ξ p(y, ξ)φ(y)Dβ

y e
2πiy·ξ + Cα,βp(y, ξ)φ(y)yαDβ

y e
2πiy·ξdy|

= |
∫
CβD

β
y [Dα

ξ p(y, ξ)φ(y)]e2πiy·ξ + Cα,βD
β
y [p(y, ξ)φ(y)yα]e2πiy·ξdy|

≤ Cα,β{〈ξ〉m+|β|δ−|α|ρ
∫
|φ(y)|dy + 〈ξ〉m+|β|δ

∫
|yαφ(y)|dy} ≤ Cα,β〈ξ〉m+|β|δ

we conclude that for every monomial ξγ with γ ∈ Nn, |γ| ≤ |β| we have |ξγDα
ξ φ(ξ)| ≤ Cα,β〈ξ〉m+|β|δ.

As 〈ξ〉β has an equivalent growth that a certain sum of monomials ξγ with γ ∈ Nn, |γ| ≤ |β|, we
conclude that |〈ξ〉βDα

ξ φ(ξ)| ≤ Cα,β〈ξ〉m+|β|δ, and this yields

|Dα
ξ φ(ξ)| ≤ Cα,β〈ξ〉m+|β|(δ−1)

Since δ < 1, this trick shows that we can take |β| as large as we want to obtain an arbitraryly rapid
decay in ξ of Dα

ξ φ(ξ), and this shows that φ(ξ) ∈ S, as we wanted.
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In general when we speak of a pseudodifferential operator we mean an operator p(x,D) associated
to some function p(x, ξ) that acts as in (51). If p(x, ξ) is not a symbol in Smρ,δ, the convergenge of the
integral defining p(x,D) is not clear, and that is why in any case we will require some kind of decay
of p(x, ξ) in the ξ variable to assure the convergence.

Remark 26. Let p(x,D) =
∑
|α|≤m aα(x)Dα a differential operator of order m ∈ N, and let p(x, ξ) =∑

|α|≤m aα(x)ξα be its symbol. If aα(x) ∈ C∞+0(Rn), (remind that this means all the derivatives of aα
are bounded in Rn, as said in 21), then it is obvious that p(x, ξ) ∈ Sm1,0. This is why pseudodifferential

operators generalize differential operators in presence of C∞+0 regularity of the coeficients aα(x).

However, we are interested in the case where aα ∈ Cs for s ∈ R, s ≥ 0, so the class of symbols Smρ,δ
does not fullfill our requirements. To this end, we define now a more general class of symbols that
generalize less regular differential operators.

Definition 34. Let r ∈ (0,∞), m ∈ R, and let ρ, δ ∈ [0, 1]. We say that the function p(x, ξ) :
Rn × Rn → C belongs to the space of symbols Cr∗S

m
ρ,δ(Rn) provided:

1) The maps ξ 7→ p(x, ξ) are smooth for every ξ ∈ Rn, and moreover for each multiindex α ∈ Nn
there exists a constant Cα such that ‖Dα

ξ p(·, ξ)‖L∞ ≤ Cα〈ξ〉m−ρ|α|.
2) The maps x 7→ Dα

ξ p(x, ξ) are Cr∗(Rn) for each ξ ∈ Rn, α ∈ Nn, and moreover we have the

estimate ‖Dα
ξ p(·, ξ)‖Cr∗(Rn) ≤ Cα〈ξ〉m−ρ|α|+δr for some constant Cα.

Remark 27. Note that the class of symbols Cr∗S
m
ρ,δ(Rn) is defined in the same spirit that the class

Smρ,δ, only that in this case we have less derivatives in the x variable. To see this, note that for r /∈ N
the norm Cr∗ is equivalent to the norm Cr, so taking the norm ‖ · ‖Cr∗ is like ‘taking r derivatives’ on
the variable x. For r = k ∈ N the norm ‖ · ‖Ck∗ is like taking k − 1 derivatives and a little more.

Also, if p(x,D) =
∑
|α|≤m aα(x)Dα is a differential operator of order m, and aα(x) ∈ Cr∗(Rn) for

r > 0, it is obvious that p(x, ξ) =
∑
|α|≤m aα(x)ξα ∈ Cr∗Sm1,0(Rn).

Let us now prove an elementary result on how p(x,D) acts when its symbol has lower regularity.
This results is not optimal at all, but it is easy to prove, and at least tell us that the operator p(x,D)
is well defined acting on S.

Proposition 8. Let r > 0, r /∈ N, and suppose p(x, ξ) ∈ Cr∗Smρ,δ(Rn) for m ∈ R, ρ, δ ∈ [0, 1]. Then

we have p(x,D) : S → Cr∗(Rn). Moreover, if β ∈ Nn satisfies |β| ≤ r, then the function Dβ
xp(x,D)ϕ is

rapidly decreasing for every ϕ ∈ S.

Proof. First, since r /∈ N we have Cr∗ = Cr and both spaces have equivalent norms, so we will work
with the space Cr. Let r = k + s with k ≥ 0, k ∈ N and 0 < s < 1. Let β ∈ Nn with |β| ≤ k.

By hipothesis, for every x ∈ Rn we have |Dβ
xp(x, ξ)| ≤ Cβ〈ξ〉m+δr. Also, if γ ∈ Nn and |γ| = k we

have [Dγ
xp(·, ξ)]Cs ≤ Cγ〈ξ〉m+δr. That said, given ϕ ∈ S, we derive formally under the integral sign to

obtain

|Dβ
xp(x,D)ϕ(x)| = |

∫
ϕ̂(ξ)e2πix·ξ[Dβ

xp(x, ξ) + Cβp(x, ξ)ξ
β]dξ|

≤ C
∫
〈ξ〉m+δr+|β||ϕ̂(ξ)|dξ ≤ C

We conclude that p(x,D)ϕ(x) ∈ Ck+0. Now we shall see that Dβ
xp(x,D)ϕ(x) is a rapidly decreasing
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function. Indeed, given α ∈ Nn, integration by parts yields

|xαDβ
xp(x,D)ϕ(x)| = |

∫
ϕ̂(ξ)CαD

α
ξ [e2πix·ξ]{Dβ

xp(x, ξ) + Cβp(x, ξ)ξ
β}dξ|

= |
∫
Cαe

2πix·ξDα
ξ {ϕ̂(ξ)[Dβ

xp(x, ξ) + Cβp(x, ξ)ξ
β]dξ|

≤
∑
|λ|≤|α|

∫
Cα〈ξ〉m+δr+|β||Dλ

ξ ϕ̂(ξ)|dξ ≤ Cα

Now let |γ| = k and we have that

|Dγ
xp(x+ h,D)ϕ(x+ h)−Dγ

xp(x,D)ϕ(x)|

= |
∫
ϕ̂(ξ)[∆h{Dγ

xp(x, ξ)e
2πix·ξ}+ Cγξ

γ∆h{p(x, ξ)e2πix·ξ}]dξ|
(55)

where
∆h{Dγ

xp(x, ξ)e
2πix·ξ} := Dγ

xp(x+ h, ξ)e2πi(x+h)·ξ −Dγ
xp(x, ξ)e

2πix·ξ

∆h{p(x, ξ)e2πix·ξ} := p(x+ h, ξ)e2πi(x+h)·ξ − p(x, ξ)e2πix·ξ

Denote f(x, ξ) for any of p(x, ξ), Dγ
xp(x, ξ). We claim that [f(·, ξ)]Cs ≤ C〈ξ〉m+δr. Indeed, if k = 0

then p(x, ξ) = Dγ
xp(x, ξ) is the result is known. If k ≥ 1, as the claim is known for Dγ

xp(x, ξ), suppose
f(·, ξ) = p(·, ξ) ∈ C1+0. Then, by distinction of cases |h| > 1 and |h| < 1 it is easy to see that
[f(·, ξ)]Cs ≤ 2‖f(·, ξ)‖C1 ≤ 〈ξ〉m+δr and this gives the claim.

Moreover, denoting g(x, ξ) := e2πix·ξ, by the same argument we have [g(·, ξ)]Cs ≤ 2‖g(·, ξ)‖C1 ≤
2〈ξ〉.

Let us see that also [f(·, ξ)g(·, ξ)]Cs ≤ C〈ξ〉m+δr+1. To see this, we use the standard trick to deal
with a product

|∆h{f(x, ξ)g(x, ξ)| = |f(x+ h, ξ)g(h+ x, ξ)− f(x, ξ)g(x, ξ)|

= |[f(x+ h, ξ)− f(x, ξ)]g(x+ h, ξ) + f(x, ξ)[g(x+ h, ξ)− g(x, ξ)]|

≤ ‖g(·, ξ)‖L∞ [f ]Cs |h|s + ‖f(·, ξ)‖L∞‖g(·, ξ)‖Cs |h|s

≤ C〈ξ〉m+δr|h|s + 〈ξ〉m+1|h|s ≤ C|h|s〈ξ〉m+1+δr.

Now, coming back to (55) we have that

|Dγ
xp(x+ h,D)ϕ(x+ h)−Dγ

xp(x,D)ϕ(x)|

≤
∫
|ϕ̂(ξ)|[ξm+δr+1|h|s + Cξm+|β|+δr+1|h|s]dξ ≤ C|h|s

and this concludes that p(x,D)ϕ ∈ Cr = Cr∗ .

This proof above could possibly be adapted for r ∈ N, r > 0. However, as the difference quotients
defining Cr∗ for r ∈ N are more complicated, we will not worry about this. In any case, we have the
following corollary for free.

Corollary 10. Let r > 0, m ∈ R, and ρ, δ ∈ [0, 1]. Given p(x, ξ) ∈ Cr∗S
m
ρ,δ(Rn), it follows that

p(x,D) : S → Cs∗(Rn) for every s < r. In addition, if β ∈ Nn is such that β ≤ r− 1, then Dβ
xp(x,D)ϕ

is rapidly decreasing for any ϕ ∈ S.
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Proof. We have ‖·‖Cs∗ ≤ ‖·‖Cr∗ . So, if p(x, ξ) ∈ Cr∗Smρ,δ, then p(x, ξ) ∈ Cs∗Smρ,δ, and now the proposition
8 gives the claim.

In fact, with a considerable amount of work, the following result can be proved, which is far better
than Corollary 10 above. The important case for us will be to take δ = 0 in the Theorem below.

Theorem 11. Let r > 0, δ ∈ [0, 1), m ∈ R and p(x, ξ) ∈ Cr∗Sm1,δ(Rn). Suppose that s ∈ R satisfies
−(1− δ)r < s < r. Then we have

p(x,D) : Cm+s
∗ (Rn)→ Cs∗(Rn)

This always means unless explicit mention that p(x,D) is continuous, i.e, there exists a constant C so
that for every u ∈ Cs+m∗ (Rn) we have ‖p(x,D)u‖Cs∗(Rn) ≤ C‖u‖Cm+s

∗ (Rn).

Proof. See [8], Chapter 13, Proposition 9.10. The proof is highly technical and requires some back-
ground. Note that m, s could be negative, so the proof has to work with the Fourier transform.

Remark 28. (1) Let us think about what the Theorem 11 above tell us in the particular case of
p(x,D) =

∑
|α|≤m aα(x)Dα being a differential operator of order m with coefficients aα ∈ Cr∗(Rn). We

know that in this case the symbol p(x, ξ) ∈ Cr∗Sm1,0(Rn). Given u ∈ S ′ one is tempted to make sense
of p(x,D)u =

∑
aα(x)Dαu as an element of S ′ in the usual sense, i.e, by putting for ϕ ∈ S

(aα(x)Dαu, ϕ) = (Dαu, aαϕ) = (−1)|α|(u,Dα[aαϕ]) (56)

The problem here is that aα, though is slowly increasing, is not smooth, so for general u ∈ S ′ the
expression (56) will not make sense. The Theorem above tell us that if we require more than simply
u ∈ S ′, i.e, if we require that u ∈ Cm+s

∗ (Rn) for some s ∈ (−r, r), then we can make sense of p(x,D)u
as a tempered distribution, so the expression (56) holds in some sense. Moreover the Theorem says
that p(x,D)u ∈ Cs∗(Rn).

(2) A trivial example of a situation in which the expression (56) makes sense would be to suppose
that u ∈ Cm+s

∗ for some s > 0. Then Dαu is a bounded function, so in (56) we can make sense of
(Dαu, aαϕ). Note however that the Theorem allow s to be negative also, so certainly is more powerful
than this naive approach.

(3) Consider the special case of p(x,D)u = a(x)u a differential operator of order 0, for a ∈ Cr∗(Rn),
then the Theorem says that the operator given by multiplication by a maps Cs∗(Rn) to Cs∗(Rn) if
|s| < r. This is just what Lemma 15 says.

Now we shall define the notion of ellipticity for pseudodifferential operators.

Definition 35. Let r > 0, and let p(x, ξ) ∈ Cr∗Smρ,δ(Rn). Consider the associated operator p(x,D).
We say that p(x,D) is elliptic if the following conditions are satisfied:

(a) There exits R > 0 such that p(x, ξ) 6= 0 for any |ξ| ≥ R, x ∈ Rn
(b) We have |p(x, ξ)−1| ≤ C〈ξ〉−m if x ∈ Rn, |ξ| ≥ R

Remark 29. This definition is somewhat different than the definition given for ellipticity of differential
operators, but we have the following.

Given p(x,D) a linear differential operator with continuous and bounded coeficcients aα, if p(x,D)
is elliptic in the sense of differential operators, then it is also elliptic regarded as a pseudodifferential
operator. Indeed, let pk(x, ξ) :=

∑
|α|=k aα(x)ξα for k = 0, . . . ,m. By definition of uniform ellipticity,
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we know that for some Cm > 0 we have |pm(x, ξ)| ≥ Cm|ξ|m. Therefore, as the aα are bounded, this
yields

|p(x, ξ)| = |
m∑
k=0

|ξ|kpk(x, ξ|ξ|−1)| ≥ Cm|ξ|m − C(|ξ|m−1 + · · ·+ 1)

So if |ξ| is large, |p(x, ξ)| 6= 0 for all x ∈ Rn. Besides we see that |p(x, ξ)| ≥ C〈ξ〉m for ξ large, so
|p(x, ξ)−1| ≤ C〈ξ〉−m for ξ large, and this shows that p(x, ξ) is elliptic as a pseudodifferential operator.

Now we state, without proof, a powerful result concerning elliptic regularity in the world of pseu-
dodifferential operators in Rn.

Theorem 12. Let s > 0, m ∈ R, and assume p(x, ξ) ∈ Cs∗S
m
1,0(Rn) is elliptic. Suppose that u ∈

Cm−s+ε∗ (Rn) for some 0 < ε < 2s, and that f ∈ Cr∗(Rn) for some −s < r ≤ s.
Under this hipothesis, if u is a solution (in the distributional sense) of the equation

p(x,D)u = f

then actually u ∈ Cm+r
∗ (Rn).

Remark 30. Recall that under the hipothesis of Theorem 12 above, it obviously holds that −s <
−s+ ε < s, so by Proposition 11 it follows that

p(x,D) : Cm−s+ε∗ (Rn)→ C−s+ε∗ (Rn).

From this we see that we can make sense of p(x,D)u as an element of C−s+ε∗ (Rn).

Proof. See [8], Chapter 14, Theorems 4.2 and 4.3.

Remark 31. Under the hipothesis and notations of the Theorem 12 above, note that when r = s
this result is similar to the classic elliptic regularity result given in Theorem 7. Indeed, suppose that
p(x,D) is a differential operator with coefficients aα, and suppose aα, f ∈ Cs∗(Rn). Then, if s is not
integer, this Theorem ends up with the same conclusion than the classic elliptic regularity in Theorem
7. The singular cases in Theorem 7 arise, as we saw, when aα and f are not Ck,α for k ∈ N and
0 < α ≤ 1. This Theorem shows that when aα and f are Ck∗ then u is Cm+k

∗ , so this cases are also
singular here because for integer exponent the Zigmund spaces are not Holder spaces anymore.

In the future we will need to use elliptic regularity working in coordinates on a Riemannian
manifold M , so we shall encounter differential operators with coefficients defined not in all Rn but in
some open set Ω. This is why it is interesting for us to deduce a local version of 12, as we do in the
next propositions. First we prove an analogous result of Theorem 11 but changing Rn by an open set
Ω. Although it can be done, here we do not need to define the concept of symbols defined in Ω. We
will simply work with linear differential operators with coefficients defined in Ω.

Proposition 9. Let Ω ⊂ Rn be an open set and r > 0. Suppose we have a linear differential operator

p(x,D) =
∑
|α|≤m

aα(x)Dα

with coefficients aα in Cr∗(Ω). Let s ∈ R satisfy −r < s < r. Then we have the mapping property

p(x,D) : Cm+s
∗ (Ω)→ Cs∗(Ω)

This means that there exists a constant C so that for every u ∈ Cm+s
∗ (Ω) we have

‖p(x,D)u‖Cs∗(Ω) ≤ C‖u‖Cm+s
∗ (Ω).
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Proof. Let u ∈ Cs+m∗ (Ω), and consider any extension û ∈ Cs+m∗ (Rn). Consider also extensions âα ∈
Cr∗(Rn) of aα and let p̂(x,D) :=

∑
|α|≤m âα(x)Dα be the corresponding extension of p(x,D). As

discussed above, we have that p̂(x, ξ) ∈ Cr∗Sm1,0(Rn). Therefore we apply Theorem 11 to see that

‖p̂(x,D)û‖Cs∗(Rn) ≤ Cp̂‖û‖Cm+s
∗ (Rn) (57)

In particular we see that p(x,D)u has an extension p̂(x,D)û ∈ Cs∗(Rn), so by definition p(x,D)u ∈
Cs∗(Ω), and from (57) we see that ‖p(x,D)u‖Cs∗(Ω) ≤ Cp̂‖û‖Cm+s

∗ (Rn). Now, as Cp̂ does not depend on û,

we can take the infimum over the extensions û of u to conclude that ‖p(x,D)u‖Cs∗(Ω) ≤ Cp̂‖u‖Cm+s
∗ (Ω),

and this gives the claim.

Remark 32. Note that we can take in the Proposition 9 above p(x,D) = Dα for any multiindex

α ∈ Nn whose symbol p(x, ξ) = ξα ∈ S|α|1,0C
∞+0(Rn) and therefore for any s ∈ R and for any open set

Ω ⊂ Rn we have

Dα : Cs∗(Ω)→ C
s−|α|
∗ (Ω) (58)

This result seems simple if one think in the exponent s as the order of differentiability of the space
Cs∗ , but we recall that the exponent just expresses how quikly the Fourier multipliers ϕj(D)u decay,
being ϕj a Littlewood-Payley partition of unity as in Definition 27.

Let us see that the naive approach does not work to see (58). For example take Ω = Rn and
u ∈ Cs∗(Rn) for some s ∈ R. Differentiating under the integral sign and integrating by parts, it is easy
to check that

ϕj(D)∂xiu = ∂xi [ϕj(D)u]

as distributions, so for φ ∈ S we have

|(ϕj(D)∂xiu, φ)| = |(ϕj(D)u, ∂xiφ)| ≤ ‖ϕj(D)u‖L∞(Rn)‖∂xiφ‖L1(Rn) ≤ ‖u‖Cs∗(Rn)2
−js‖∂xiφ‖L1(Rn)

If we take the supremum on φ ∈ S with ‖φ‖L1(Rn) = 1 in the expresion above we obtain the trivial
estimate ‖ϕj(D)∂xiu‖L∞(Rn) ≤ ∞, since the differential operators are unbounded in L1(Rn).

This shows that the estimate we did above does not work at all to get the assymptotic decay
for ‖ϕj(D)∂xiu‖L∞(Rn) of type 2−j(s−1) we are looking for. So it is necessary to make much sharper
estimates even for this simple result.

Proposition 10. Let B ⊂ Rn be a ball and let Ω ⊂ Rn be an open set such that B ⊂⊂ Ω. Suppose
we have a linear elliptic differential operator

p(x,D) =
∑
|α|≤m

aα(x)Dα

with coefficients aα in Cr∗(Ω), where r > 0. Suppose in addition that p(x,D)u = f in D′(Ω), where
u ∈ Cm−r+ε∗ (Ω) for some 0 < ε < 2r and f ∈ Cµ∗ (Ω) for some −r < µ ≤ r. Then u ∈ Cm+µ

∗ (B).

Remark 33. By the Proposition 9 above, as −r < −r + ε < r, we know that

p(x,D) : Cm−r+ε∗ (Ω)→ C−r+ε∗ (Ω)

so in particular p(x,D)u ∈ C−r+ε∗ (Ω) and the equation p(x,D)u = f in D′(Ω) makes sense.
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Proof. For simplicity we assume that B is centered at 0. Let B′ another ball centered at 0 such that
B ⊂⊂ B′ ⊂⊂ Ω, and let χ ∈ C∞c (B′) such that χ = 1 in a neighborhood of B. Write v := χu. Then
we have

p(x,D)v = χ
∑
|α|≤m

pα(x)Dαu(x) +
∑
|α|≤m

∑
|γ|+|η|=|α|
|η|≤|α|−1

pα(x)DγχDηu = χf + f̂

f̂ :=
∑
|α|≤m

∑
|γ|+|η|=|α|
|η|≤|α|−1

pα(x)DγχDηu
(59)

Note that in the sum above |η| ≤ |α| − 1 ≤ m − 1, and f̂ is a sum of products of a Cr∗(Ω) function
pα, a C∞c (Ω) function Dγχ, and a C1−r+ε

∗ (Ω) function Dηu. We claim that f̂ ∈ Cσ∗ (Rn) for σ :=
min{r, 1− r + ε}.

Indeed, if 1 − r + ε > 0, by Proposition 16 we see that f̂ ∈ Cσ∗ (Rn). On the other hand, if
1− r + ε < 0, we have that r > |1− r + ε| = r − 1− ε, so this time we apply Lemma 15 to conclude
that f̂ ∈ Cσ∗ (Rn).

In order to apply Theorem 12 we need to extend the coefficients pα ∈ Cr∗(Ω) to all Rn in such a
way that the extensions p̂α are Cr∗(Rn) and besides the extended symbol p̂(x, ξ) = p̂α(x)ξα is elliptic
(in the sense of pseudodifferential operators). To do this, consider K the inversion of the ball B′. If r
is the radious of B′, K has the formula

K(x) = r2 x

|x|2
. (60)

Note that from this formula we see that K and all its derivatives are uniformly bounded away from
zero, so K ∈ C∞+0(Rn\B). Define now

qα(x) =

{
pα(x) x ∈ B′
pα(K(x)) otherwise

As the principal symbol pm(x, ξ) of p(x,D) is non zero for x ∈ Ω, ξ 6= 0, it is clear that qm(x, ξ) :=∑
|α|=m qα(x)ξα satisfies that qm(x, ξ) 6= 0 for x ∈ Rn, ξ 6= 0. However, the functions qα could have a

corner in ∂B′, so we need to smooth them near ∂B′ with minimal changes elsewhere. For this, take
χ̂ ∈ C∞c (B′) with χ̂ = 1 in a neighborhood of supp(χ), and define

p̂α := ρδ ? ((1− χ̂)qα) + χ̂qα

where ρδ := δ−nρ(x/δ), for some ρ ∈ C∞c (B(0, 1)) such that
∫
ρ = 1, are a family of standard mollifiers.

We claim that p̂α converges uniformly to qα in Rn as δ → 0.
To see this, we shall see first that qα is bounded and uniformly continuous in Rn. Indeed take the

compact C = B′ +B(0, 1). Then qα is uniformly continuous in C, as it is a continuous function
defined in a compact. On the other hand, it is straighforward looking at (60) that the differential of
the function K is uniformly bounded Rn\B′, so K is Lipschitz in Rn\B′, and then pα ◦K is uniformly
continuous there. Now, given x, y ∈ Rn, with |x− y| < 1, either both x, y are in C or in Rn\B′, and
this gives that qα is uniformly continuous. That qα is bounded is obvious.

So, we see that (1− χ̂)qα is bounded and uniformly continuous in Rn, and therefore we have that
ρδ ? ((1− χ̂)qα) converges to (1− χ̂)qα uniformly in all Rn as δ → 0. This can be seen by the classic
computation that shows that for any function f it holds

|(ρδ ? f)(x)− f(x)| =
∣∣∣∣∫
Bδ

ρδ(x− y)[f(y)− f(x)]dy

∣∣∣∣ ≤ sup
x,y∈Rn

{|f(x)− f(y)| : |x− y| ≤ δ}
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Therefore, also p̂α = ρδ ? ((1 − χ̂)qα) + χ̂qα coverges to qα = (1 − χ̂)qα + χ̂qα uniformly in all Rn as
δ → 0, as we wanted to see.

Now we shall see that p̂α ∈ Cr∗(Rn) if δ is small. Of course p̂α is smooth, but we need to see the
boundness of the derivatives up to order k for any integer k ≤ r (≤ r − 1 if r is integer) , and the
boundness of the difference quotients.

Since χ̂qα ∈ Cr∗(Rn), it suffices to see that ρδ ? ((1− χ̂)qα) ∈ Cr∗(Rn). To see this, take a compact
F such that Ω ⊂ F , and note that obviously ρδ ? ((1− χ̂)qα) ∈ Cr∗(F ) since it is smooth in Rn.

That said, note that (1− χ̂)qα(x) = qα(x) = pα(K(x)) for x outside Ω. As K is C∞+0 outside Ω
and pα is Cr∗ in B, we have that

(1− χ̂)qα ∈ Cr∗(V ) for some neighborhood V of Rn\F

We will need this neighborhood V to mollify well later.
We claim that this implies that ρδ ? ((1 − χ̂)qα) is Cr∗(Rn\F ). Indeed, for each integer k with

k < r − 1 and every α ∈ Nn such that |α| = k, we know that Dα[(1− χ̂)qα]) exists on V . Then, for δ
so small that Rn\F +B(0, δ) ⊂ V , and for x ∈ Rn\F , we have

|Dα[ρδ ? ((1− χ̂)qα)](x)| = |(ρδ ? (Dα[(1− χ̂)qα]))(x)|

≤ ‖Dα[(1− χ̂)qα]‖L∞(V )‖ρδ‖L1 = ‖Dα[(1− χ̂)qα]‖L∞(V )

This shows that Dα[ρδ ? ((1 − χ̂)qα)] is bounded in Rn\F . If r is not integer, this applies also for
k < r. So the derivatives are bounded, and it remains to see that the difference quotients also are.

Let us see that the difference quotients of the higher derivatives are well bahaved. This follows by
linearity. Indeed, suppose r /∈ N and let Dα[(1− χ̂)qα] be any of this higher derivatives, i.e, with |α|
equal to the biggest integer smaller that r. Then we have, for x, y ∈ Rn\F

|Dα[ρδ ? ((1− χ̂)qα)](x)−Dα[ρδ ? ((1− χ̂)qα)](y)|

= |(ρδ ? (Dα[(1− χ̂)qα]))(x)− (ρδ ? (Dα[(1− χ̂)qα]))(y)|

≤
∫
ρδ(σ)|Dα[(1− χ̂)qα](x− σ)−Dα[(1− χ̂)qα](y − σ)|dσ ≤ [Dα[(1− χ̂)qα]]Cr∗(Rn\F )

If r is an ineteger, we make an analogous computation, and we estimate also the second order differece
quotients in Rn\F of Dα[(1− χ̂)qα], for any α ∈ Nn with |α| = r − 1.

This shows that ρδ ? ((1 − χ̂)qα) ∈ Cr∗(Rn\F ). But recall that we also saw before that ρδ ? ((1 −
χ̂)qα) ∈ Cr∗(F ). As ρδ ? ((1 − χ̂)qα) is smooth in a neighborhood of ∂F , this finally shows that
ρδ ? ((1− χ̂)qα) ∈ Cr∗(Rn).

Summarising, we have seen that p̂α ∈ Cr∗(Rn) if δ is small, and that p̂α converges uniformly to qα
in Rn as δ → 0, being

p̂α := ρδ ? ((1− χ̂)qα) + χ̂qα

Consider now p̂m(x, ξ) =
∑
|α|=m p̂α(x)ξα. We want to see that this symbol satisfies the ellipticity

conditions.
By hipothesis, we know that pm(x, ξ) : Ω × {|ξ| = 1} → R never vanishes, so it has a minumun

γ > 0 in B′ × {|ξ| = 1}. This γ is also a minumun of qm(x, ξ) =
∑
|α|=m qα(x)ξα in Rn × {|ξ| = 1}.

Now, as p̂α converges uniformly to qα in Rn as δ → 0, it is clear that also p̂m(x, ξ) converges
uniformly to qm(x, ξ) in Rn × {|ξ| = 1} as δ → 0, so for δ small we know that p̂m(x, ξ) ≥ 1

2γ if
(x, ξ) ∈ Rn × {|ξ| = 1}. By homogenety in ξ, this shows that

p̂m(x, ξ) ≥ 1

2
γ|ξ|m for all x, ξ ∈ Rn
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and therefore p̂m(x, ξ) satisfies the elliticity conditions, so the differential operator p̂(x,D) is elliptic
(in the sense of pseudodifferential operators) with principal symbol p̂m(x, ξ) ∈ Cr∗Sm1,0(Rn).

Now, as χ̂ = 1 in a neighborhood of supp(χ), we have that, if δ is so small that supp(χ)+B(0, 2δ) ⊂
{χ̂ = 1}, then pα = p̂α in a neighboorhood of supp(χ) . Then, being as before v = χu, we remind
that, by the computations in (59), we have

p̂(x,D)v = p(x,D)v = χf + f̂ := g

with f̂ ∈ Cσ∗ (Rn), being σ = min{1− r+ ε, r}, v ∈ Cm−r+ε∗ (Rn), and χf ∈ Cµ∗ (Rn),−r < µ ≤ r. Now
we distinguish cases.

If 0 < r ≤ 1
2(1 + ε), then f̂ ∈ Cr∗(Rn), and therefore g = χf + f̂ ∈ Cµ∗ (Rn). Now we can use

Theorem 12 to conclude that v ∈ Cm+µ
∗ (Rn), so, as χ = 1 in a neighborhood of B, we see that

u ∈ Cm+µ
∗ (B), and the proposition is proved.

If r > 1
2(1+ε), then f̂ ∈ C1−r+ε

∗ (Rn), so g ∈ Cmin{1−r+ε,µ}. As −r < min{1−r+ε, µ} < r, we can

use Theorem 12 and conclude that v ∈ Cm+min{µ,1−r+ε}
∗ (Rn). If µ ≤ 1− r+ ε we have v ∈ Cm+µ

∗ (Rn),
so u ∈ Cm+µ

∗ (B) and we are done. Otherwise we keep going. If 1−r+ε < µ, then v ∈ Cm+1−r+ε
∗ (Rn),

so u ∈ Cm+1−r+ε
∗ (B). Thus, u has gained 1 derivative, so we have to repeat the argument, using that

u has gained 1 derivative.

Recalling that p̂α = pα in a neighborhood of supp(χ), from (59) we see that

f̂ :=
∑
|α|≤m

∑
|γ|+|η|=|α|
|η|≤|α|−1

p̂α(x)DγχDηu

As p̂α ∈ Cr∗(Rn) and DγχDηu ∈ C2−r+ε
∗ (Rn), we conclude that f̂ ∈ Cmin{2−r+ε,r}∗ (Rn) by the same

argument we gave before, i.e, if 2− r+ ε > 0 we use Proposition 16 and if 2− r+ ε ≤ 0 we use Lemma
15 since |2− r + ε| = r − 2− ε < r.

Now, if 0 < r ≤ 1
2(2 + ε), then f̂ ∈ Cr∗(Rn), so g = χf + f̂ ∈ Cµ∗ (Rn) and therefore by Theorem

12, v ∈ Cm+µ
∗ (Rn), so u ∈ Cm+µ

∗ (B).

If r > 1
2(2 + ε), then f̂ ∈ C2−r+ε

∗ (Rn), so g ∈ Cmin{2−r+ε,µ}. As −r < min{2 − r + ε, µ} < r, we

use Theorem 12 to conclude that v ∈ Cm+min{µ,2−r+ε}
∗ (Rn). If µ ≤ 2− r + ε we have v ∈ Cm+µ

∗ (Rn),
so u ∈ Cm+µ

∗ (B) and we are done. Otherwise we keep going. If 2−r+ε < µ, then v ∈ Cm+2−r+ε
∗ (Rn),

so u ∈ Cm+2−r+ε
∗ (B). Thus, u has gained 1 more derivative, and we have to repeat the argument.

After repeating the argument j ∈ N times, we must get that either 0 < r ≤ 1
2(j+ε) or r > 1

2(j+ε)

and µ ≤ j − r + ε. In any case we conclude u ∈ Cm+µ
∗ (B). This proves the proposition.

In the future we will need to deal with regularity problems not only for a PDE alone, but also
for systems of PDE’S. To tackle this problem, we need to define differential operators with matrix
coefficients and the corresponding pseudodifferential operators with matrix-valued symbols. The no-
tion of ellipticity is this setting follows the same idea, i.e, a differential operator p(x,D) with matrix
coefficients will be elliptic if we are able to find some kind of inverse a(x,D) so that a(x,D)p(x,D) is
similar to the identity. Therefore we will require the symbol of p(x,D) to be a left invertible matrix
(i.e, inyective).

Let us see heuristically the idea. Suppose we have the system of PDE’S given by p(x,D)u = f .
If we apply a(x,D), we see that u = a(x,D)f . Therefore, if a(x,D)f is smoother than f was (i.e, if
a(x,D) is an smoother operator), then we see that u gains regularity. The notion of smoother operator
is related with the decay of its symbol at infinity in the ξ variable. Therefore, as in the case of scalar
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symbols, we shall require that the left inverse of the symbol of p(x,D) has a good decay at infinity in
the ξ variable.

All the definitions are totally analogous for matrix coefficients. We illustrate this by an example.
We will try to use capital letters for matrix valued differential and pseudodifferential operators and
for its associated symbols.

Example 4. Consider the system of PDE’S given by the Cauchy-Riemannn equations. For f(x1, x2) =
(u(x1, x2), v(x1, x2)) : R2 → R2 we consider the system

∂u

∂x1
=

∂v

∂x2
;

∂u

∂x2
= − ∂v

∂x1
equivalent to

P1 [(ux1 , vx1)]t + P2 [(ux2 , vx2)]t = (0, 0)t

P1 =

(
1 0
0 1

)
P2 =

(
0 −1
1 0

) (61)

So the differential operator associated to this system in multiindex notation is given by P (x, ∂) =
P1∂

(1,0) + P2∂
(0,1), whose symbol is P (x, ξ) = P1ξ1 + P2ξ2, and therefore

P (x, ξ) =

(
ξ1 −ξ2

ξ2 ξ1

)
; [P (x, ξ)]−1 = |ξ|−2

(
ξ1 ξ2

−ξ2 ξ1

)
Note that the determinant of P (x, ξ) is |ξ|2 so it is invertible and the formula above holds. Besides it
is straightforward that |P (x, ξ)−1| ≤ |ξ|−1, where for any n×m matrix A we denote |A| for the norm
of A regarded as an element of Rnm.

We conclude that the Cauchy-Riemann equations can be regarded as an elliptic differential operator
or oder 1. Indeed, it is well known from complex analysis that any C1 function (u, v) satisfying these
equations is smooth (in fact analytic), so the elliptic regularity results are satisfied.

Now we briefly define the notions for matrix psedodifferential and differential operators, recalling
that thery are analogous to the scalar case. We shall explicitly give here only the definitions that we
will use later

Definition 36. Let Ω ⊂ Rn be open. A matrix-coefficient differential operator of order m in Ω is an
expression P (x,D) of the form

P (x,D) =
∑
|α|≤m

Pα(x)Dα

where α ∈ Nn and Pα(x) : Ω→ Ckl are k × l complex matrix valued functions of the form

Pα(x) =


p11(x) p12(x) . . . p1l(x)
p21(x) p22(x) . . . p2l(x)

...
...

...
...

pk1(x) pk2(x) . . . pkl(x)


The differential operator P (x,D) acts on vectorial functions u = (u1, . . . , ul) with values in Cl by the
usual matrix multiplication, so P (x,D)u = Pα(x)Dαu is a function with values in Ck.

The symbol P (x, ξ) of P and its homogeneous part Pl(x, ξ) of dedree l are the matrix coefficient
polinomials given by

P (x, ξ) =
∑
|α|≤m

Pα(x)ξα ; Pl(x, ξ) =
∑
|α|=l

Pα(x)ξα
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The principal part of P (x, ξ) is Pm(x, ξ), i.e, its homogeneous part of higher degree.
Moreover we have analogous concepts of ellipticity.
(1) If k = l then Pm(x, ξ) is an square matrix and we say that the operator P (x,D) is elliptic

provided that Pm(x, ξ) is an invertible matrix for ξ 6= 0.
(2) If l ≤ k we say that P (x,D) is overdetermined elliptic if the symbol Pm(x, ξ) has l linearly

independent columns (is inyective) for ξ 6= 0.

Definition 37. Form ∈ R, ρ, δ ∈ [0, 1], and r > 0 we define the class of matrix symbols Cr∗S
m
ρ,δ(Rn;Ck×l)

as the k × l complex matrix valued functions

P (x, ξ) = (pij(x, ξ))
k,l
i,j=1,1

such that every of its components pij(x, ξ) belongs to the scalar class of Cr∗S
m
ρ,δ(Rn) symbols. This is

equivalent to the conditions
(1) ‖Dα

ξ P (·, ξ)‖L∞(Ckl) ≤ Cα〈ξ〉m−ρ|α| for some constant Cα > 0.

(2) ‖Dα
ξ P (·, ξ)‖Cr∗(Rn;Ckl) ≤ Cα〈ξ〉m−ρ|α|+δr.

Recall that the norms in (1) and (2) are the corresponding matrix norms. One can take any
matrix norm since all of them are equivalent, but we could just think on vector valued functions
P (x, ξ) instead of matrix-valued functions and take the Euclidean norm for the matrixes, considered
as elements of Ckl.

The pseudodifferential operator P (x,D) associated to a symbol P (x, ξ) acting on a Cl valued
function u = (u1, . . . , ul) is given by

P (x,D)u(x) =

∫
P (x, ξ)û(ξ)e2πix·ξdξ =

(
l∑

a=1

p1,a(x,D)ua(x), . . . ,

l∑
a=1

pk,a(x,D)ua(x)

)
(62)

Note that the integration is done component by component, so û = (û1, . . . , ûl) is also an Cl valued
function, and P (x, ξ)û(ξ) ∈ Ck. Therefore also P (x, ξ)u(x) is a Ck valued function in the x-variable.
Let us define the notions of ellipticity.

(1) If k = l then P (x, ξ) is an square matrix, we say that the operator P (x,D) is elliptic provided
there exists R > 0 big enough so that for |ξ| ≥ R we have that P (x, ξ) is an invertible matrix and
besides |P (x, ξ)−1| ≤ C|ξ|−m.

(2) If l ≤ k we say that P (x,D) is overdetermined elliptic if the symbol P (x, ξ) has l linearly
independent columns for |ξ| ≥ R, (i.e, if P (x, ξ) is inyective for |ξ| ≥ R) and we demand also that, if
for |ξ| > R we call A(x, ξ) to the left inverse of P (x, ξ) such that A(x, ξ)P (x, ξ) = Id, then we have
the estimate |A(x, ξ)| ≤ C|ξ|−m.

(3) If l ≤ k we say that P (x,D) is uniformly overdetermined elliptic if there exists R > 0 such
that for |ξ| ≥ R we have that P (x, ξ) is inyective and besides

(ζ, P (x, ξ)∗P (x, ξ)ζ) := ζ∗ · P (x, ξ)∗P (x, ξ)ζ ≥ C|ζ|2|ξ|2m (63)

for ξ ∈ Rn, |ξ| ≥ R and ζ ∈ Cl. Here (·, ·) denotes the hermitian product in Cn, and P (x, ξ)∗ :=

P (x, ξ)
t
, ζ∗ := ζ

t
are the conjugate transpose.

Remark 34. With notation as in Definition 37 above, suppose that P (x, ξ) is uniformly overdeter-
mined elliptic. Note that P (x, ξ)∗P (x, ξ) is a l × l matrix, and it as an autoadjoint operator defined
on Cl with its Hermitian product, so its norm is easy to compute. Therefore, taking into account (63)
and the formula to compute the norm of an autoadjoint operator, we see that

|P (x, ξ)∗P (x, ξ)| = sup
|ζ|=1

(ζ, P (x, ξ)∗P (x, ξ)ζ) ≥ C|ξ|2m
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On the other hand, it is well known that |P (x, ξ)∗P (x, ξ)| ≈ |P (x, ξ)|2 (this means that they are
equivalent up to universal constants, and can be seen by considering the spectral norm for example),
so |P (x, ξ)| ≥ C|ξ|m. Now consider, for |ξ| ≥ R, the left inverse A(x, ξ) of P (x, ξ). Then we have

C = |Id| = |A(x, ξ)P (x, ξ)| ≤ C1|A(x, ξ)||P (x, ξ)|

so we see that |A(x, ξ)| ≤ C|P (x, ξ)|−1 ≤ C1|ξ|−m, so as expected P (x, ξ) is elliptic.

Remark 35. Suppose we have a linear k × l matrix valued differential operator P (x,D) of order m
with symbol P (x, ξ) given by

P (x,D) =
∑
|α|≤m

Aα(x)Dα ; P (x, ξ) =
∑
|α|≤m

Aα(x)ξα

and with bounded coefficients Aα(x). Suppose that P (x,D) is overdetermined elliptic in the sense
of differential operators. We claim that also P (x,D) is uniformly overdetermined elliptic in the
pseudodifferential sense. To see this note that as Pm(x, ξ) is inyective for |ξ| ≥ R, by homogeneity in
ξ we see that in fact Pm(x, ξ) is inyective for all ξ 6= 0.

That said, we claim that for ξ 6= 0, Pm(x, ξ)∗Pm(x, ξ) is an invertible l × l matrix. Indeed, if
Pm(x, ξ)∗Pm(x, ξ)ζ = 0, for some ζ ∈ Cl, then we have

0 = ζ∗ · Pm(x, ξ)∗Pm(x, ξ)ζ = ζ∗Pm(x, ξ)∗ · Pm(x, ξ)ζ = |Pm(x, ξ)ζ|2

so, as Pm(x, ξ) is inyective, we see that ζ = 0. Therefore Pm(x, ξ)∗Pm(x, ξ) is inyective, and hence
invertible. Moreover we can take

C := inf{ζ∗ · Pm(x, ξ)∗Pm(x, ξ)ζ : |ξ| = |ζ| = 1} = inf{|P (x, ξ)ζ|2 : |ξ| = |ζ| = 1} > 0

As ζ∗ · Pm(x, ξ)∗Pm(x, ξ)ζ is homogeneous of degree 2m in ξ and degree 2 in ζ, we see that Pm(x, ξ)
satisfies estimate (63) for every ξ 6= 0. Moreover, |ξ| is big enough, Pm(x, ξ) dominates the behaviour
of the entire symbol P (x, ξ), so using that Aα(x) are bounded, the same calculation done for scalar
symbols show that P (x, ξ) also satisfies estimate (63), so P (x,D) is uniformly overdetermined elliptic.

Now we shall check that the mapping properties of scalar pseudodifferential operator have analo-
gous here.

Theorem 13. Let r > 0, δ ∈ [0, 1), m ∈ R and P (x, ξ) ∈ Cr∗Sm1,δ(Rn;Ck×l) be an k× l complex matrix
valued symbol. Suppose that s ∈ R satisfies −(1− δ)r < s < r. Then we have

P (x,D) : Cm+s
∗ (Rn;Cl)→ Cs∗(Rn;Ck)

Also, there exists a constant C so that for every Cl valued function u so that u ∈ Cs+m∗ (Rn;Cl) we
have

‖P (x,D)u‖Cs∗(Rn;Ck) ≤ C‖u‖Cm+s
∗ (Rn;Cl).

Proof. Recall that P (x,D) acts by multipliying P (x, ξ) and û, and then each component of P (x,D)u
is a sum of scalar psedodifferential operators acting on the the components of u, as noted in (62).
Therefore this result is an inmediate consecuence for the scalar case given in Theorem 11.

We have the corresponding version for linear matrix valued pseudodifferential operators defined in
an open set, taqking δ = 1 in the prevous Theorem 13.
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Proposition 11. Let Ω ⊂ Rn be an open set and r > 0. Suppose we have a linear k× l matrix valued
differential operator

P (x,D) =
∑
|α|≤m

Aα(x)Dα

with coefficients Aα in Cr∗(Ω;Ck×l). Let s ∈ R satisfy −r < s < r. Then we have the mapping
property

P (x,D) : Cm+s
∗ (Ω;Cl)→ Cs∗(Ω;Ck)

So there exists a constant C so that for every u ∈ Cm+s
∗ (Ω;Cl) we have

‖P (x,D)u‖Cs∗(Ω;Ck) ≤ C‖u‖Cm+s
∗ (Ω;Cl).

Proof. This result is also an inmediate consequence of the scalar case given in Proposition 9, taking
into account how P (x,D) acts on u.

Now we give a generalization of Theorem 12 for uniformly overdetermined elliptic operators.

Theorem 14. Let s > 0, m ∈ R and let P (x, ξ) ∈ Cs∗S
m
1,0(Rn;Ck×l) be a k × l complex matrix

valued symbol. Suppose P (x, ξ) is uniformly overdetermined elliptic as in (63). Suppose that u ∈
Cm−s+ε∗ (Rn;Cl) for some 0 < ε < 2s, and suppose that f ∈ Cr∗(Rn;Ck) for some −s < r ≤ s.

Under these hipothesis, if u is a solution (in the distributional sense) of the equation

P (x,D)u = f

then actually u ∈ Cm+r
∗ (Rn;Cl).

Proof. The proof of this Theorem is not an inmediate consequence of the scalar case since in this
case the notion of ellipticity involves how the matrix of P (x, ξ) is in global terms, and not how its
components are. It must be checked that the proof of Theorem 12 can be adapted for these matrix
symbols, which is not difficult because the hard work is done to prove the scalar case (actually the
notion of ellipticity for matrix symbols is defined so that the proof for the scalar case can be adapted
for matrixes). The details are given in [15], Appendix A, Proposition A.2.

Finally we arrive to the result in which we are really interested. It is an easy modification of
Proposition 10.

Proposition 12. Let B ⊂ Rn be a ball and let Ω ⊂ Rn be an open set such that B ⊂⊂ Ω. Suppose
we have a linear k × l matrix valued differential operator

P (x,D) =
∑
|α|≤m

Aα(x)Dα

with coefficients Aα in Cr∗(Ω;Ck×l), where r > 0. Suppose that P (x,D) is overdetermined elliptic in
the sense of differential operators (i.e that its principal symbol Pm(x, ξ) is inyective for ξ 6= 0).

Suppose also that P (x,D)u = f in D′(Ω), where u ∈ Cm−r+ε∗ (Ω;Cl) for some 0 < ε < 2r and
f ∈ Cµ∗ (Ω;Ck) for some −r < µ ≤ r. Then u ∈ Cm+µ

∗ (B;Cl).

Remark 36. By the Proposition 11 above, as −r < −r + ε < r, we know that

P (x,D) : Cm−r+ε∗ (Ω;Cl)→ C−r+ε∗ (Ω;Ck)

so in particular P (x,D)u ∈ C−r+ε∗ (Ω;Ck) and the equation P (x,D)u = f in D′(Ω) makes sense.
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Proof. We shall see that the proof of the scalar case given in Proposition 10 can be adapted here
without a problem. Assume that B is centered at 0. Let B′ another ball centered at 0 such that
B ⊂⊂ B′ ⊂⊂ Ω, and let χ ∈ C∞c (B′) such that χ = 1 in a neighborhood of B. Write v := χu as in
the scalar case. We have

P (x,D)v = χf + f̂

f̂ :=
∑
|α|≤m

∑
|γ|+|η|=|α|
|η|≤|α|−1

Pα(x)DγχDηu (64)

Note that in the sum above f̂ is a sum of products of a Cr∗(Ω;Ck×l) function Pα, a C∞c (Ω) function
Dγχ, and a C1−r+ε

∗ (Ω;Cl) function Dηu. In the scalar case (when k = l = 1) we saw that f̂ ∈ Cσ∗ (Rn)
for σ := min{r, 1− r + ε} and obviously it is also true for matrixes.

Now we shall extend the coefficients Pα ∈ Cr∗(Ω;Ck×l) to P̂α ∈ Cr∗(Rn;Ck×l) so that the extended
symbol P̂ (x, ξ) = P̂α(x)ξα is uniformly overdetermined elliptic. We will follow the same procedure as
in the scalar case. Denote K the inversion of the ball B′, and define

Qα(x) =

{
Pα(x) x ∈ B′
Pα(K(x)) otherwise

Let ρδ a standard approximation of the dirac delta and set P̂α := ρδ ? ((1− χ̂)Qα) + χ̂Qα, where the
convolution is done component by component. As done in Proposition 10 we see that for δ → 0 we
have that P̂α converges to Qα uniformly in Rn, and besides P̂α ∈ Cr∗(Rn;Ck×l).

Consider now the symbol given by

P̂ (x, ξ) =
∑
|α|≤m

P̂α(x)ξα

We want to see that this symbol is uniformly overdetermined elliptic, i.e, that satisfies estimate (63).
As mentioned before, it is enough to see that the principal symbol P̂m(x, ξ) is inyective for ξ 6= 0.

By hipothesis, Pm(x, ξ) is injective for (x, ξ) ∈ Ω×{|ξ| = 1} → Ck×l . As being inyective is locally
expressed as having an invertible submatrix of range l × l, we see that there exists γ > 0 and there
exists a finite open cover Ai so that

Ai = Ui × Vi ⊂⊂ Ω× {|ξ| = 1} and B′ × {|ξ| = 1} ⊂
⋃
i

Ai

and such that in every Ai we can find a submatrix Mi(x, ξ) of Pm(x, ξ) whose order is l × l and with
determinant Di := Det(Mi)(x, ξ) ≥ γ in Ai.

Denote K̃ := IdχB′ +KχRn\B′ so that Qα = Pα ◦ K̃.

By construction, it is clear thatQm(x, ξ) = Pm(K̃(x), ξ) is injective for every (x, ξ) ∈ Rn×{|ξ| = 1}.
Besides if we consider the open cover

Ãi = K̃−1(Ui)× Vi of Rn × {|ξ| = 1}

it is clear that in every Ãi the submatrix of Qm(x, ξ) given by M̃i(x, ξ) := Mi(K̃(x), ξ) has order l× l
and determinant D̃i(x, ξ) := Det(M̃i)(x, ξ) ≥ γ in Ãi.

As P̂m(x, ξ) converges uniformly to Qm(x, ξ) in Rn × {|ξ| = 1} as δ → 0, and as the determinat is
an uniformly continuous function, we see that taking δ small enough we can achieve that, in Ãi, the
submatrix M̂i of P̂m(x, ξ) with the same entries as M̃i has determinant D̂i := Det(M̂i) ≥ 1

2γ in Ãi.

In particular the principal symbol P̂m(x, ξ) is injective in the set Rn × {|ξ| = 1}, and by homogeneity
in all Rn × Rn.
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Therefore the differential operator P̂ (x, ξ) is overdetermined elliptic as a differential operator, and
by Remark 35 we see that also P̂ (x, ξ) is uniformly overdetermined eliptic and besides P̂α coincides with
Pα in a neighborhood of supp(χ), so, being v = χu as before, we have P̂ (x,D)v = P (x,D)u = χf + f̂ .

Now we are under the hipothesis of Theorem 14. The rest of the proof is the same as the proof of
Proposition 10, with a boothstrap argument this time using Theorem 14 repeteadly.

§6. Construction of p-Harmonic Coordinates.

Now we focuss on constructing n-harmonic coordinates, which will be highly important to solve the
problem of conformal fatness for low regular metrics. In fact, we prove the existence of p-harmonic
coordinates por 1 < p < ∞, since the case p = n does not make easier the problem. First we shall
set the problem and make some computations needed later. The case p = n plays an special role
in conformal geometry, since the n-harmonic equation is conformally invariant. This means that a
solution of the n-harmonic equation for some metric g (this equation as we shall see depends on the
metric) is also a solution of the n-harmonic equation for any metric in the conformal class of g.

6.1. First Step. Weak Solution of p-Laplace Type Equations.

The first step to construct p-harmonic coordinates will be to find weak solutions to the p-Laplace
equation on a Riemannian manifold. We are only interested in local results near a point x0 in our
Riemannian manifold M , so via coordinates it will be enough to work in some open set Ω ⊂ Rn.
We need to see first how the p-Laplace equation is intrinsically defined on M . We shall see that the
equation on M has much analogies that the ususal p-Laplace equation in Rn.

Definition 38. Given a Riemannian manifold (M, g) and two functions f, g ∈ L2(M) we define its
L2 inner product as

(f, g) :=

∫
M
fgdV

where dV is the volume form of M , whose expression in coordinates is dV = |g|
1
2dx1 ∧ · · · ∧ dxn. In a

similar matter, for 1-forms α, β ∈ L2(M) we define its L2 inner product as

(α, β) :=

∫
M
g(α, β)dV

where we remind that g(α, β) := g(α#, β#) by definition.

In Rn the p-Laplace equation is defined as div(|grad(u)|p−2grad(u)) = 0, and this equation can
be set on a Riemannian manifold with no changes. In remark 13 we saw that, in local coordinates, if
X = bj∂j is a vector field, then

div(X) = ∂jb
j + bkΓjkj = ∂jb

j + bk
1

2
gja[∂kgja + ∂jgka − ∂agkj ]

= ∂jb
j +

1

2
bkgja∂kgja

(65)

The last inequality for simmetry of the last two summands in the indices j, a. However, this coordinate
expression is unconfortable for many things. In order to obtain a better coordinate expression we need
a cupple of lemmas.

Lemma 20. LetA ∈ GL(n) := {invertible square matrixes of order n} andB ∈Mn := {matrices of ordern n}.
Then det(A+ tB) = det(A) + tdet(A)Tr(A−1B) +O(t2)
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Proof. First we shall see that det(I + tB) = 1 + tT r(B) +O(t2). We proceed by induction on n. The
case n = 1 is trivial. Suppose the result is true for (n− 1)-order matrices. Let B = (bij), and denote
Bij the (n− 1) order matrix obtained from B by supressing its i-th row and j-th column. We have

det(I + tB) = (1 + tb11)det(I + tB)11 +
n∑
i=2

(−1)itbi1det(I + tB)i1

= (1 + tb11)(1 + tT r(B11))) +O(t2) = 1 + tT r(B) +O(t2)

where we used that for i > 1 the polinomial det(I + tB)i1 is divisible by t because its i-th column is
multiplied by t. Once this is proved, we use the multiplicative property of the determinant to get

det(A+ tB) = det(A ◦ I +A ◦ tA−1 ◦B) = det(A)(1 + tT r(A−1 ◦B)))

Remark 37. Note that Gl(n) is lie group whose tangent space at every matrix A ∈ GL(n) is Mn

because GL(n) is an open subset of Rn2
. We can consider the function in C∞(GL(n)) gicen by

det : GL(n)→ R : A 7→ det(A)

Witn notations as lemma above, B ∈ TAGL(n), and for t small, the curve α(t) := A+ tB is in GL(n)
and α′(0) = B, α(0) = A. We conclude that the differential at A of the determinant function is given
by (dAdet)(B) = det(A)Tr(A−1B)

Lemma 21. Let A : (a, b) → GL(n) : t 7→ A(t) be a differentiable matrix function depending on t,
where GL(n). Then ∂t[det(A(t)] = det(A(t))Tr(A(t)−1 ◦A′(t)), where ◦ denotes product of matrices.

Proof. By the chain rule, ∂t[det(A(t)] = (dA(t)det)(A
′(t)) = det(A(t))Tr(A(t)−1A′(t)) by the remark

above.

Lemma 22. In local coordinates, div(X) = |g|−
1
2∂j [b

j |g|
1
2 ]

Proof. Note first that, if G = (gij), then Tr(G−1 ◦ ∂jG) = gab∂jg
ab. Now we apply the chain rule and

the formula to differentiate the determinant to obtain

|g|−
1
2∂j [b

j |g|
1
2 ] = ∂jb

j + |g|−
1
2 bj

1

2
|g|−

1
2 |g|gab∂jgab

= ∂jb
j +

1

2
bjgab∂jgab = div(X)

(66)

where the last equality follows according to equation (65).

Let us see how one would think that the divergence has the expresion showed in the lemma
in coordinates. For this, we shall see that the divergence is the adjoint of the gradient operator
grad : C∞ → Γ(TM), in a sense we state now.

Proposition 13. Let u be a compactly interior supported function, i.e, u is zero outside a compact
set of int(M). We will note for this u ∈ C∞c (int(M)). Then we have that∫

M
g(grad(u), X)dV = −

∫
M
div(X)udV
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Proof. Ordinary calculus show us that this is true in Rn, and it in natural to expect it on a manifold.
In fact, the divergence can be defined as the operator that satisfies the above formula. To see it, let
us first consider u with support contained in a coordinate domain U . Then∫

M
g(grad(u), X)dV =

∫
U
gjkg

ak(∂bu)bj |g|
1
2dx =

∫
U

(∂ju)bj |g|
1
2dx

= [boundary terms are zero] = −
∫
U
u∂j [b

j |g|
1
2 ]|g|−

1
2dV

= −
∫
M
u∂j [b

j |g|
1
2 ]|g|−

1
2dV = −

∫
M
div(X)u

For general u ∈ C∞c (int(M)) we consider a partition of unity ϕi subordinate to an open cover of
coordinate patches Ui such that if supp(u) ∩ Ui 6= ∅ then Ui ⊂ int(M) (this way we make sure that
boundary terms are zero). Then∫

M
g(grad(u), X)dV =

∫
M
g(grad(

∑
i

ϕiu), X)dV =
∑
i

∫
M
g(grad(ϕiu), X)dV

= [by the previous case] =
∑
i

−
∫
M
ϕiudiv(X)dV = −

∫
M
div(X)udV

Corollary 11. In local coordinates, for a C2 function u, we have

∆u = div(grad(u)) = |g|−
1
2∂i[|g|

1
2 gij∂ju] = gij∂iju+ |g|−

1
2∂i[|g|

1
2 gij ]∂ju (67)

Now we consider the operator d : C∞(M)→ Ω1(M). This operator and the gradient are dual, so
the adjoint of d for the L2 escalar product will be dual to the divergence operator. This motivates the
following.

Definition 39. We define the codifferential as

δ : Ω1(M)→ C∞(M) : α 7→ δ(α) := div(α#)

Note that, defined this way, δ is the adjoint for d. Indeed, given α ∈ Ω1(M) and u ∈ C∞c (int(M))
we have ∫

M
g(α, du)dV =

∫
M
g(α#, grad(u))dV = −

∫
M
div(α#)udV = −

∫
M
δ(α)u.

By lemma 22, we obtain the expression in coordinates for δ. Given α = aidx
i, we know that α# =

gijai∂j , so

δ(α) = div(α#) = |g|−
1
2∂j [g

ijai|g|
1
2 ].

We have set the background to define the p−Laplace equation.

Definition 40. A function f ∈ C2(M) is p-harmonic if δ(|du|p−2du) = 0. Note that, by definition,
δ(|du|p−2du) = div(|grad(u)|p−2grad(u)) so this equation generalize the p-harmonic equation in Rn.
In local coordinates u is p-harmonic if and only if

δ(|du|p−2du) = |g|−
1
2∂j [|g|

1
2 gij(gab∂au∂bu)

p−2
2 ∂iu] = 0. (68)

If we differentiate this expression applying leibnitz’s rule we obtain

δ(|du|p−2du) =
1

2
gab∂jgabg

ij |du|p−2∂iu

+∂jg
ij |du|p−2∂iu+ gij∂iu∂j [|du|p−2] + gij |du|p−2∂iju = 0

(69)
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Proposition 14. Fix a coordinate system (x1, . . . , xn) in a coordinate path U ⊂ M . Define Γl =
gijΓlij . Then the following identities are true

Γl = −∆xl = −|g|−
1
2∂i[|g|

1
2 gil] = −1

2
gijglk∂kgij − ∂igli (70)

Proof. We know the second identity is true by (67). The third identity follows by the formula to
differentiate the determinant. Now, to see the first, we compute

Γl = gijΓkij = gij
1

2
glk(∂igjk + ∂jgik − ∂kgij)

= −1

2
gijglk∂kgij −

1

2
glkgjk∂ig

ij − 1

2
glkgik∂jg

ij

= −1
2g
ijglk∂kgij − 1

2∂ig
il − 1

2∂jg
lj = −1

2g
ijglk∂kgij − ∂igil

where we used that gij∂igjk = −∂igijgjk. This proves the claim.

The next proposition provides a useful characterization of when a coordinate function xk is p-
harmonic.

Proposition 15. Fix a coordinate system (x1, . . . , xn) in a coordinate path U ⊂ M . Then xl is
p−harmonic on U if and only if

Γl =
1

2
(p− 2)gjl∂j [log(gll)] = (2− p)

gjlΓlijg
il

gll

Proof. If we substitute u = xl in equation (69) we get, noting |xl|2 = gll, that

0 =
1

2
gab∂jgabg

jkδlk(g
ll)

p−2
2 + ∂jg

jkδlk(g
ll)

p−2
2 + gjkδlk∂j [(g

ll)
p−2

2 ]

=
1

2
gab∂jgabg

jl(gll)
p−2

2 + ∂jg
jl(gll)

p−2
2 + gjl

p− 2

2
(gll)

p−4
2 ∂jg

ll

= −(gll)
p−2

2 [−1

2
gab∂jgabg

jl − ∂jgjl −
p− 2

2
gjl
∂jg

ll

gll
]

= −(gll)
p−2

2 {Γl − 1

2
(p− 2)gjl∂j [log(gll)]}

and this gives the first equality. To see the second, we compute

Γlijg
il =

1

2
galgil[∂jgia + ∂igja − ∂agij ]

=
1

2
[−giagil∂jgal − gjagil∂igal + galgij∂ag

il]

= −1

2
∂jg

ll − 1

2
gjag

il∂ig
al +

1

2
gijg

al∂ag
il = −1

2
∂jg

ll

where we used that gal∂jgia = −gia∂jgal. This shows that the second equality is in fact an identity.

Once the basic calculations are done, we focus on the problem of proving the local existence of
solutions of the p−laplacian equation. Since we deal with a local question, we fix a local coordinate
chart (x1, . . . , xn) from now on, and we work in a fixed coordinte patch Ω ⊂ Rn. Moreover, we can
suppose that Ω has C∞ boundary (in fact we can suppose that Ω is a ball, though this will not be
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necessary). From the expression in local coordinates of the p−laplace equation given by equation (68)
we see that a function u is p−harmonic if and only if

∂j [|g|
1
2 gij(gab∂au∂bu)

p−2
2 ∂iu] = 0.

If we define the function A = (A1, . . . , An) : Rn × Rn → Rn with components

Aj(x, q) := |g|
1
2 (x)gij(x)(gab(x)qaqb)

p−2
2 qi (71)

then u is p−harmonic if and only if it satisfies

div(A(x,∇u(x))) = 0 (72)

Here ∇u is the usual gradient of u as a function defined on Rn, and div(A(x,∇u(x))) is the usual
divergence of the vector field defined on Rn by x 7→ A(x,∇u(x)). This type of equations arises in
many contexts, and we have a quite general theory for them. First of all we aim to find a weak solution
of (72). In order to do this, we need to set some definitions and basic results first. All of this can be
found in many references, for example in [6].

Lemma 23. Let Ω ⊂ Rn be an open set. The normed spacesW 1,p(Ω) := {u ∈ Lp(Ω) : exists ∇u in the distributional sense and ∇u ∈
Lp(Ω;Rn)} are reflexive Banach spaces.

Lemma 24. Let Ω be a bounded open subset of Rn with ∂Ω ∈ C1. Then there exits the trace map
Tr : W 1,p(Ω)→ Lp(∂Ω), a bounded linear map such that Tr(f) = f |∂Ω for every f ∈ C1(Ω).

Definition 41. Let Ω ⊂ Rn be an open set. We define the subespace W 1,p
0 (Ω) ⊂ W 1,p(Ω) as the

closure of C∞c (Ω) in the norm of W 1,p(Ω).

Lemma 25. Let Ω be a bounded open subset of Rn with ∂Ω ∈ C1, and f ∈W 1,p(Ω). Then f ∈W 1,p
0

if and only if Tr(f) = 0.

Definition 42. A function u ∈W 1,p is a weak solution of (72) if∫
A(x,∇u(x))∇v(x)dx = 0

for all v ∈W 1,p
0 (Ω).

To prove the existence of weak solutions we will need some results of functional analysis.

Definition 43. Let X be a reflexive Banach space with dual space X ′. Denote (u, φ) the pairing
between u ∈ X and φ ∈ X ′. Let K ⊂ X be a closed convex subset, and let F : K → X ′. We say that
F is monotone if (u− v, F (u)− F (v)) ≥ 0 for every u, v ∈ X.

We say that F is coercive if there exists a h ∈ K such that for every secuence uj ∈ K such that
‖uj‖ → ∞ we have

(F (uj)− F (h), uj − h)

‖uj − h‖
→ ∞ as j →∞

We say that F is weakly continuous on a point u ∈ K if for every sequence uj converging to u strongly,
we have that F (uj) converges to F (u) weakly. Remark that as X is reflexive the weak and weak*
topologies coincide in X ′.

Lemma 26. Let K be a convex and closed subset of X, and let F : K → X ′ be monotone and weakly
continuous. Fix u ∈ K. Then the following are equivalent:

(1) For all v ∈ K we have (v − u, F (u)) ≥ 0
(2) For all v ∈ K we have (v − u, F (v)) ≥ 0
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Proof. Suppose (1) is true. Then by monoticity

0 ≤ (v − u, F (v)− F (u)) = (v − u, F (v))− (v − u, F (u))

so (v − u, F (v)) ≥ (v − u, F (u)) ≥ 0 and this is (2).

Now suppose (2) is true. Let w ∈ K and for t ∈ [0, 1] consider vt := u + t(w − u) ∈ K by
convexity. Then (vt − u, F (vt)) = t(w − u, F (vt)) ≥ 0, so for t > 0 we have (w − u, F (vt)) ≥ 0. As
vt → u as t → 0 strongly in X, by weak continuity we see that F (vt) → F (u) weakly in X ′. Then
0 ≤ (w − u, F (vt)) → (w − u, F (u)) as t → 0+ so we conclude that (w − u, F (u)) ≥ 0 and this is
(1).

Lemma 27. Let K ⊂ RN compact and convex, G : K → K a continuous function. Then G admits a
fixed point.

Proof. As K is compact, there exists a closed ball B such that K ⊂ B. Let PrK : RN → K be
the projection, which is continuous. Then the map G ◦ PrK |B : B → K ⊂ B is continuous. By the
Brouwer fixed point theorem, there is a fixed point x ∈ B such that x = G ◦ PrK |B(x) ∈ K so in fact
x ∈ K and x = G(x) is a fixed point for G.

Proposition 16. Let K 6= ∅ be a bounded, closed and convex subset of X. Let F : K → X ′ be
monotone and weakly continuous. Then there exists u ∈ K such that (v − u, F (u)) ≥ 0 for every
v ∈ K.

Proof. Step one: Finite dimensional case. If X is finite dimensional, we can suppose that X = RN

since X is linearly isomorpfhic to RN and linear transformations conserve convex sets. Note that
in finite dimension the weak and strong topologies are the same. Then F : K → (RN )′ ≡ RN
is continuous. As K is compact and convex, there exists a projection over K which we denote
PrK : RN → K. This projection is characterized by the property |x−PrK(x)| = min{|x−y| : y ∈ K}.

Let us first see an important property of the projection. Let η ∈ K, and x ∈ RN . By convexity,
for all t ∈ [0, 1] we have (1 − t)PrK(x) + tη = PrK(x) + t(η − PrK(x)) ∈ K so the function defined
for t ∈ [0, 1] by

φ(t) := |x− PrK(x)− t(η − PrK(x))|2

= |x− PrK(x)|2 − 2t(x− PrK(x), η − PrK(x)) + t2|η − PrK(x))|2

attain its minimum at t = 0 so φ′(0) = −2(x−PrK(x), η−PrK(x)) ≥ 0. So we conclude that for any
x ∈ RN and η ∈ K

(x, η − PrK(x)) ≤ (PrK(x), η − PrK(x)). (73)

Note by π : (RN )′ → RN the canonical identification. Then we consider the continuous map

PrK ◦ (IdK − π ◦ F ) : K → K

As K is compact this map has a fixed point x∗ ∈ K such that if we note x := x∗ − π(F (x∗)) ∈ RN
then x∗ = PrK(x). From (73) we conclude that

(x∗, η − x∗) = (PrK(x), η − PrK(x)) ≥ (x, η − PrK(x)) = (x∗ − π(F (x∗)), η − x∗)

and this yields (π(F (x∗)), η − x∗) = (η − x∗, F (x∗)) ≥ 0, as we wanted. So step one is proved.

Step two: General case. By a translation we can suppose that 0 ∈ K. Let M ⊂ X a finite
dimensional subespace, and note KM := K ∩M . Let j : M → X be the inclusion and j′ : X ′ → M ′
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its transpose map such that j′(f) = f ◦ j. Then the map j′F |KM : KM →M ′ is under the hipothesis
of step one, en hence there exists uM ∈ KM such that for every v ∈ KM we have

0 ≤ (v − uM , j′F |KM (uM )) = (v − uM , F (uM ))

by lemma 26 this is equivalent to (v − uM , F (v)) ≥ 0 for all v ∈ KM .

Now consider an arbitrary v ∈ K an define S(v) := {u ∈ K : (v − u, F (v)) ≥ 0}, which is weakly
closed by definition of the weak topology. Now we use the Banach-Alaoglu theorem to see that, as
K is bounded, its weakly-closure is weakly-compact. But, as K is convex and norm-closed, by the
geometric version of the Hanh-Banach theorem, it is weakly-closed. Combining both facts we see that
K is weakly compact. Then the elements of the family A := {S(v)}v∈K are weakly-closed subsets of
a weakly-compact set K. Let us see that any finite subfamily has non-empty intersection.

Indeed, given v1, . . . , vm ∈ K, let M := Span{v1, . . . , vm}, so putting KM := M ∩K as before, we
see that there exists uM ∈ KM such that (v − uM , F (v)) ≥ 0 for all v ∈ KM , and since vi ∈ KM for
i = 1, . . . ,m, then u ∈ S(v1) ∩ · · · ∩ S(vm).

Then, by the finite intersection property, we conclude that there exists u ∈
⋃
v∈K S(v) so (v −

u, F (v)) ≥ 0 for all v ∈ K. We use again lemma 26 to get that (v − u, F (u)) ≥ 0 for all v ∈ K, and
this proves the proposition.

Using the coercivity, we can prove the same result as above for K unbounded.

Proposition 17. Let K 6= ∅ be a closed and convex subset of X. Let F : K → X ′ be monotone,
coercive and weakly continuous. Then there exists u ∈ K such that (v−u, F (u)) ≥ 0 for every v ∈ K.

Proof. As F is coercive, there exists h ∈ K such that for every secuence uj ∈ K such that ‖uj‖ → ∞
we have

(F (uj)− F (h), uj − h)

‖uj − h‖
→ ∞ as j →∞.

Choose H > ‖F (h)‖ and R > ‖h‖ such that (u−h, F (u)−F (h)) ≥ H‖u−h‖ if ‖u‖ ≥ R, u ∈ K. For
such u we have

(u− h, F (u)) = (u− h, F (u)− F (h)) + (u− h, F (h))

≥ H‖u− h‖ − ‖F (h)‖‖u− h‖ ≥ (H − ‖F (h)‖)(‖u‖ − ‖h‖) > 0
(74)

Now consider KR = K ∩ BR, where BR = {x ∈ X : ‖x‖ ≤ R} is the closed ball. By the proposition
above, there exists uR ∈ KR such that (v − uR, F (uR)) ≥ 0 for all v ∈ KR, so in particular (uR −
h, F (uR)) ≤ 0. Using equation (74) we conclude that ‖uR‖ < R. We claim that this uR is the one
wanted in the proposition.

Indeed, fix y ∈ K and for ε > 0 let wε := uR + ε(y − uR). As ‖u‖ < R, we have that wε ∈ KR if ε
is small enough. For such an ε we have

0 ≤ (wε − uR, F (uR)) = (ε(y − uR), F (uR)) = ε(y − uR, F (uR))

and this gives (y − uR, F (uR)) ≥ 0 for any y ∈ K as we wanted.

Recall that we note Lp(Ω, µ) for the measurable functions in Ω respect to a general measure µ,
and Lp(Ω) when µ is the lebuesgue measure which we will note | · |.

Lemma 28. (Egorov) Let Ω be an open bounded subset of Rn and let {fi} ⊂ Lp(Ω, µ) such that
fi(x) → f(x) for a.e. x ∈ Ω. Then for every ε > 0 there exists Bε ⊂ Ω such that µ(Bε) < ε and
fi → f uniformily in Ω\Bε.
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Proof. Let n,m, k denote natural numbers. Define the sets

En,k :=
⋃
m≥n
{x ∈ Ω : |fm(x)− f(x)| ≥ 1

k
}.

Fix k, and note that we have En+1,k ⊂ En,k. If x ∈ Ω is such that fi(x) → f(x) then there exists
n(k, x) such that x /∈ En,k. So in the set Ak := ∩nEn,k there are no points x such that fi(x)→ f(x),
and we conclude that µ(Ak) = 0. Now, as µ(Ω) <∞, we have that

0 = µ(Ak) = µ(
⋂
n

En,k) = lim
n
µ(En,k)

so for all k there exists nk large enough such that µ(Enk,k) <
ε

2k
. Define B := ∪kEnk,k, and clearly

µ(B) ≤ ε. Now note that given k, we take m ≥ nk, and then for all x ∈ Ω\B, as x /∈ Enk,k, it
follows that |fm(x) − f(x)| < 1

k if m ≥ nk, so taking the supreme on x ∈ Ω\B we conclude that
‖fm − f‖∞,Ω\B ≤ 1

k if m ≥ nk, and this proves the lemma.

Lemma 29. Let Ω be an open bounded subset of Rn and let {fi} ⊂ Lp(Ω) such that
(1) fi(x)→ f(x) for a.e. x ∈ Ω
(2) For some constant M we have ‖fi‖Lp(Ω) ≤M for all i. Then fi → f weakly in Lp(Ω).

Proof. Set p′ := p
p−1 and let g ∈ Lp′ . As the measure given by

A→ µg(A) :=

∫
A
|g(x)|p′dx

for A ∈ L := { lebesgue-measurable sets }, is subordinated to the Lebesgue measure, it follows that
given ε > 0 there exists δ > 0 such that |A| ≤ δ implies µg(A) ≤ εp′ . Obviously we can assume δ ≤ ε.
Fix such a δ. By the above lemma there exists Bδ with |Bδ| ≤ δ and such that fi → f uniformly in
Ω\Bδ. Then we have

|
∫

Ω
(f − fi)gdx| ≤

∫
Ω
|(f − fi)g|dx =

∫
Ω\Bδ

|(f − fi)g|dx+

∫
Bδ

|(f − fi)g|dx

≤ (

∫
Ω\Bδ

|f − fi|pdx)
1
p (

∫
Ω\Bδ

|g|p′dx)
1
p′ + (

∫
Bδ

|f − fi|pdx)
1
p (

∫
Bδ

|g|p′dx)
1
p′

≤ |Ω|
1
p ‖f − fi‖∞,Ω\Bδ‖g‖Lp′ (Ω) + (M + ‖f‖Lp(Ω))ε < 2(M + ‖f‖Lp(Ω))ε

if we take i ≥ iε large enough. This proves the lemma.

Note that the above result is valid as well for functions in Lp(Ω;Rn), since we can work with each
of the components and apply the above lemma to conclude the same thing.

Proposition 18. Let Ω be a bounded open subset of Rn, and let 1 < p < ∞. Consider a function
A : Ω× Rn → Rn such that for some α, β > 0 the following conditions are satisfied:

(1) The functions x→ A(x, ξ) are measurable for all ξ ∈ Rn
(2) The functions ξ → A(x, ξ) are continuous for a.e. x ∈ Rn
(3) A(x, ξ) · ξ ≥ α|ξ|p for a.e. x ∈ Ω and for all ξ ∈ Rn
(4) |A(x, ξ)| ≤ β|ξ|p−1 for a.e. x ∈ Ω and for all ξ ∈ Rn
(5) (A(x, ξ)−A(x, ζ))(ξ − ζ) > 0 for a.e. x ∈ Ω and for all ξ 6= ζ ∈ Rn.

Then, given f ∈ W 1,p(Ω) there exists u ∈ W 1,p(Ω) a weak solution of divA(x,∇u(x)) = 0 in Ω
with u− f ∈W 1,p

0 (Ω), and u satisfies the estimate

‖u‖W 1,p(Ω) ≤ C‖f‖W 1,p(Ω) (75)

where C only depends on α, β, p and Ω.



Conformal Geometry. Conformal Flatness fow Low Regular Metrics. 83

Proof. First let us see the existence of u. Let X := Lp(Ω;Rn), which is a reflexive Banach space. Set
Qf := {v ∈W 1,p : v−f ∈W 1,p

0 } and K := {∇v : v ∈ Qf} ⊂ X. Then we claim that K is a convex and
closed subespace of X. Indeed, given ∇v1,∇v2 ∈ K then tv1+(1−t)v2−f = t(v1−f)+(1−t)(v2−f) ∈
W 1,p

0 , so t∇v1 + (1− t)∇v2 ∈ K and K is convex.

Let us see that K is closed. Let ∇vi → G ∈ X with ∇vi ∈ K. As vi − f ∈W 1,p
0 (Ω), by Poincare’s

inequality ∫
Ω
|vi − f |pdx ≤ C

∫
Ω
|∇vi −∇f |pdx ≤ C(‖G‖pX + ‖f‖p

W 1,p(Ω)
)

for some constant C depending on p,Ω. We conclude that {vi} ⊂ W 1,p is bounded, so by Banach-
Alaoglu theorem there exists some v ∈ W 1,p(Ω) such that (taking a subsequence we call the same
way) vi → v weakly in W 1,p(Ω). In particular, vi → v weakly in Lp(Ω) and ∇vi → ∇v weakly in X.
But ∇vi → G in X, so by uniqueness of the weak limit G = ∇v.

Now we must see that v − f ∈ W 1,p
0 (Ω). First note that vi − f → v − f weakly in W 1,p(Ω). As

the trace operator is bounded, it follows that Tr(vi − f)→ Tr(v − f) weakly in Lp(∂Ω). Now, since
Tr(vi − f) = 0 ∈ Lp(∂Ω) for all i we conclude that Tr(v − f) = 0, so v ∈ Qf , and thus G ∈ K, so K
is closed in X.

We define now F : K → X ′ : v 7→ F (v) such that if u ∈ X

(u, F (v)) :=

∫
Ω
A(x, v(x)) · u(x)dx

We want to apply proposition 17. Set p′ := p
p−1 . First note that F (v) ∈ X ′ = Lp

′
(Ω;Rn) since we

have

(u, F (v)) :=

∫
Ω
A(x, v(x)) · u(x)dx ≤

∫
Ω
|A(x, v(x))||u(x)|dx

≤ β
∫

Ω
|v(x)|p−1|u(x)|dx

≤ β(

∫
Ω
|v(x)|(p−1) p

p−1dx)
p−1
p (

∫
Ω
|u(x)|pdx)

1
p = ‖v‖p−1

X ‖u‖X

where we have used the assumption (4) and Holder’s inequality.
We shall see that F is monotone, coercive and weakly continuous. To see that F is monotone,

note that

(u− v, F (u)− F (v)) =

∫
Ω

(A(x, u(x))−A(x, v(x))) · (u(x)− v(x))dx > 0

if u 6= v by assumption (5). Now, to see that F is coercive, fix h ∈ K, and we have

(u− h, F (u)− F (h)) =

∫
Ω

(A(x, u(x))−A(x, h(x))) · (u(x)− h(x))dx

=

∫
Ω

(A(x, u(x)) · u(x) +

∫
Ω
A(x, h(x)) · h(x)−

∫
Ω
A(x, u(x)) · h(x)−

∫
Ω
A(x, h(x))) · u(x)

≥ α(

∫
Ω
|u(x)|pdx+

∫
Ω
|h(x)|pdx)− β(

∫
Ω
|u(x)|p−1|h(x)|dx+

∫
Ω
|h(x)|p−1|u(x)|)dx

≥ α(‖u‖pX + ‖h‖pX)− β(‖u‖p−1
X ‖h‖X + ‖h‖p−1

X ‖u‖X)

so, using that for ‖u‖X ≥ max{‖h‖X , 1} we have ‖u−h‖ ≤ ‖u‖X + ‖h‖X ≤ 2‖u‖ and the well known
fact ap + bp ≈ (a+ b)p, we have that for ‖u‖ large

(u− h, F (u)− F (h))

‖u− h‖
≥ C{α(‖u‖p−1

X + ‖h‖p−1
X )− β(‖u‖p−2

X ‖h‖X + ‖h‖p−1
X )} → ∞
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if ‖u‖X →∞. This shows that F is coercive.
Finally, to see that F is weakly continuous, let {ui} ⊂ K be a sequence such that ui → u in X for

some u ∈ K. We extract a subsequence uij such that uij (x) → u(x) a.e x ∈ Ω, and by continuity of
A(x, ·), i.e. assumption (2), it follows that A(x, uij (x))→ A(x, u(x)) a.e. x ∈ Ω. Also note that∫

Ω
|A(x, uij (x))|p′dx ≤ β

∫
Ω
|uij (x)|p ≤ C

for some constant independent of j. By lemma 29 we conclude that A(·, uij (·)) → A(·, u(·)) weakly

in Lp
′
(Ω;Rn). But we must see that the whole sequence A(·, ui(·)) converges to A(·, u(·)) weakly in

Lp
′
(Ω;Rn).
To see this, suppose that A(·, ui(·)) does not converge to A(·, u(·)) weakly. This means by definition

that there exists v ∈ Lp(Ω;Rn) such that the sequence of real numbers
∫

Ω(A(x, ui(x))−A(x, u(x)))·vdx
does not tend to 0, and therefore there exists a subsequence ij such that for all j

|
∫

Ω
(A(x, uij (x))−A(x, u(x))) · vdx| > ε.

But by the same argument given before, a subsequence uijk of uij must converge weakly to A(·, u(·)),
and this is impossible. This proves that F is weakly continuous.

Now we can use proposition 17 and conclude that there exists ∇u ∈ K such that for every ∇v ∈ K
we have

(∇v −∇u, F (u)) =

∫
Ω
A(x,∇u(x))(∇v(x)−∇u(x))dx ≥ 0.

Now let φ ∈W 1,p
0 (Ω). It is clear that u+φ− f and u−φ− f ∈W 1,p

0 , so u+φ and u−φ ∈ Qf . Then,
if ε ∈ {0, 1} we have

(∇(u+ εφ)−∇u, F (u)) = ε

∫
Ω
A(x,∇u(x))∇φ(x))dx ≥ 0

and then u is a weak solution of div(A(x,∇u(x))) = 0.

Let us see now estimate (75). First, as u− f ∈W 1,p
0 (Ω) is a test function, we see that∫

Ω
A(x,∇u(x))∇u(x)dx =

∫
Ω
A(x,∇u(x))∇f(x)dx.

Now we compute

α‖∇u‖pLp(Ω;Rn) = α

∫
Ω
‖∇u‖pdx ≤

∫
Ω
A(x,∇u(x)) · ∇u(x)dx

=

∫
Ω
A(x,∇u(x)) · ∇f(x)dx ≤ β

∫
Ω
|∇u(x)|p−1|f |dx ≤ β‖∇u‖p−1

Lp(Ω;Rn)‖∇f‖Lp(Ω;Rn)

so it follows that

‖∇u‖Lp(Ω;Rn) ≤
β

α
‖∇f‖Lp(Ω;Rn).

On the other hand we have

‖u‖Lp(Ω − ‖f‖Lp(Ω ≤ |‖u‖Lp(Ω − ‖f‖Lp(Ω| ≤ ‖u− f‖Lp(Ω

≤ C(p,Ω)‖∇u−∇f‖Lp(Ω) ≤ C(p,Ω)(
β

α
+ 1)‖∇f‖Lp(Ω;Rn)

where we used Poincare’s inequality. These two last inequalities combined give estimate 75, so the
theorem is proved.
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In the next lemma and the remark below we show that the assumptions imposed on A in 18
are not restrictive, and the function A in which we are interested of course satisfies the mentioned
assumptions.

Lemma 30. Let Ω ⊂ Rn be an open set, and let 1 < p < ∞. Consider a continuous function
A : Ω × Rn → Rn that is C1 in Ω × Rn\{0} and assume that there exists δ > 0 such that for every
x ∈ Ω, t ≥ 0 and ξ, ζ ∈ Rn we have

(1) A(x, tξ) = tp−1A(x, ξ)
(2) (A(x, ξ)−A(x, ζ)) · (ξ − ζ) ≥ δ(|ξ|+ |ζ|)p−2|ξ − ζ|2.
Then A satisfies the following: there exists constants β > 0 and Cδ > 0 such that for every x ∈ Ω,

ξ ∈ Rn\{0}, h ∈ Rn, j = 1 . . . , n, we have
(a) A(x, ξ) · ξ ≥ δ|ξ|p. Actually condition (1) is not necessary for (a).
(b) |A(x, ξ)|+ |∂xjAk(x, ξ)|+ |ξ||∂ξjA(x, ξ)| ≤ β|ξ|p−1. Condition (2) is not needed for (b).

(c)
∑

k,j ∂ξjA
k(x, ξ)hjhk ≥ Cδ,p|ξ|p−2|h|2. Condition (1) is not necessary for (c).

Proof. The first estimate (a) follows by putting ζ = 0 in the assumption (2), taking into account that
by assumption (1) A(x, 0) = 0.

Let us see (b). Assume ξ 6= 0. By (2), A(x, ξ) = |ξ|p−1A(x, ξ|ξ|−1). From this (b) is a computation.
First

A(x, ξ) ≤ ( sup
|ξ′|=1

|A(x, ξ′)|)|ξ|p−1 = β1|ξ|p−1.

Also we have

∂xjA(x, ξ) = |ξ|p−1∂xjA(x, ξ|ξ|−1) ≤ ( sup
|ξ′|=1

|∂xjA(x, ξ′)|)|ξ|p−1 = β2|ξ|p−1

Finally, by the chain rule we have

∂ξjA(x, ξ) =
1

2
(p− 1)(|ξ|2)

p−3
2 2ξjA(x, |ξ|−1ξ)

+|ξ|p−1(∂ξjA(x, |ξ|−1ξ)) · [−1

2
(|ξ|2)

−3
2 2ξjξ + |ξ|−1ej ]

≤ (p− 1)β1|ξ|p−2 + β2|ξ|p−2 + β2|ξ|p−2 ≤ β|ξ|p−2

for β = max{(p− 1)β1, β2}. This gives (b).
To see (c), note that for each x ∈ Ω, ξ 6= 0, as A(x, ·) is differentiable, then by definition

A(x, ξ + h)−A(x, ξ)−DξA(x, ξ)(h) = o(|h|)

as |h| → 0. From this it follows that, if |h| → 0, using (2) we have

δ(|ξ + h|+ |ξ|)p−2|h|2 ≤ (A(x, ξ + h)−A(x, ξ)) · h

= h ·DξA(x, ξ)(h) + o(|h|2)
(76)

Besides, if |h| → 0 then (|ξ + h|+ |ξ|)p−2 → 2p−2|ξ|p−2, so if |h| is small enough we have

1

2
2p−2δ|ξ|p−2|h|2 ≤ δ(|ξ + h|+ |ξ|)p−2|h|2

and inserting this in (76) we conclude that if |h| → 0 then

2p−3δ|ξ|p−2|h|2 ≤ h ·DξA(x, ξ)(h) + o(|h|2).
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Neglecting the term o(|h|2) we see that for 0 < |h| < ε(ξ) := ε small enough

Cδ,p|ξ|p−2|h|2 ≤ h ·DξA(x, ξ)(h) (77)

for some constant Cδ,p independent of ξ and h.

Now, if h ∈ Rn\{0} is arbitrary, we put h = (ε|h|−1h)|h|ε−1 = hε|h|ε−1 with |hε| < ε(ξ) so by (77)
we have

Cδ,p|ξ|p−2|hε|2 ≤ hε ·DξA(x, ξ)(hε) (78)

and finally if we multiply (78) by (|h|ε−1)2 we obtain

Cδ,p|ξ|p−2|h|2 ≤ h ·DξA(x, ξ)(h) =
∑
k,j

∂ξjA
k(x, ξ)hjhk

and this yields (c).

Remark 38. Note that for solving the p-Laplace equation on a riemannian manifold (M, g) we are
interested in the function A(x, q) given by (79), i.e, with components

Aj(x, q) := |g|
1
2 (x)gij(x)(gab(x)qaqb)

p−2
2 qi = |g|

1
2 (x)qj |q|p−2

g (79)

defined for x in a coordinate patch Ω ⊂ Rn, q ∈ Rn. Let us see that this A(x, q) satisfies the hipothesis
of lemma 30 if the metric g is C1.

First note that it is clear that A ∈ C1(Ω × Rn\{0}), and A(x, tq) = tp−1A(x, q) for q 6= 0 and
t > 0. Besides

A(x, q) = |g|
1
2 (x)qj |q|p−2

g ≤ |g|
1
2 (x)|q|p−1

g → 0

if q → 0 so A is continuous in Ω× Rn. Let us see condition (2). We can suppose that A is defined in
the closure of Ω ⊂ Rn an open bounded set. Therefore the metric satisfies C1 ≤ |g| ≤ C2, for some
constants C1 and C2 so it is comparable to a constant, and this implies that the norm induced by g
is uniformly comparable to the usual norm in Rn.

So we can suppose directly we are in Rn with its flat metric, and A(x, q) = A(q) = q|q|p−2, which
is (up to a constant) the gradient of the function f(q) = |q|p, so A(q) = ∇f(q). It is well known that
for p > 1 the function f is uniformly, strictly convex and C2 away from zero, so Hess(f) is a positive
definite matrix, and for every non-zero ξ, ζ ∈ Rn we have

f(ξ)− f(ζ)− (∇f(ζ), ξ − ζ) ≥ Hess(f)(ξ)(ξ − ζ, ξ − ζ)

f(ζ)− f(ξ)− (∇f(ξ), ζ − ξ) ≥ Hess(f)(ζ)(ζ − ξ, ζ − ξ)

if we add both expressions, and taking into account that hess(f) is positive definite, we obtain

(∇f(ξ)−∇f(ζ), ξ − ζ) ≥ Hess(f)(ξ)(ξ − ζ, ξ − ζ) +Hess(f)(ζ)(ξ − ζ, ξ − ζ)

≈ (|Hess(f)(ξ)|+ |Hess(f)(ζ)|)|ξ − ζ|2 ≈ (|ξ|p−2 + |ζ|p−2)|ξ − ζ|2 ≥ C(|ξ|+ |ζ|)p−2|ξ − ζ|2

since |Hess(f)(ξ)| involves two derivatives of f so that it behaves as |x|p−2 (trivial in one dimension,
and requires an easy computation in general dimension). We have also used the fact that ap−2+bp−2 ≥
C(a+ b)p−2 for some universal constant C.
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6.2. Regularity of Weak Solutions

The next step to prove the existence of n-harmonic coordinates is to prove that the weak solution
found in 18 is regular. This kind of results are always hard and technical, so we will need various
previous results.

Proposition 19. (Chain rule for weak derivatives) Let G : Rm → R a continuous function such that
G ∈ C1(Rm). Assume ∇G is bounded in Rm. Note G(s1, . . . , sm) for G. Let u = (u1, . . . , um) be m
functions in W 1,p(Ω), with Ω ⊂ Rn an open bounded set. Then the function K = G ◦ u : Ω→ R is in
W 1,p(Ω) and besides

∂K

∂xi
(x) =

m∑
l=1

∂G

∂sl
(u(x))

∂ul
∂xi

(x) (80)

as distributions in Ω.

Proof. First we shall see that K(x) ∈ Lp(Ω). Let M be such that |∇G(x)| ≤ M for all x. Using
Holder’s inequality and the fundamental theorem of calculus, we have

|G(s)−G(s′)| = |
∫ 1

0
∂t[G(s′ + t(s− s′)]dt|

≤
∫ 1

0
|∇G(s′ + t(s− s′)]||s− s′|dt ≤M |s− s′|.

(81)

Therefore, if we fix s′, then |G(s)| ≤ |G(s′)|+M |s− s′|, so

|G(u(x))|p ≤ C(|G(s′)|p + |u(x)|p + |s′|p). (82)

As Ω is bounded, the constants functions are in L1(Ω), and we conclude from (82) that K ∈ Lp(Ω).
For the functions on the righ hand side of (80) we have

∂G

∂sl
(u(x))

∂uk
∂xi

(x) ≤M∂uk
∂xi

(x)

so all of them are in Lp(Ω). It remains to see that (80) holds. For this, fix φ ∈ C∞c (Ω) and pick some
open set U compactly contained in Ω such that supp(φ) ⊂ U . Pick a sequence ϕj = (ϕj1, . . . , ϕ

j
m) ∈

C∞(Ω;Rm) such that ϕjl → ul in W 1,p(U), and such that ϕjl (x) → ul(x),
∂ϕjl
∂xi

(x) → ∂ul
∂xi

(x) for a.e.

x ∈ U . Set Kj := F ◦ ϕj ∈ C1(Ω). By the usual chain rule we have

∂Kj

∂xi
(x) =

m∑
l=1

∂G

∂sl
(ϕj(x))

∂ϕjl
∂xi

(x)

and integrating by parts∫
U

∂φ

∂xi
(x)Kj(x)dx = −

m∑
l=1

∫
U
φ(x)

∂G

∂sl
(ϕj(x))

∂ϕjl
∂xi

(x)dx (83)

We shall see that (83) follows for K passing to the limit. First, by (81) we have |Kj(x) −K(x)|p ≤
C|ϕj(x)− u(x)|p so Kj → K in Lp(Ω) as j∞. Then∫

U

∂φ

∂xi
(x)(Kj(x)−K(x))dx ≤ ‖ ∂φ

∂xi
‖Lp′ (Ω)‖K

j −K‖Lp(Ω) → 0
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as j →∞, so the left hand side of (83) converges as we want. For the right hand side we note that∫
U
φ(x)

∂G

∂sl
(ϕj(x))

∂ϕjl
∂xi

(x)dx

=

∫
U
φ(x)

∂G

∂sl
(ϕj(x))

∂ul
∂xi

(x)dx+

∫
U
φ(x)

∂G

∂sl
(ϕj(x))(

∂ϕjl
∂xi

(x)− ∂ul
∂xi

(x))dx

→
∫
U
φ(x)

∂G

∂sl
(u(x))

∂ul
∂xi

(x)dx+ 0 as m→∞

For taking the limit we have used that U is bounded, so Lp(U) ⊂ L1(U), and by the boundness of
∇G we can use dominated convergence. This proves the proposition

Proposition 20. Let 1 < p <∞ an Ω ⊂ Rn a bounded open set. Let u ∈W 1,p(Ω). Then we have
(1) |u| ∈W 1,p(Ω) and

|u|xi = χ{u6=0}sign(u)uxi

(2) u+ and u− ∈W 1,p(Ω). Moreover,

(u+)xi = χ{u>0}uxi and (u−)xi = χ{u<0}uxi .

Proof. Let us see (1). Let Gε : R→ R given by Gε(t) = (t2 +ε2)
1
2 −ε. Then |Gε(t)| ≤ |t| and Gε ∈ C1

and

G′ε(t) =
t

(t2 + ε2)
1
2

≤ 1.

Let vε = Gε ◦ u. Note that |vε| ≤ |u|, so vε(x) → |u(x)| as ε → 0 for a.e. x ∈ Ω dominately. By
proposition 19 we know that vε ∈W 1,p(Ω) and

∂vε
∂xi

= G′ε(u)uxi =
uuxi

(u2 + ε2)
1
2

so that |∂vε∂xi
| ≤ uxi and then

∂vε
∂xi

(x)→ χ{u6=0}sign(u)uxi(x) as ε→ 0

a.e. x ∈ Ω dominately. By proposition 19, for every ϕ ∈ C∞c (Ω) we have∫
Ω
vε
∂ϕ

∂xi
dx = −

∫
Ω
ϕ
∂vε
∂xi

dx. (84)

Now we apply the dominated convergence theorem to both sides of (84) to get∫
Ω
|u| ∂ϕ
∂xi

dx = −
∫

Ω
ϕχ{u6=0}sign(u)uxi(x)dx. (85)

and this gives (1).
Now let us see (2) for u+(x). As u+(x) = 1

2(|u(x)|+ u(x)), by (1) we have that u+(x) ∈W 1,p(Ω).
In addition, u+

xi = 1
2(|u|xi +uxi) = 1

2(χ{u6=0}sign(u)uxi +uxi). Besides, note that u+ = |u+| and then,
as {u+ 6= 0} = {u > 0}, we have by (1) that

u+
xi = |u+|xi = χ{u>0}u

+
xi = χ{u>0}

1

2
(χ{u6=0}sign(u)uxi + uxi) = χ{u>0}uxi . (86)
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For u−(x) is analogous. Indeed u−(x) = 1
2(|u(x)| − u(x)), so u−(x) ∈ W 1,p(Ω), and u−xi =

1
2(|u|xi − uxi) = 1

2(χ{u6=0}sign(u)uxi − uxi). As u− = |u−| and {u− 6= 0} = {u < 0}, then by
(1) we have

u−xi = |u−|xi = χ{u<0}u
−
xi = χ{u<0}

1

2
(χ{u6=0}sign(u)uxi − uxi) = −χ{u<0}uxi . (87)

so (2) is proved.

Corollary 12. Let 1 < p < ∞ an Ω ⊂ Rn a bounded open set. Fix α ∈ R. If u ∈ W 1,p(Ω) then
∇u(x) = 0 for a.e. x ∈ {u = α}.

Proof. We can suppose α = 0 by considering u−α ∈W 1,p(Ω). With this assumption, as u = u+−u−,
then ∇(u) = ∇(u+) −∇(u−). By the proposition above, both ∇(u+) and ∇(u−) are zero in the set
{u = 0}, so also ∇(u)(x) = 0 for a.e. x ∈ {u = 0}.

Proposition 19 can be generalized as follows when dealing with functions G of just one real variable.

Proposition 21. Let 1 < p < ∞, and let G : R → R be a continuous and piecewise C1 function
with corners in a finite number of points t1, . . . , tn ∈ R. Suppose G′ is bounded in R\{t1, . . . , tl}. Let
Ω ⊂ Rn be an open set, and u ∈W 1,p(Ω). Put

A := {u = t1} ∩ · · · ∩ {u = tl}

Then G ◦ u ∈W 1,p(Ω) and moreover

(G ◦ u)xi(x) = G′(u(x))uxi(x)χΩ\A(x)

Proof. First observe that G is lipschitz because G′ is bounded in R\{t1, . . . , tn}, say |G′| ≤M . Also,
as G is piecewise C1, it is inmediate that the distributional derivative of G exists and it is equal to
G′. We conclude that G ∈ W 1,p

loc (R). Now we take a family of smooth aproximations with compact
support of the dirac delta {ρε} and denote Gε := G ? ρε. As G′ ∈ Lploc(R), we have that

(Gε)
′(t) = (G′ ? ρε)(t) =

∫
Rn
G′(t− s)ρε(s)ds. (88)

This shows that |(Gε)′| ≤M . On the other hand, standar aproximations theorems give that Gε → G
in W 1,p

loc (R) and uniformly on compact sets as ε→ 0, and also (Gε)
′(t)→ G′(t) as ε→ 0 pointwise for

t ∈ R\{t1, . . . , tl}. This is a well known result, which proof can be found for example in [6], Section
5.3, Theorem 1, and Appendix C, Theorem 7.

Now let vε := Gε ◦ u and then by 19 that

∂vε
∂xi

(x) = G′ε(u(x))uxi(x). (89)

In particular note that by corollary 12 we have that ∂vε
∂xi

(x) = 0 for a.e. x ∈ A. Then we have that

∂vε
∂xi

(x)→ G′(u(x))uxi(x)χΩ\A(x)

for a.e. x ∈ Ω dominately. Also, by (88), Gε are Lipschitz with the same constant, and then vε(x) ≤
M |u(x)|+ C for some constant C. As Ω is bounded, we conclude also that

vε(x)→ (G ◦ u)(x)
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for a.e. x ∈ Ω dominately.
Once this is seen we apply proposition 19 and we have that, given ϕ ∈ C∞c (Ω),∫

Ω

∂ϕ

∂xi
vε = −

∫
Ω
ϕ
∂vε
∂xi

(90)

and applying the dominated convergence theorem to both sides of (90) we conclude∫
Ω
ϕxi(G ◦ u) = −

∫
Ω
ϕ(G′ ◦ u)uxiχΩ\A. (91)

Finally, note that obviously the function (G′ ◦ u)uxiχΩ\A ∈ Lp(Ω) since G′ is bounded. This proves
the proposition.

Let us fix some notation. We note Br := B(0, r) the open ball in Euclidean space. Also, if
1 ≤ q ≤ ∞, we note ‖u‖q,r := ‖u‖Lq(Br). The following Theorem is a particular case of a result proved
in [14]. Since the assumptions here are stronger and more comfortable, the proof becomes easier.

Theorem 15. Let 1 < p ≤ n, and let Ω ⊂ Rn be an open set and let A : Ω×Rn → Rn a measurable
function such that for some β, δ > 0 we have

1) |A(x, ξ)| ≤ β|ξ|p−1

2) A(x, ξ) · ξ ≥ δ|ξ|p.
Let u ∈ W 1,p(Ω) be a weak solution of div(A(x,∇u(x))) = 0 in Ω. Then, if B2r is compactly

contained in Ω, we have the estimate

‖u‖∞,r ≤ C‖u‖p,2r (92)

for some constant depending on β, δ, p and r but not on u.

Proof. By definition of weak solution, for every test function ϕ ∈ C∞c (Ω) we have∫
Ω
A(x,∇u(x))∇ϕ(x)dx = 0. (93)

The idea to prove that u ∈ L∞(Br) is to pick a suitable test function ϕ in (93) in such a way that we
obtain a bound of the type ‖u‖q,Bαr ≤ C‖u‖p,B2r for some q > p and 1 ≤ α ≤ 2. Then we can iterate
this argument and get q =∞.

Let q, l ∈ R such that q, l ≥ 1. Define the function F : R+ → R depending on p, q and given by

Fl,q(t) = F (t) =


tq si 0 ≤ t ≤ l

qlq−1t− (q − 1)lq si t ≥ l
(94)

Note that F (t) is linear in t ≥ l. Besides we have

F ′l,q(t) = F ′(t) =


qtq−1 si 0 ≤ t ≤ l

qlq−1 si t ≥ l
(95)

so F ∈ C1(R+) and F ′ is bounded. Besides F ′ is piecewise C1 with possible corners in t = l and
t = 0, and F ′′ is bounded wherever it exits since it is zero for t ≥ l. Now let G(t) = Gl,q(t) =
sign(t)F (|t|)F ′(|t|)p−1, which is given by

G(t) =


sign(t)|t|q+(q−1)(p−1)qp−1 si 0 ≤ |t| ≤ l

sign(t)qp−1l(p−1)(q−1)[qlq−1|t| − (q − 1)lq] si t ≥ l
(96)
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Note that G : R→ R is continuous and piecwise C1, with corners in t = +l, t = −l, and

G′(t) =


[q + (q − 1)(p− 1)]|t|(q−1)pqp−1 si 0 ≤ |t| ≤ l

qp−1lp(q−1)+1 si t ≥ l
(97)

Therefore G′ : R → R is bounded where it exists. Then we use proposition 21 to conclude G(u) ∈
W 1,p(Ω). Also, from the definition G(t) = Gl,q(t) = sign(t)F (|t|)F ′(|t|)p−1, we compute

G′(t) = sign(t)F ′(|t|)sign(t)F ′(|t|)p−1 + sign(t)F (|t|)(p− 1)F ′(|t|)p−2F ′′(|t|)sign(t)

= F ′(|t|)p + (p− 1)F (|t|)F ′(|t|)p−2F ′′(|t|)
(98)

Since F (|t|), F ′(|t|), and F ′′(|t|) are all ≥ 0, we see from this that G′(t) ≥ F ′(|t|)p.
Now we take as a test function ϕ(x) := η(x)pG(u(x)) for η ∈ C∞c (U) a cut off non-negative function

supported on certain open set U compactly contained in Ω. We shall determine η and U later. Note
that ϕ ∈W 1,p

0 (U) since it has compact support contained in U . Besides we have

∇ϕ(x) = pη(x)p−1∇η(x)G(u(x)) + η(x)pG′(u(x))∇u(x)

Now we compute that

A(x,∇u(x)) · ∇ϕ(x) = A(x,∇u(x)) · pη(x)p−1∇η(x)

+A(x,∇u(x)) · η(x)pG′(u(x))∇u(x)

≥ −pη(x)p−1|∇η(x)||G(u(x))|β|∇u(x)|p−1 + δη(x)pF ′(|u(x)|)p|∇u(x)|p

= δ|η(x)F ′(|u(x)|)∇u(x)|p − pη(x)p−1|∇η(x)||F (|u(x)|)||F ′(|u(x)|)|p−1β|∇u(x)|p−1

= δ|η(x)F ′(|u(x)|)∇u(x)|p − pβ|F (|u(x)|)∇η(x)||η(x)F ′(|u(x)|)∇u(x)|p−1

If we let v := F (|u|), then ∇v = sign(u)F ′(|u|)∇u, so if we integrate over U , the expression above
becomes

0 ≥ δ
∫
U
|η(x)∇v(x)|pdx− pβ

∫
U
|v(x)∇η(x)||η(x)∇v(x)|p−1dx (99)

Now, from (99) we deduce

‖η∇v‖pLp(U =

∫
U
|η(x)∇v(x)|pdx ≤ pβ

δ

∫
U
|v(x)∇η(x)||η(x)∇v(x)|p−1dx

≤ pβ

δ
(

∫
U
|v(x)∇η(x)|pdx)

1
p (

∫
U
|η(x)∇v(x)|pdx)

p−1
p

= Cp,β,δ‖v∇η‖Lp(U)‖η∇v‖
p−1
Lp(U)

(100)

and this yields
‖η∇v‖Lp(U) ≤ C‖v∇η‖Lp(U) (101)

Now we distinguish cases.
Case1: Suppose p < n. Then by Poincare’s inequality, setting p∗ := np

n−p we have

‖ηv‖Lp∗ (U) ≤ C‖∇(ηv)‖Lp(U) ≤ C(‖v∇η‖Lp(U) + ‖η∇v‖Lp(U)) ≤ C‖v∇η‖Lp(U) (102)

for some constant C = C(p, β, δ, U) that depens on U , where we used (101) in the last inequality.
Note that C is not necessarily equal in each stage. Note also that this C, although depends on U (and
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later we will use this estimate taking different U ′s) is valid for every compactly supported function of
U , so if we make our estimates for functions supported in a fixed U big enough (as we will), C can be
taken to be the same.

Now take h′ < h ≤ 2r and take η such that η = 1 in Bh′ and η = 0 in Rn\Bh. Furthermore, we
can take η to be almost linear on Bh\Bh′ in such a way that ‖∇η‖L∞(Rn) ≤ 2|h−h′|−1. Inserting this
in (101) and (102) we obtain the main estimates

‖∇v‖p,h′ = ‖η∇v‖p,h′ ≤ ‖η∇v‖p,h ≤ C‖v∇η‖p,h ≤ C|h− h′|−1‖v‖p,h (103)

‖v‖p∗,h′ = ‖ηv‖p∗,h′ ≤ ‖ηv‖p∗,h ≤ C‖v∇η‖p,h ≤ C|h− h′|−1‖v‖p,h. (104)

At this point we remind that v = F (|u|) = Fl,q(|u|). Now recall that if l1 ≤ l2 then Fl1,q(|u|) ≤
Fl2,q(|u|). This can be easily seen by noting that Fl,q(t) is obtained by gluing at the point (l, lq) the
parabola tq and its tangent line. As q ≥ 1, we know that tq is a convex function, so the tangent line
stays below the graphic, and this gives Fl1,q(t) ≤ Fl2,q(t).

Besides, vl,q(x) = Fl,q(|u(x)|) → |u(x)|q for a.e. x ∈ Ω as l → ∞. By the monotone convergence
Theorem we can take limits as l→∞ in (104) to get ‖|u|q‖p∗,h′ ≤ C|h−h′|−1‖|u|q‖p,h, and this is the
same to say that ‖u‖qqp∗,h′ ≤ C|h− h

′|−1‖u‖qqp,h, which is equivalent to

‖u‖qp∗,h′ ≤ (C|h− h′|−1)
1
q ‖u‖qp,h (105)

We shall make some manipulations on notation in this inequality. Set m := pq, χ := p∗

p = n
n−p > 1

and 105 reads
‖u‖χm,h′ ≤ (C|h− h′|−1)

p
m ‖u‖m,h. (106)

Recall now that in (106) the number q ≥ 1 is a parameter, so we can put now qν = χν , m = pχν ,
h = hν := r(1+2−ν), h′ = hν+1 = r(1+2−ν−1) for ν a natural number. Note that |hν−hν+1| = r2−ν−1.
Inserting this in (106) we have

‖u‖pχν+1,r ≤ ‖u‖pχν+1,hν+1
≤ (C|hν − hν+1|−1)χ

−ν‖u‖pχν ,hν

= (Cr−12ν+1)χ
−ν‖u‖pχν ,hν = Cχ

−ν
r−χ

−ν
2(ν+1)χ−ν‖u‖pχν ,hν

≤ · · · ≤ C
∑ν
i=0 χ

−i
r−

∑ν
i=0 χ

−i
2
∑ν
i=0(i+1)χ−i‖u‖p,2r

(107)

where we have iterated the inequality ν times.
Finally we note that, since χ > 1, we have

∑∞
i=0 χ

−i < ∞ and
∑∞

i=0(i + 1)χ−i < ∞ by the
ith − square criterion for series. Then , as χν+1 →∞ as ν →∞, letting ν →∞ in (107) we conclude
‖u‖∞,r ≤ C‖u‖p,2r for some C depending on r, p, β, δ. Recall that C depended on U but we took U
such that B2r is compacty contained in U , so the dependence on U becomes dependence on r. This
proves the theorem if p < n.

Case 2: Suppose p = n. Then we have, by (101) we have

‖η∇v‖Ln(U) ≤ C‖v∇η‖Ln(U) (108)

Now let α = (1− ε)n for ε > 0 small, and then α∗ = nα
n−α = n1−ε

ε . Recall that for U bounded we have
that if f ∈ Ln(U) then

‖f‖Lα(U) ≤ |U |
n−α
nα ‖f‖Ln(U) (109)

Now, by poincare’s inequality, (109) and (108), we have

‖ηv‖Lα∗ (U) ≤ C‖∇(ηv)‖Lα(Ω) ≤ C(‖η∇v‖Lα(U) + ‖v∇η‖Lα(U))

≤ C(‖η∇v‖Ln(U) + ‖v∇η‖Ln(U)) ≤ C‖v∇η‖Ln(U)

(110)
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where C depends on ε, β, δ, U, n. We will work in some fixed U and for fixed ε, so this does not matter.
Let 0 < h′ < h < 2r , and as done before, take η to be a nice cut off function such that η = 1 in Bh′ ,
η = 0 in Rn\Bh and ‖∇η‖L∞(Rn) ≤ 2|h − h′|−1. Set χ := 1−ε

ε > 1 if ε is small, and insert this into
(110) to obtain

‖v‖nχ,h′ ≤ ‖ηv‖nχ,h ≤ C|h− h′|−1‖v‖n,h. (111)

As before, v = Fl,q(|u|), and letting l→∞ in (111), we get ‖u‖qnqχ,h′ ≤ C|h− h
′|−1‖u‖qnq,h, equivalent

to

‖u‖nqχ,h′ ≤ (C|h− h′|−1)q
−1‖u‖nq,h. (112)

Put m = nq and this reads

‖u‖mχ,h′ ≤ (C|h− h′|−1)
n
m ‖u‖m,h. (113)

this is the same estimate that we obtained in case one, see (106). The rest of the proof is exactly the
same technical trick. Take q = χν , so m = χνn. Take hν = r(1 + 2−ν), h′ = hν+1 = r(1 + 2−ν−1).
Insert this in (113), with ν a natural number, to get

‖u‖nχν+1,hν+1
≤ (C|hν − hν+1|−1)χ

−ν‖u‖nχν ,hν (114)

iterating this process an letting ν → ∞ as done in (107), we conclude ‖u‖∞,r ≤ C‖u‖n,2r and the
theorem is proved.

Now we state, without proof, a regularity result that we will need. The proof can be found in [11].
The hipothesis in [11] seem to be different than the hipothesis we have put here, but in [11] it is also
proved that our assumptions are stronger and implies the hipothesis of [11].

Theorem 16. Let Ω ⊂ Rn be an open set, 1 < p <∞, and A : Ω× Rn\{0} → Rn, be a C1 function
noted as A(x, ξ). Assume that there exists numbers δ, β > 0 such that we have the following:

(1) For each x ∈ Ω, ξ, h ∈ Rn we have the degenerate ellipticity type inequality

n∑
k,j=1

∂ξjA
k(x, ξ)hjhk ≥ δ|ξ|p−2|h|2 (115)

(2) For each x ∈ Ω, ξ ∈ Rn, j, k ∈ {1, . . . , n}, we have |∂ξjAk(x, ξ)| ≤ β|ξ|p−2

(3) For each x ∈ Ω, ξ ∈ Rn, j, k ∈ {1, . . . , n}, we have |∂xjAk(x, ξ)| ≤ β|ξ|p−1.

Then, if u ∈W 1,p
loc (Ω) ∩ L∞loc(Ω) is a weak solution of div(A(x,∇u(x))) = 0 in Ω, we have that u is

locally C1+α in Ω.

By this we mean that for each open set U compactly contained in Ω there exist constants C,α,
depending on U, β, δ, n, p and u, such that ‖u‖C1,α(U) ≤ C.

Now we give a lemma which allows to gain one order of weak differentiation under certain reasonable
conditions.

Proposition 22. Let Ω ⊂ Rn be an open set, and let 1 < p < ∞. Consider a continuous function
A : Ω × Rn → Rn that is C1 in Ω × Rn\{0} and assume that there exists δ > 0 such that for every
x ∈ Ω, t ≥ 0 and ξ, ζ ∈ Rn we have

(1) |A(x, ξ)|+ |∂xjAk(x, ξ)|+ |ξ||∂ξjA(x, ξ)| ≤ β|ξ|p−1

(2) (A(x, ξ)−A(x, ζ)) · (ξ − ζ) ≥ δ(|ξ|+ |ζ|)p−2|ξ − ζ|2.

Let u ∈ W 1,p
loc (Ω) be a weak solution of div(A(x,∇u(x))) = 0 such that ∇u(x) 6= 0 for a.e. x ∈ Ω.

Then u ∈W 2,2
loc (Ω).
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Proof. First we remind that by 30 we also have

[DξA(x, ξ)h] · h =
∑
k,j

∂ξjA
k(x, ξ)hjhk ≥ Cδ,p|ξ|p−2|h|2 (116)

Then we can use theorem 15 to get that u ∈ L∞loc(Ω), so we can use 16 to obtain that actually
u ∈ C1+α

loc (Ω) for some 0 < α < 1. Then, ∇u is continuous after redefined in a null set.
For any function f we note ∆hf(x) := f(x+ h)− f(x). A basic and well known result tell us that

f ∈W 1,p
loc (Ω) if and only if f ∈ Lploc(Ω) and for every open set U compactly contained in Ω there exists

a constant C independent of h (depending of U) such that ‖∇hf‖Lp(U) ≤ C|h| if h is small enough.
The proof of this is easy and can be found in [6], Section 5.8, Theorem 3.

Then, to prove the proposition we need to show that

‖∆h∇u‖L2(U) ≤ C|h| (117)

for any U compactly supported in Ω and h small. The constant C can depend on the function u and
the domain U , but not on h.

First note that if ϕ ∈W 1,p(Ω) has compact support then we have∫
Ω
A(x+ h,∇u(x+ h))∇ϕ(x)dx =

∫
Ω
A(x,∇u(x))∇ϕ(x− h)dx = 0

since supp(ϕ(· − h) = supp(ϕ) + h ⊂ Ω for h small enough. Then we have, for h small∫
Ω

[A(x+ h,∇u(x+ h))−A(x,∇u(x))]∇ϕ(x)dx = 0. (118)

We shall take a suitable test function in this expression to see that (117) is true. Take U ⊂⊂ V ⊂⊂ Ω,
(by ⊂⊂ we mean being compactly contained), and η ∈ C∞c (V ) a cutoff function such that η = 1 in U ,
0 ≤ η ≤ 1. Take as test function ϕ := η2∆hu. We shall insert ϕ into (118) and derive some estimates.
To do this we shall manipulate (118). First note that

A(x+ h,∇u(x+ h))−A(x,∇u(x)) = I1(x, h) + I2(x, h)

I1(x, h) := A(x,∇u(x+ h))−A(x,∇u(x))

I2(x, h) := A(x+ h,∇u(x+ h))−A(x,∇u(x+ h))

(119)

For the first term we have, denoting ∆t
h∇u(x) := t∇u(x+ h) + (1− t)∇u(x), that

Ik1 (x, h) = Ak(x,∇u(x+ h))−Ak(x,∇u(x))

=
∫ 1

0 ∂t[A
k(x, t∇u(x+ h) + (1− t)∇u(x))]dt

=

∫ 1

0
∇ξAk(x,∆t

h∇u(x))∆h∇u(x)dt

=
∑n

j=1

∫ 1
0 ∂ξj [A

k(x,∆t
h∇u(x))]∆h∂ju(x)dt

(120)

Denote DξA(x, ξ) := (∂ξjA
k(x, ξ))nj,k=1. With ϕ := η2∆hu as before, we have ∇ϕ = η2∇∆hu +

2η∇η∆hu. Note that clearly ∇∆hu = ∆h∇u. Motivated by (120) we compute now some terms that
will appear in (118) later

[DξA(x,∆t
h∇u(x))∆h∇u(x)] · ∇ϕ(x)

= η2(x)[DξA(x,∆t
h∇u(x))∆h∇u(x)] ·∆h∇u(x)

+2η(x)∆hu[DξA(x,∆t
h∇u(x))∆h∇u(x)] · ∇η(x) = S1(t, h, x) + S2(x)

(121)
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We estimate S1(t, h, x) using the ellipticity condition in (116) as follows

S1(t, h, x) = η2(x)[DξA(x,∆t
h∇u(x))∆h∇u(x)] ·∆h∇u(x)

≥ Cη2|∆t
h∇u(x)|p−2|∆h∇u(x)|2 (122)

To estimate S2(t, h, x) we use the Cauchy inequality with ε: if a, b are positive numbers then 2ab ≤
a2 + b2, so given ε > 0

ab =
√
εa

b√
ε
≤ 1

2
[εa2 +

b2

ε
].

Then we have

|S2(t, h, x)| = 2η(x)|∆hu(x)[DξA(x,∆t
h∇u(x))∆h∇u(x)] · ∇η(x)|

≤ 2|DξA(x,∆t
h∇u(x))|Mn×n |η∆h∇u(x)||∆hu(x)∇η(x)|

(123)

We claim now that there exists a compact set B of Rn such that 0 /∈ B and for some δ0 > 0 small
we have

{∆t
h∇u(x) : x ∈ V , t ∈ [0, 1], |h| ≤ δ0} ⊂ B.

The existence of B is justified as follows. To achieve that 0 /∈ B we need the fact that ∇u never
vanishes in Ω, so |∇u| ≥ γ for some γ > 0. Then by uniform continuity of ∇u in V +Bδ0 , we can get
that

max{|∇u(x+ h)−∇u(x)| : x ∈ V } ≤ 1

2
γ

for every h small enough. This inmediatly implies that ∆t
h∇u(x) = t∇u(x + h) + (1 − t)∇u(x) 6= 0

for x ∈ V . The fact that B can be taken compact is just continuity of ∆t
h∇u(x) respect x, h and t.

Therefore we have

inf{|∆t
h∇u(x)| : x ∈ V, t ∈ [0, 1], |h| ≤ δ0} ≥ C

for some constant C. If we look at (122), this yields that

S1(t, h, x) ≥ C1η
2|∆∇u(x)|2 (124)

for x ∈ V , with C1 indepent of t ∈ [0, 1], h ≤ δ0.

On the other hand, if we look at (123), the existence of B and the continuity of DξA in Ω×Rn\{0}
implies

S2(t, h, x) ≤ C2(ε|η(x)∆h∇u(x)|2 + ε−1|∆hu(x)∇η(x)|2) (125)

for x ∈ V , with C2 = ‖DξA‖L∞(V×B) independent t ∈ [0, 1], h ≤ δ0.

Now, from (120), we can compute∫
Ω
I1(x)ϕ(x) =

∫
V

∫ 1

0

n∑
k,j=1

∂ξjA
k(x,∆t

h∇u(x))∆h∇ju(x)∂kϕ(x)dx

=

∫
V

∫ 1

0
[DξA(x,∆t

h∇u(x))∆h∇u(x)] · ϕ(x)dtdx =

∫
V

∫ 1

0
S1(t, h, x) + S2(t, h, x)dtdx

≥
∫
V

∫ 1

0
C1η

2|∆h∇u(x)|2dtdx−
∫
V

∫ 1

0
C2(ε|η(x)∆h∇u(x)|2 + ε−1|∆hu(x)∇η(x)|2)dtdx

≥ C1‖η∆h∇u‖2L2(V ) − C2ε‖η∆h∇u‖2L2(V ) − C2ε
−1‖η∆hu∇η‖2L2(V )

(126)
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It remains to estimate the second term I2. Denote DxA(x, ξ) = (∂xjA
k(x, ξ))nj,k=1. Using (116) we

obtain

|I2(x, h) · ∇ϕ(x)| ≤ |A(x+ h,∇u(x+ h))−A(x,∇u(x+ h))||∇ϕ(x)|

≤ [ mean value theorem ] ≤ |h| sup{|DxA(y,∇u(x+ h))| : y ∈ [x, x+ h]}|∇ϕ(x)|

≤ |h||∇u(x+ h)|p−1|∇ϕ(x)| ≤ C|h||∇ϕ(x)|

(127)

for every x ∈ V , h ≤ δ0, where the last inequality is because ∇u is continuous in V +Bδ0 . Therefore,
using that 0 ≤ η ≤ 1, we have∫

Ω
I2(x, h)∇ϕ(x, h)dx ≥ −

∫
V
C|h|η|∆h∇u|dx−

∫
V

2C|h|η|∆hu||∇η|dx

≥ −C3|h|‖η∆h∇u‖L2(V ) − C4|h|‖∆hu‖L2(V )

(128)

the last inequality because in bounded domains ‖ · ‖L1 ≤ C‖ · ‖L2 .
Finally we sum up (126) and (128) to obtain

0 =

∫
V

(I1(x, h) + I2(x, h))∇ϕ(x, h)

≥ C1‖η∆h∇u‖2L2(V ) − C2ε‖η∆h∇u‖2L2(V ) − C2ε
−1‖η∆hu∇η‖2L2(V )

−C3|h|‖η∆h∇u‖L2(V ) − C4|h|‖∆hu‖L2(V )

≥ (C1 − εC2 − |h|C3)‖η∆h∇u‖2L2(V ) − C5ε
−1‖∆hu‖2L2(V ) − C4|h|‖∆hu‖L2(V )

(129)

where we have used that C2ε
−1‖η∆hu∇η‖2L2(V ) ≤ C5ε

−1‖∆hu‖2L2(V ), because the constants are allowed
to depend on η.

Now we choose ε and |h| small so that C1 − εC2 − |h|C3 = C6 > 0. We fix ε from now on, so it is
eaten by the constants. Also note that since u ∈ C1+α

loc (Ω), then also u ∈ W 1,2
loc (Ω), and then we have

that ‖∆hu‖2L2(V ) ≤ C7|h|. Inserting this into (129) we get

0 ≥ C6‖η∆h∇u‖2L2(V ) − C8h
2 − C4h

2

and finally this gives ‖∆h∇u‖2L2(U) ≤ ‖η∆h∇u‖2L2(V ) ≤ C9|h|2, which proves the proposition.

In the following proposition we could assume for simplicity that Ω = B1. For our purposes it is
enough to consider B1 since the results we are seeking are local and up to diffeomorphism. However
we still work in a general Ω, since the arguments barely change. The only new requeriment we ask
is that ∂Ω is regular in order to apply Sobolev embedding theorems. We remind that, by definition,
∂Ω ∈ Ck if it is locally the graph of a Ck function.

Proposition 23. Let Ω ⊂ Rn an open bounded set with ∂Ω ∈ C1, and let 1 < p < ∞. Consider a
continuous function A : Ω×Rn → Rn that is C1 in Ω×Rn\{0} and assume that there exists δ, β > 0
such that for every x ∈ Ω, t ≥ 0 and ξ, ζ ∈ Rn we have

(1) |A(x, ξ)|+ |∂xjAk(x, ξ)|+ |ξ||∂ξjA(x, ξ)| ≤ β|ξ|p−1

(2) (A(x, ξ)−A(x, ζ)) · (ξ − ζ) ≥ δ(|ξ|+ |ζ|)p−2|ξ − ζ|2.

Let u ∈ W 1,p(Ω) be a weak solution of div(A(x,∇u(x)) = 0 in Ω. Then for every open set
U ⊂⊂ Ω there are constants C > 0 and α ∈ (0, 1), depending on n, p, δ, β, U and ‖u‖W 1,p(Ω) such that
u ∈ C1,α(U) and ‖u‖C1,α(U) ≤ C.

Suppose adittionaly that A ∈ Cr(Ω × Rn\{0}) for some r > 1. Set G = {x ∈ Ω : ∇u(x) 6= 0}.
Then u ∈ Cr+1

∗ (V ) in any open set V ⊂⊂ G.
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Proof. First of all we claim that u ∈ L∞loc(Ω). We distinguish cases.
Case (a). If p > n, by the Sobolev embedding theorem we have

‖u‖L∞(Ω) ≤ ‖u‖C1−n/p(Ω) ≤ Cn,p‖u‖W 1,p(Ω).

Case (b). If p ≤ n we use Theorem 15 to conclude that for every ball B2r ⊂⊂ Ω we have that

‖u‖L∞(Br) ≤ Cn,p,δ,β,r‖u‖Lp(B2r) (130)

Let Û be an open set such that Û ⊂⊂ Ω. Take r = 1
3dist(Û , ∂Ω). Then Û can be covered by a finite

number of balls of radious r, i.e, Û ⊂ Br(y1) ∪ · · · ∪Br(yl), with y1, . . . yl ∈ Û . Besides, by election of
r, B2r(yj) ⊂ Ω, so using (130) we see that ‖u‖L∞(Br(yj)) ≤ Cn,p,δ,β,r‖u‖Lp(Ω), and taking the maximum
over j = 1, . . . , l we conclude that

‖u‖L∞(Û) ≤ Cn,p,δ,β,r‖u‖Lp(Ω) (131)

so case (b) is over. Note that the constant depends on Û via r, so it only depens on dist(Û , ∂Ω).

Now, if U ⊂⊂ Ω, let Û be an open set such that U ⊂⊂ Û ⊂⊂ Ω and such that dist(Û , ∂Ω) ≈
1
2dist(U, ∂Ω). In any of cases (a) and (b) we have concluded that

‖u‖L∞(Û) ≤ Cn,p,δ,β,U‖u‖W 1,p(Ω) (132)

Note that the constant C depends on U via dist(U, ∂Ω).
Therefore we can use Theorem 16 to conclude that there exists constants C ′ and α depending on

n, p, δ, β, dist(U, ∂Ω) and ‖u‖W 1,p(Ω) such that u ∈ C1+α(U) and ‖u‖C1+α(U) ≤ C ′. Note that we can
use Theorem 16 because, by Proposition 30, we have∑

k,j

∂ξjA
k(x, ξ)hjhk ≥ Cδ,p|ξ|p−2|h|2 (133)

and therefore all the hipothesis are satisfied. This proves the first part.

Now suppose that A ∈ Cr(Ω×Rn\{0}) for some r > 1, and let V ⊂⊂ Ω be an open set such that
∇u(x) 6= 0 for every x ∈ V . Let us see that u ∈ Cr+1

∗ (V ). As ∇u is continuous, the set G := {∇u 6= 0}
is open and contains the compact V . By Proposition 22 we know that u ∈ W 2,2

loc (G), and therefore
u ∈W 2,2(V ).

Besides, as div(A(x,∇u(x))) = 0 in Ω, we have that ∂j [A
j(x,∇u(x))] = 0 in the weak sense. Now,

as u ∈ W 2,2(V ), we can apply the chain rule proved in Proposition 19, and we conclude that, for
x ∈ V , ∑

j

∂xjA
j(x,∇u(x)) +

∑
k,j

∂ξkA
j(x,∇u(x))∂j∂ku = 0. (134)

As ∇u never vanishes in the compact V we have that for any x ∈ V , |∇u(x)| > ε > 0 for some positive
number ε. Inserting this into (133) we get that∑

k,j

∂ξkA
j(x,∇u(x))hjhk ≥ Cδ,pεp−2|h|2. (135)

This shows that (134) can be interpreted as a linear elliptic equation that u satisfies in V . For clarity
we write

ajk(x) := ∂ξkA
j(x,∇u(x))

f(x) := −
∑

j ∂xjA
j(x,∇u(x))
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and then (134) becomes, for x ∈ V ,

n∑
j,k=1

ajk(x)∂j∂ku(x) = f(x) (136)

This is a differential operator defined in V , whose symbol p(x, ξ) =
∑n

k,j=1 a
jkξjξk satisfies p(x, ξ) ≥

C|ξ|2 for x ∈ V .
Now we have two cases.
Case (a). Suppose 1 < r < 2. Then 0 < r − 1 < 1, 0 < α < 1. Since u ∈ C1,α(V ) and

A ∈ Cr(Ω × Rn\{0}), we see that the function x → (x,∇u(x)) is Cα(V ) and the partial derivatives
of A are Cr−1(Ω× Rn\{0}). Then, by lemma 18, both ajk and f ∈ Cσ(V ), with σ := (r − 1)α. Also
u ∈W 2,2(V ), so by elliptic regularity , Theorem 7, we conclude that u ∈ C2+σ(V ).

Therefore ∇u is C1,σ(V ), in particular Lipschitz, so by lemma 18 again, we see that both ajk and
f ∈ Cr−1(V ). Applying again elliptic regularity we see that u ∈ Cr+1(V ), as claimed. This finishes
the case 1 < r < 2.

Case (b). Suppose r ≥ 2 and r /∈ N. From now on all function spaces C∗ are considered in V ,
unless explicit mention. Write r = k + δ for some k ∈ N, k ≥ 2, and some 0 < δ < 1. We are going to
see first that

u ∈ Ck+1+δ′ for some 0 < δ′ ≤ δ (137)

As the derivatives of A are Cr−1(Ω×Rn\{0}), they are Lipschitz. On the other hand ∇u ∈ Cα(V ).
By the lemma again we see that both ajk and f ∈ Cα(V ). By elliptic regularity, u ∈ C2+α(V ), so
∇u ∈ C1,α(V ). Therefore, as ajk, f are compositions of C1 functions, they are C1. Let b be any of
ajk, f . We see that b = g ◦ h with g ∈ Ck−1+δ is some first derivative of A(x, ξ), and h ∈ C1+α is
x → (x,∇u(x)). Therefore the first partial derivatives of b are sums of functions of a very especific
form, i.e,

∂1b = (∂1g ◦ h)∂1hj (138)

being hj a C1,α function (a component of h). Then, as k ≥ 2, ∂1g ◦ h is at least Cδ and ∂1h is Cα.
Therefore by lemma 14 we conclude that ∂1b = (∂1g ◦ h)∂1hj is Cδ

′
, for δ′ = min{δ, α} > 0. We see

that b is C1,δ′ . Therefore u ∈ C3+δ′ . If k = 2, this proves the claim (137).

Let k ≥ 3. We more or less repit the argument above. First, with b any of ajk, f as before, now
we have b = g ◦ h with g ∈ Ck−1+δ, h ∈ C2+δ′ , (note that h has one more derivative now) so b is C2.
If we differentiate in (138) we obtain

∂2b = (∂2g ◦ h)∂1hi∂1hj + (∂1g ◦ h)∂2hj = C +D (139)

being as before hi, hj components of h. Now, ∂2g ◦h is at least Cδ since k ≥ 3, and ∂1hi∂1hj is C1+δ′ ,
so C is at least Cδ. Besides, ∂1g ◦ h is C2 and ∂2hj is Cδ

′
, so D is at least Cδ

′
. We conclude that

b ∈ C2,δ′ , so u ∈ C4+δ′ . If k = 3 the claim is proved.
If k ≥ 4, we repeat this procedure with the new information that h ∈ C3+δ′ , so differentiating in

(139) we see that ∂3b ∈ Cδ′ , so b ∈ C3+δ′ and u ∈ C5+δ′ , which proves the claim in case k = 4. We
can repeat this process until we have u ∈ Ck+1+δ′ , which gives (137).

We are almost done. We have seen that u ∈ Cr+1−λ(V ) with λ := δ − δ′, so 0 ≤ λ < 1. Therefore
∇u ∈ Cr−λ ⊂ Cr−1, so both ajk, f ∈ Cr−1(V ). Now we are going to make use of proposition 10. Note
that the linear elliptic equation (136) can be interpreted as a non-smooth pseudodifferential operator
p(x,D) acting on u, i.e,

p(x,D)u =
∑
k,j

ajk(x)∂j∂ku(x) = f(x)
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and the symbol p(x, ξ) of p(x,D) is p(x, ξ) =
∑
akj(x)ξkξj . Note that we have seen before that

p(x,D) is uniformly elliptic of order 2 in V , being V and arbitrary open set compactly contained in
G = {∇u 6= 0} ⊂ Ω.

Now take B any ball compactly contained in G, and take an open set V such that B ⊂⊂ V ⊂⊂
G. We shall verify the hipothesis of proposition 10. We have akj ∈ Cr−1(V ), u ∈ Cr+1−λ(V ) =
C2−(r−1)+ε(V ), being ε = 2r − 2− λ > 0 since r ≥ 2 and 0 ≤ λ < 1. Also, f ∈ Cr−1(V ) and then by
10 we conclude that u ∈ Cr+1

∗ (B).

Now, every V ⊂⊂ G can be covered with a finite numbers of balls B compactly contained in G,
and u is Cr+1

∗ in each ball, so we see that u ∈ Cr+1
∗ (V ).

Case (c). Suppose r ≥ 2, r ∈ N. Then A(x, ξ) ∈ Cr−η for all 0 < η < 1
2 . Take any ball B ⊂⊂ G

and let V such that B ⊂⊂ V ⊂⊂ G. As r − η /∈ N, from the previous cases we get u ∈ Cr+1−η
∗ (V ) =

C
2−(r−1)+ε
∗ (V ), being ε = 2r − 2− η > 0 if η is small, since r ≥ 2. As akj , f ∈ Cr−1(V ), we apply 10

and conclude that u ∈ Cr+1
∗ (B). As before, as every V ⊂⊂ G can be covered with a finite numbers of

balls B compactly contained in G, we see that u ∈ Cr+1
∗ (V ). This proves the proposition.

Now we prove an interpolation result that we will need later.

Lemma 31. (Interpolation) Let Ω ⊂ Rn be a bounded open set. Let f ∈ Cα(Ω) for some 0 < α ≤ 1.
Let also K ⊂ Ω be a compact set, and put δ0 := dist(K,Rn\Ω). Let 1 ≤ p <∞ and suppose that for
some M > 0 we have

[f ]Cα(Ω) ≤M

‖f‖Lp(Ω) ≤ δ
n+αp
p

0 M

Under this hipothesis we have that

‖f‖L∞(K) ≤ Cn,p,αM
n

n+αp ‖f‖
αp

n+αp

Lp(Ω) (140)

Proof. Let x0 ∈ K and Bδ(x0) for some 0 < δ < δ0 that we will choose later. The triangle inequality
yields

‖f(x0)‖Lp(Bδ(x0)) ≤ ‖f(x0)− f‖Lp(Bδ(x0)) + ‖f‖Lp(Bδ(x0))

so we have

‖f‖Lp(Bδ(x0)) ≥ |f(x0)||Bδ(x0)| − (

∫
Bδ(x0)

|f(x)− f(x0)|pdx)
1
p

≥ Cn,pδ
n
p |f(x0)| − [f ]Cα(Ω)(

∫
Bδ

(x0)|x− x0|αpdx)
1
p

≥ Cn,pδ
n
p |f(x0)| −M(

∫ δ

ρ=0
ραp+n−1dρ)

1
p = Cn,pδ

n
p |f(x0)| −MCn,p,αδ

αp+n
p

Sinse 0 < δ < δ0 = dist(K,Rn\Ω), this δ does not depend on x0 ∈ K. Therefore we can take the
supremum on x0 ∈ K to see that

‖f‖Lp(Ω) ≥ Cn,pδ
n
p ‖f‖L∞(K) −MCn,p,αδ

α+n
p

and thus we conclude that

‖f‖L∞(K) ≤ Cn,pδ
−n
p ‖f‖Lp(Ω) +MCn,p,αδ

α (141)
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by hipothesis we can take

δ =

[‖f‖Lp(Ω)

M

] p
n+αp

≤ δ0

inserting this δ into (141) we have

‖f‖L∞(K) ≤ Cn,p[‖f‖Lp(Ω)]
αp

n+αpM
n

n+αp + Cn,p,αM
n

n+αp [‖f‖Lp(Ω)]
αp

n+αp

and this gives (140) and proves the lemma.

Now we are ready to prove the existence of A-harmonic coordinates.

Theorem 17. Let Ω ⊂ Rn be an open set, and let 1 < p < ∞. Consider a continuous function
A : Ω × Rn → Rn that is C1 in Ω × Rn\{0} and assume that there exists δ > 0 such that for every
x ∈ Ω, t ≥ 0 and ξ, ζ ∈ Rn we have

(1) A(x, tξ) = tp−1A(x, ξ)
(2) (A(x, ξ)−A(x, ζ)) · (ξ − ζ) ≥ δ(|ξ|+ |ζ|)p−2|ξ − ζ|2.

Under these hipothesis, given any point x0 ∈ Ω there is a nieghborhood U := Ux0 of x0 and there
is a C1 (in fact C1,α for some 0 < α < 1) diffeomorphism

Φ = (φ1, . . . , φn) : U → V := Φ(U) ⊂ Rn

such that all its components φj : U → R are A-harmonic in U (in the weak sense), and such that,
given any invertible matrix S, the differential DΦ of Φ satisfies ‖DΦ(x0) − S‖ < η for any η > 0
previously fixed.

Besides, any C1 diffeomorphism defined near x0 whose components are A-harmonic is in fact a
C1,α diffeomorphism near x0 for some 0 < α < 1.

Moreover, if A is Cr for some r > 1 then we can achieve that Φ is a Cr+1
∗ diffeomorphism (and

therefore its components are strongly A-harmonic). In this case, any C1 diffeomorphism defined near
x0 whose components are A-harmonic (in the weak sense) is in fact a Cr+1

∗ diffeomorphism near x0,
so its components are strongly A-harmonic.

Proof. Take first S as the identity matrix. We can assume that x0 = 0 via a translation, and for
simplicity we shall suppose that B1 ⊂ Ω. If we did not suppose that B1 ⊂ Ω, the proof would go the
same way changing B1 by Br for some fixed r > 0 small enough so that Br ⊂ Ω.

The coordinates φj will be obtained by solving, for ε small, the Dirichlet problem

div(A(x,∇φj(x))) = 0 in Bε

φj |∂Bε = xj
(142)

Recall that by 30, the hipothesis of propositions 18 and 23 are satisfied. Thus, for 0 < ε ≤ 1, the
problem (142) has a weak solution φj ∈ W 1,p(Bε) such that φj − xj ∈ W 1,p

0 (Bε). Moreover we know
that in any subdomain of Bε, φ

j is C1,α for 0 < α < 1 depending on the subdomain. We will show
that if ε is small enough, the Jacobian matrix DΦ is invertible at the origin. Then we will use the
inverse function Theorem.

We write u := φj below, for some fixed j, being φj the mentioned solution of (142). Define the
dilated coordinates x̂ := x/ε and let

û(x̂) := ε−1u(εx̂)
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Note that û depends on ε and is defined in B1. Similarly, given ϕ ∈ C∞c (Bε), let ϕ̂(x̂) := ε−1ϕ(εx̂),
and ϕ̂(x̂) ∈ C∞c (Bε). By the chain rule we have that

∇û(x̂) = ∇u(εx̂)

so ∇û(x/ε) = ∇u(x). Then it follows that∫
Bε

A(x,∇u(x)) · ∇ϕ(x)dx =

∫
Bε

A(x,∇û(x/ε)) · ∇ϕ(x/ε)dx

= εn
∫
B1

A(εx̂,∇û(x̂)) · ∇ϕ(x̂)dx̂ = εn
∫
B1

Aε(x̂,∇û(x̂)) · ∇ϕ(x̂)dx̂

being Aε(x̂, q̂) := A(εx̂, q̂). Therefore the function u solves (142) if and only if û solves

div(Aε(x̂,∇û(x̂)) = 0 in B1

û|∂B1 = x̂j
(143)

We have, thus, translated the original Dirichlet problem in Bε to another in B1, but the function A
has been changed for Aε. Note that Aε is defined for x in some neighborhhod of B1 and satisfies
the assumptions on this Theorem with the same constant δ uniformly in 0 < ε ≤ 1. Therefore, by
proposition (30), we see that Aε also satisfies the hipothesis of propositions 18 and 23 for the same
constants β, δ, etc, uniformly in ε. We conclude that

‖û‖W 1,p(B1) ≤ C1‖x̂j‖W 1,p(B1) ≤ C

‖û‖C1,α(B 1
2

) ≤ C ′
(144)

where C depends on δ, p,B1 and C ′ depends on δ, p,B1, ‖û‖W 1,p(B1). In any case, we can change in the

above estimate C ′ for some constant C independent of ε. Now write û = û0 + û1, where û0(x̂) := x̂j

is the j-th coordinate. Note that
û1 = û− û0 ∈W 1,p

0 (B1).

We want to see that ∇û is near ∇û0 if ε is small. More precisely we caim that

‖∇û1‖pLp(B1) =

∫
B1

|∇û1|pdx̂ ≤ Cεmin{p,p
′} (145)

with p′ such that 1
p + 1

p′ = 1, i.e, p′ = p
p−1 . To see (145) define

I :=

∫
B1

(|∇û|+ |∇û0|)p−2|∇û1|2dx̂.

Estimate (145) will follow if we see first that

I ≤ Cε‖∇û1‖Lp(B1) (146)

Indeed, suppose we know (146). Then, if p ≥ 2 we have∫
B1

|∇û1|pdx̂ =

∫
B1

|∇û1|p−2|∇û1|2dx̂

≤
∫
B1

(|∇û|+ |∇û0|)p−2|∇û1|2dx̂ = I ≤ Cε(
∫
B1

|∇û1|pdx̂)1/p
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so ‖∇û1‖pLp(B1) ≤ ε
p′ . On the other hand, if 1 < p < 2, take a = 2

p > 1 and a′ = 2
2−p so that 1

a+ 1
a′ = 1.

The Holder inequality with a and a′ implies∫
B1

|∇û1|pdx̂ =

∫
B1

(|∇û|+ |∇û0|)−
p(p−2)

2 (|∇û|+ |∇û0|)
p(p−2)

2 |∇û1|pdx̂

= [

∫
B1

{(|∇û|+ |∇û0|)−
p(p−2)

2 }
2

2−pdx̂]
2−p

2 [

∫
B1

{(|∇û|+ |∇û0|)
p(p−2)

2 |∇û1|p}
2
pdx̂]

p
2

= [

∫
B1

{(|∇û|+ |∇û0|)pdx̂]
2−p

2 I
p
2 ≤ CI

p
2

in the last step we used that u0 = x̂j ∈ W 1,p(B1) is a fixed function, and ‖û‖W 1,p(B1) ≤ C by (144).
Therefore ∫

B1

|∇û1|pdx̂ ≤ CI
p
2 ≤ ε

p
2 [

∫
B1

|∇û1|pdx̂]
1
2

and therefore ‖∇û1‖pLp(B1) ≤ ε
p.

Now it remains to see (146). We compute:

I =

∫
B1

(|∇û|+ |∇û0|)p−2|∇û1|2dx̂

≤ 1

δ

∫
B1

[Aε(x̂,∇û)−Aε(x̂,∇û0)] · [∇û−∇û0]dx̂

= −1

δ

∫
B1

Aε(x̂,∇û0) · [∇û−∇û0]dx̂

= −1

δ

∫
B1

[Aε(x̂,∇û0)−A0(x̂,∇û0)] · [∇û−∇û0]dx̂

(147)

In the first line of (147) we used that Aε satisfies the hipothesis of the theorem. In the second line we
used that û satisfies div(Aε(x̂,∇û(x̂)) = 0 in B1 in the weak sense, and that û1 = û− û0 ∈W 1,p

0 (B1)
is a test function, so we have ∫

B1

Aε(x̂,∇û) · [∇û−∇û0]dx̂ = 0

In the third line we have used that ∇û0 = ej is constant so A0(x̂,∇û0) = A(0,∇û0) := v ∈ Rn is also
a constant, and then we have∫

B1

A0(x̂,∇û0) · [∇û−∇û0]dx̂ =

∫
B1

v · ∇û1dx̂ =
∑
j

∫
vj∂

j [û1] =
∑
j

∫
û1∂

j [vj ] = 0

since, as û1 ∈W 1,p
0 (B1), the boundary terms are zero when we integrate by parts.

Now we remind that by proposition (30), for all l = 1, . . . , n we have |∂xlAε(x̂, ξ)| ≤ β|ξ|p−1. By
the mean value Theorem it follows that if we denote ej = ∇û0 then

|Aε(x̂, ej)−A0(x̂, ej)| = |A(εx̂, ej)−A(0, ej)| ≤ |ej |p−1|εx̂| ≤ ε

for every x̂ in B1. Therefore, coming back to (147), we see that

I ≤ 1

δ

∫
B1

|Aε(x̂,∇û0)−A0(x̂,∇û0)| · |∇û1|dx̂ ≤ Cε‖∇û1‖Lp(B1)
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and this proves (146). Collecting the results so far we have, by (145) and (144) that

‖∇û−∇û0‖Lp(B1) ≤ Cε
min{1, 1

p−1
}

‖∇û−∇û0‖C1,α(B 1
2

) ≤ C
(148)

Now we can interpolate these two inequalities using Lemma 141. We use the notations of that

Lemma. Let f = ∇û − ∇û0. We know that ‖f‖Lp(B 1
2

) ≤ Cε
min{1, 1

p−1
}
, ‖f‖C1,α(B 1

2
) ≤ M for some

constant M . Take K = B 1
8
, so δ0 = 3

8 . If we take ε small enough we can achieve that ‖f‖Lp(B 1
2

) ≤

[δ0]
n+αp
p M , so we conclude that, for some exponent γ > 0, we have

‖∇û−∇û0‖L∞(B 1
8

) ≤ Cεγ = o(1) as ε→ 0 (149)

Note that this process was made for û(x̂) = ε−1u(εx̂) = ε−1φj(εx̂), so φj(x) = εû(ε−1x), and∇φj(x) =
∇û(ε−1x), so from (149), and taking into account that ∇û0 = ej , we see that

‖∇φj − ej‖L∞(B ε
8

) ≤ Cεγ = o(1) as ε→ 0 .

Repeating this argument with each component and denoting Φ = (φ1, . . . , φn) : Bε → Rn, and Id for
the identity n× n matrix, then in particular

|DΦ(0)− Id| ≤ εγ = o(1) as ε→ 0

So DΦ(0) is an invertible matrix (and arbitrarily close to Id) for ε small enough.

Now recall that A(x, ξ) is C1(Ω× Rn\{0}) and the diffeomorphism Φ is C1,α for some 0 < α < 1.
By the inverse function Theorem we get that there exists an open neighborhood U of x0 = 0 such
that Φ : U → V = Φ(U) is a C1 diffeomorphism. Let us see that actually it is a C1,α diffeomorphism.
The inverse function theorem also tell us that

D(Φ−1) = [DΦ ◦ Φ−1]−1 : V → Gl(n) (150)

Note that, maybe in a smaller U , we can achieve that Φ−1 is Lipschitz, and that the determinant Det
of DΦ ◦Φ−1 is ≥ c > 0 for some c. Note DΦ ◦Φ−1 is a composition of a Lipschitz and a Cα function,
and Det is a sum of products of Cα functions, so both of them are Cα. We see then that 1

Det is also
Cα by Lemma 17. We conclude by the formula of inverting matrixes that D(Φ−1) is Cα.

Now let F be any other C1 diffeomorphism defined near x0 whose components f j are A-harmonic.
By Proposition 23, we know that the f j are in fact C1,α for some 0 < α < 1, and by the formula for
the differential of the inverse given in (150) we see, with the same arguments as before, that F is a
C1,α diffeomorphism near x0.

Finally, assume that A(x, ξ) is Cr with r > 1. We know then that Φ is Cr+1
∗ by 23. Put r = k+ δ

for 0 ≤ δ < 1 and note that if k = 1 then δ > 0, and if δ = 0 then k ≥ 2. If δ > 0, by the IFT we
know that Φ−1 is Ck+1 ⊂ Cr. If δ = 0, then Φ ∈ Ck+1

∗ ⊂ Ck = Cr so Φ−1 ∈ Cr also by the IFT. We
see that in any case Φ−1 ∈ Cr.

As DΦ is Cr∗ , the composition DΦ◦Φ−1 is Cr∗ by Lemma 19. As Cr∗ is an algebra with the pointwise
multiplication by Proposition 16, we see that Det is also Cr∗ . Now, by Lemma 17, we see that 1

Det is
also Cr∗ . We conclude from the formula (150) that D(Φ−1) is Cr∗ , and so Φ−1 is Cr+1

∗ (V ), and this
yields that Φ is a Cr+1

∗ diffeomorphism as we wanted.
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Let F be any other C1 diffeomorphism near x0 whose components f j are A-harmonic. By Propo-
sition 23, we know that the f j are in fact Cr+1

∗ near x0, and using the formula of the differential of
the inverse as above, we see that F is a Cr+1

∗ diffeomorphism near x0.

The proof of the Theorem in case S = I is done. If S is any invertible matrix, we change the initial
data of (142) and choose φj to be the solutions of

div(A(x,∇φj(x))) = 0 in Bε

φj |∂Bε = (Sx)j
(151)

Repeating the argument we see (with the same notations as above) that the only change is that now
û0(x̂) = (Sx̂)j and thus ∇û0 is the j-th column of the matrix S. This gives that DΦ(0) is arbitrarily
close to S as ε→ 0.

From this Theorem, the existence of p-harmonic coordinates on a Riemannian manifold is an
inmediate consequence.

Theorem 18. Let r > 1, and let (M, g) be a Riemannian manifold whose metric is of class Cr in
some Cr+1

∗ local coordinate chart ϕ near a point x0 ∈ M . Let also 1 < p < ∞. Then, there exists a
local coordinate chart F defined in some open neigborhood U of x0 such that

(1) F : U → F (U) is a Cr+1
∗ diffeomorphism onto an open set of Rn.

(2) The coordinate functions of F are p-harmonic.
(3) The metric expressed in these p-harmonic coordinates satisfies |g(x0) − Id| < ε for any given

ε > 0 previously fixed.
Moreover, all C1 p-harmonic coordinates (in the weak sense) near x0 are Cr+1

∗ diffeomorphisms,
and every C1 p-harmonic function defined near x0 such that du(x0) = ∇u(x0) 6= 0 have Cr+1

∗ regularity
near x0.

Proof. Take a Cr+1
∗ coordinate system ϕ = (x1, . . . , xn) in an open neighborhood U of x0, so that the

metric is Cr in the ϕ coordinates. We shall work in these coordinates ϕ : U → Ω, whose range is
a certain open set Ω ⊂ Rn. Take any function u defined near x0 and express u in these coordinates
putting uϕ = u ◦ ϕ−1, so uϕ is defined in Ω.

As discussed at the begining of this section, uϕ := u ◦ ϕ−1 is p-harmonic near ϕ(x0) if and only
if div(A(x,∇uϕ(x))) = 0 where A(x, q) is given in 38, so is Cr regular in Ω × Rn\{0} and satisfies
the hipothesis of Theorem 17. Therefore, if u is a C1 p-harmonic function defined near x0 such
that ∇u(x0) 6= 0, then in the ϕ coordinates uϕ is a C1 A-harmonic function near ϕ(x0) such that
∇u(ϕ(x0)) 6= 0, so ∇u does not vanish near x0 by continuity.

Then, by Theorem 17, we see that uϕ is Cr+1
∗ near ϕ(x0). As ϕ is Cr+1

∗ , we see that u = u◦ϕ−1 ◦ϕ
is Cr+1

∗ near x0 as a function defined on an open set of the manifold M . Note that uϕ is Cr+1
∗ near

ϕ(x0) no matter of regular is the coordinate system ϕ, but if we want u to have that regularity as a
function defined on M , we have to demand the coordinates ϕ to be Cr+1

∗ . This proves the last asertion
of the Theorem.

To see the others assertions, we apply Theorem 17 and find a Cr+1
∗ diffeomorphism Φ : G→ Φ(G)

from some open neighborhood G ⊂ Ω of ϕ(x0) onto Φ(G) ⊂ Rn whose components are A-harmonic.
Then F := Φ◦ϕ : ϕ−1(G)→ Φ(G) is a Cr+1

∗ diffeomorphism from some open neighborhood of x0 onto
an open set of Rn whose coordinate functions are p-harmonic near x0 by construction (since they are
p-harmonic in some coordinate system and the p-harmonic equation does not depend on coordinates).
If G0 := (gij(ϕ(x0)))i,j is the metric at x0 in the ϕ coordinates, the metric at x0 expressed in the F
coordinates is given by

G1 = [D(Φ−1)(F (x0))]tG0[D(Φ−1)(F (x0))] =
(
[DΦ(ϕ(x0))]−1

)t
G0[DΦ(ϕ(x0))]−1.
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In Theorem 17 we saw that DΦ((ϕ(x0)) can be chosen arbitrarily close to any matrix. Let A be
an invertible matrix such that AtG0A = Id. Then, if we take DΦ((ϕ(x0)) close enough to A−1, by
continuity of the operations to compute the inverse of a matrix, we will have that G1 is arbitrarily
close to Id.

The next assertions of the Theorem have already been proved in Theorem 17, and this concludes
the proof.

Remark 39. Suppose that we weaken the hipothesis of the Theorem above by only asking that
ϕ : Ux0 → Ω ⊂ Rn is a C1 coordinate system defined near some point x0 ∈M , such that the pull-back
gϕ = (ϕ−1)∗g is Cr for r > 1. Then we have a Cr+1

∗ diffeomorphism F : Ω′ → V ⊂ Rn, being Ω′ ⊂ Ω
a smaller neighborhood of ϕ(x0), such that the coordinates of F are p-harmonic functions for the
Riemannian manifold (Ω′, gϕ). But note that the lift F̂ := F ◦ ϕ : ϕ−1(Ω′)→ V of F to a function on
M defined near x0 is not Cr+1

∗ regular, but only C1 regular as the coordinates ϕ.

This remark will be more important to us than the Theorem above, since we are going to give
results about specific and fixed localitations (Ω, gϕ) of (M, g) via local coordinates ϕ : Ux0 → Ω
defined locally on a manifold M . This coordinates will not necessarily be smooth as functions defined
on M . This way, we can suppose that (M, g) = (Ω, gϕ) is an open set of Rn equipped with a possibly
nonregular metric gϕ, and forget about the differentiable structure of M .

6.3. Some properties of p-harmonic coordinates.

One property of p-harmonic coordinates is that when we express the metric in these coordinates, we
can be sure that no other coordinates will make the metric more regular, as we will see.

Proposition 24. Let (M, g) be a Riemannian manifold. Suppose that the metric g is Cr for some
r > 1 in some C1 local coordinates ϕ near a point x0 ∈ M . If a tensor field T is Cs for some s ≥ r
expressed in the ϕ coordinates then it is of class at least Cr∗ in any p-harmonic coordinates near x0.

Proof. Suppose ϕ : U → Ω, with U a neighborhood of x0 and Ω ⊂ Rn. By Theorem 18 we know that
there exists a system of p-harmonic coordinates F : V → G ⊂ Rn defined in some open neighborhood
V ⊂ Ω of ϕ(x0). By that Theorem we also know that F is a Cr+1

∗ diffeomorphism. Let φ := F ◦ ϕ :
ϕ−1(V )→ G. Denote the coordinate representations of T in the ϕ and φ coordinates by Tϕ = (ϕ−1)∗T
and Tφ = (φ−1)∗T . They are related by the pullback, i.e,

Tφ = (F−1)∗Tϕ.

This pull back only involves first derivatives of F−1, which is Cr+1
∗ regular. Therefore (F−1)∗Tϕ is of

class Cr∗(G), since by hipothesis Tϕ is Cs(V ) with s ≥ r. This proves that Tφ is Cr∗(G).

Moreover, we know that any p-harmonic coordinate system near x0 is a Cr+1
∗ diffeomorphism, and

the same argument gives that T is Cr∗ expressed in any p-harmonic coordinate system.

Remark 40. In the Proposition above we did not require any regularity condition on the system of
coordinates ϕ since the claim was for the expression in coordinates of the tensor T , and not for the
tensor T itself defined in the manifold M .

In the following Corollary we state a remarkable feature of p-harmonic coordinates. It boils down
to say that among all the possible expressions in coordinates of a metric g near a point x0 ∈ M , the
expression of g in any p-harmonic coordinate system has the maximal regularity possible.

Corollary 13. Let (M, g) be a Riemannian manifold, r > 1 and fix x0 ∈ M . For any C1 coordinate
system α : Ux0 → V ⊂ Rn, defined in some neighborhood Ux0 of x0 (which may depend on α), denote
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gα := (α−1)∗g the expression of g in the α coordinates. Suppose that the metric g is of class Cr when
expressed in some C1 coordinate system ϕ near a point x0. Fix any p-harmonic coordinate system φ
near x0. Denote

max(g) := sup{t > 1 : exists a C1 coordinate system α such that gα ∈ Ct near x0} ≤ ∞.

We have:
(1) If max(g) /∈ N and there exists a C1 coordinate chart α∗ such that gα∗ ∈ Cmax(g) near x0

then also gφ ∈ Cmax(g) near x0. Therefore g has maximal regularity expressed in any p-harmonic
coordinates (we mean by this that g can not be made any smoother by changing coordinates).

(2) If max(g) ∈ N and there exists a C1 coordinate chart α∗ such that gα∗ ∈ Cmax(g) near x0, then

gφ ∈ C
max(g)
∗ near x0. In this case g may have not maximal regularity in p-harmonic coordinates, but

almost.
(3) If for every C1 coordinate chart α we have that gα /∈ Cmax(g), then gφ ∈ Cmax(g)−ε near x0 for

every ε > 0. Therefore g has maximal regularity expressed in any p-harmonic coordinates.

Proof. We know by Proposition 24 that if for some coordinate chart α we have gα ∈ Ct for some t > 1,
then gφ ∈ Ct∗. This proves cases (1) and (2). To see (3), take a sequence of coordinate charts αn and
numbers tn > 1 such that gαn ∈ Ctn , tn → max(g) as n→∞, and tn /∈ N. Then gφ ∈ Ctn for each n,
so necessarily gφ ∈ Cmax(g)−ε. This proves (3) and we are done.

Note that in Proposition 24 above and the Corollary 13 below we can substitute p-harmonic
coordinates by A-harmonic coordinates with A(x, ξ) satisfaying the hipothesis of the Theorem 17.
The proof is totally analogous, but we are only interested in p-harmonic coordinates here.

Now we see an interesting property of n-harmonic coordinates, related to conformal geometry. It
says that whenever a metric is conformally flat, the coordinate chart that makes the metric a multiple
of the identity has to be n-harmonic necessarily.

Proposition 25. Let (M, g) be a Riemannian manifold, g not necessarily regular. Suppose that in
a C1 coordinate chart x = (x1, . . . , xn) the metric g has the expression gjk = cδjk for some bounded
function. Then the chart x is n-harmonic. This does not follow for any other value of p.

Proof. We work in the coordinate system x. We must see that δ(|dxl|p−2dxl) = 0 for any l if and only
if p = n. We have, by (68) that

δ(|dxl|p−2dxl) = −|g(x)|−
1
2∂j [|g(x)|

1
2 gjk(x)(gab(x)δalδbl)

p−2
2 δkl]

= −c−
n
2 ∂j [c

n
2 gjl(gll)

p−2
2 ] = −c−

n
2 ∂l[c

n−2
2
− p−2

2 ]

And the last term is zero no matter who is c if and only if p = n. This proves the proposition.
Note that, although the n-harmonic equation seems to require g ∈ C1 to make sense, in this case
it is trivially satisfied no matter how regular is the metric. Nevertheless, if one want to avoid the
miracle, we always have a well defined weak formulation for the p-laplace equation which does not
require regularity on the metric, given in (79). The computation above shows that A(x,∇xl) = el, so
div(A(x,∇xl) = 0 in the weak sense.

Note that without Cr, r > 1, regularity of the metric we do not know whether a weak solution u
of div(A(x,∇u) = 0 is regular or not. However, in this case xl is obviously C∞ in the x-coordinates
(it is only C1 expressed in other coordinates, but that is another history).

Example 5. Consider the metrics in R2 given in standard coordinates of R2 by

g1
Id(x, y) = (1 + 3x|x|)2dx2 + [1 + (x+ |x|3)2]dy2

g2
Id(x, y) = (1 + 3x|x|)2(dx2 + dy2)
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The function x|x| is C1,1, but it is not C2 near the point x = 0. So f := (1+3x|x|)2 = 1+6x|x|+9x4,
as a sum of two smooth functions and a not C2 function, cannot be C2. We conclude that both g1

and g2 are C1,1 and not C2 in standard coordinates, and his first derivatives have a corner in the line
{x = 0} ⊂ R2. One might wonder is there is a C1 diffeomorphism η : Bε → V ⊂ R2 near the point
x0 := (0, 0) such that the pull-back gjη = (η−1)∗gj is more regular than gjId, j = 1, 2.

Consider the C2,1 (and not C3) diffeomorphism given by

η(x, y) = (x+ |x|3, y) := (t, y)

A trivial computation shows that g1
η(t, y) = dt2 + (1 + t2)dy2, so g1 is smooth expressed in the η

coordinates. So there exists a coordinate chart η such that g1
η is smooth. This implies that in any

p-harmonic coordinates φ the pull-back g1
φ is also smooth. However, an easy computation shows that

the η coordinates are not p-harmonic for any value of p > 1. Indeed, putting x1 := t, x1 is not
p-harmonic, since, after a little computation in the (t, y) coordinates (recall that (g1

η)
11 = 1), we see

that

Γ1 =
t

1 + t2
6= p− 2

2
g1i∂i[log((g1

η)
11)] = 0 for any p.

This shows that, though expressing the metric in p-harmonic coordinates gives maximal regularity,
the converse is not true, i.e, a metric can be smooth in coordinates which are not p-harmonic for any
p.

On the other hand, there is no C1 diffeomorphism η such that g2
η has more than C2 regularity.

Indeed, if there were such an η, then g2
η would be of class at least C2,α for some 0 < α < 1, and then

we know by Proposition 24 that in any p-harmonic coordinate system φ the pullback gφ would be

C2,α
∗ = C2,α. But, since the metric g2 is a multiple of the identity in standard coordinates, we know

by Proposition 25 that the standard coordinates are 2-harmonic (i.e, harmonic). This implies that g2
Id

should be C2,α, which is not true.

The next proposition shows that n-harmonic coordinates are invariant under conformal change of
the metric. This is also true for any n-harmonic function, but we are mainly interested in this specific
case, for which the proof is easier.

Proposition 26. Let (M, g) be Riemannian manifold, let r > 1, and let x0 ∈ M . Let φ =
(x1, . . . , xn) : Ux0 → V ⊂ Rn be a C1 n-harmonic coordinate system near x0, and suppose that
the pull-back gφ is C1. Let c be a positive function defined near x0 such that the pull-back cφ is C1,
and define a conformal metric near x0 by ĝ := cg.

Then, the coordinate system φ keeps being n-harmonic for the metric ĝ. Moreover, no other value
of p has this property.

Proof. We shall work in the φ coordinates. First remind from Proposition 15 that a coordinate function
xk is p-harmonic if and only if

A(g) := gij
1

2
glk(∂igjl + ∂jgil − ∂lgij) =

1

2
(p− 2)gki

∂ig
kk

gkk
:= B(g)

therefore this is true for the metric g with p = n. We have to see that it is true also for the metric ĝ.
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We compute

A(ĝ) =
1

2c2
gijglk(gjl∂ic+ c∂igjl + gil∂jc+ c∂jgil − gij∂lc− c∂lgij)

=
1

c
A(g) +

1

2c2
gijglk(gjl∂ic+ gil∂jc− gij∂lc)

B(ĝ) =
p− 2

2c
gki

∂i[c
−1gkk]

c−1gkk
=
n− 2

2

gki

gkk
(−gkk 1

c2
∂ic+

1

c
∂ig

kk)

=
1

c
B(g) +

1

2c2
(2− p)gki∂ic

Therefore, A(ĝ) = B(ĝ) if and only if C = D, being

C := gijglk(gjl∂ic+ gil∂jc− gij∂lc) = gik∂ic+ gjk∂jc− nglk∂lc = (2− n)gik∂ic

D := (2− p)gki∂ic

which is true if and only if p = n.

§7. Gauge Conditions for Ellipticity

In a riemannian manifold (M, g), consider a tensor T which expression in coordinates depends on the
metric g. To fix ideas, suppose T is a (2, 0) tensor. Fix a coordinate system x, and consider the
equation Tab = T̂ab(g) in the coordinate system x, where the left hand side is a fixed function (the
components of T in the x coordinates), and the right hand side is a diffrential operator acting on the
fixed metric g, which depends on how the components gij combine in the x coordinates to give the
component Tab of the tensor T .

This equation is an identity, i.e. valid for every g, if we do not imposse any condition on the
coordinate system x. However, if we imposse, for example, that the system x is p-harmonic for the
metric g, then the differential operator T̂ (g) changes in the x coordinates due to possible cancelations,
and the equation Tab = T̂ab(g) in the x coordinates is true for the metric g, but is not true for a metric
ĝ in which the x coordinates are not p-harmonic.

Imagine that, choosing an appropiate system of coordinates x, we can achieve that the operator
T̂ab(g) becomes an elliptic operator. Then, by elliptic regularity results, we would be able to deduce
regularity for g in terms of regularity of the tensor T .

Note that we are not saying that the tensor T regarded as an operator acting on metrics g is
elliptic, because in that case the identity T̂ab(g) = Tab would be elliptic in any coordinates x. We are
saying that if we fix a metric g we can choose some appropiate coordinates x for that metric g in order
to make the equation T̂ab(g) = Tab elliptic in that coordinates.

An specific choice of coordinates in the equation Tab = T̂ab(g) is called a local Gauge Condition
for that equation. In this section we shall see how, for certain tensors T , p-harmonic coordinates can
be used as local Gauge conditions that results in an elliptic equation.

7.1. Ricci Tensor and Harmonic Coordinates

In this subsection we see a simple example of how the techniques mentioned above work for the Ricci
tensor.

Lemma 32. Let (M, g) be a riemannian manifold such that g is C2 expressed in some coordinates.
Denote Γl := Γlabg

ab. Then

Ricij = −1

2
gkl∂klgij +

1

2
[gli∂jΓ

l + glj∂iΓ
l] + T1(g) (152)
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where for k ∈ N we define Tk(g) for expressions that depend smoothly only on gab and derivatives up
to order k of gab.

Proof. First note that by formula 8, we have that

Riklj = Rikl
agja = {∂iΓakl − ∂kΓail}gja + T1(g)

= {∂i[
1

2
gab(∂kglb + ∂lgkb − ∂bgkl)]− ∂k[

1

2
gab(∂iglb + ∂lgib − ∂bgil)]}gja + T1(g)

=
1

2
[∂ikglj + ∂ilgkj − ∂ijgkl − ∂ikglj − ∂klgij + ∂kjgil] + T1(g)

Therefore it follows that

Ricij = −1

2
gkl∂klgij +

1

2
gkl[∂kjgil + ∂ilgkj − ∂ijgkl] + T1(g) (153)

On the other hand

∂jΓ
l = ∂j [

1

2
gabglc[∂agbc + ∂bgac − ∂cgab] =

1

2
gabglc[∂ajgbc + ∂bjgac − ∂cjgab] + T1(g)

This implies that

gli∂jΓ
l + 1

2g
lk∂ijglk = 1

2glig
abglc[∂ajgbc + ∂bjgac − ∂cjgab] + 1

2g
lk∂ijglk + T1(g)

= 1
2g
ab[∂ajgbi + ∂bjgai − ∂ijgab] + 1

2g
lk∂ijglk + T1(g) = gab∂ajgbi + T1(g)

The last equality because the two first sums are the same by simmetry, and the last two sums cancel
out. We conclude that

gli∂jΓ
l + glj∂iΓ

l = gab∂ajgbi + gab∂aigbj − glk∂ijglk + T1(g)

Inserting the last equation in 153 we obtain (152) and the lemma is proved.

Taking into account equation (70) we have the following.

Corollary 14. In harmonic coordinates the expression for the Ricci tensor becomes

Ricij = −1

2
gkl∂klgij + T1(g) (154)

From this and the classic elliptic regularity results it follows readily the following Theorem. We
require the metric to be C2 in order to define the Ricci tensor in a classical way, though this hipothesis
can be weakened as we shall see.

Theorem 19. Let (M, g) a Riemannian manifold, and let r > 1. Suppose that the metric g is Cr

expressed in some system of coordinates ϕ defined near x0. Let also k ∈ N and 0 < α ≤ 1. We have
(1) If in any system of harmonic coordinates φ near x0 the expression of the metric gφ is C2 and

the expression of the Ricci tensor Ricφ is Ck,α, then in fact gφ is Ck+2,α.
(2) If in some system of coordinates ϕ′ the metric gϕ′ is Ck,α for some k ≥ 2 and the Ricci tensor

Ricϕ′ is C l,α for l ≥ k in these coordinates, then g is Ck+2,α in harmonic coordinates.

Proof. First, as gϕ is Cr with r > 1 we know that harmonic coordinates exists, and the metric has
maximal regularity in such coordinates.

The claim (1) follows by Corollary 14. Indeed, in these coordinates we have

Ricij − f = alk∂lkgij
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with alk := glk ∈ C2, and f = T1(g). Since f = T1(g) depends smoothly on the metric and its first
derivatives, f = T1(g) ∈ C1 ⊂ C1−ε, and Ricij ∈ Ck,α by hipothesis. This is a linear elliptic operator
acting on gij . If k + α ≤ 1− ε, by elliptic regularity g ∈ Ck+2,α according to Theorem 7.

If k+α > 1−ε we see that gij ∈ C3−ε for all ε > 0. Repeating the argument, now f = T1(g) ∈ C2−ε

and alk ∈ C3−ε. If k + α ≤ 2− ε, we are done.

If k + α > 2 − ε, we see gij ∈ C4−ε, so f = T1(g) ∈ C3−ε. If k + α ≤ 3 − ε we are done, and
otherwise we keep going.

Repeating the argument k+ 1 times we obtain that both akl, T1(g) ∈ Ck+1−ε ⊂ Ck+α in ε is small
enough, so gij ∈ Ck+2,α as desired.

Let us see (2). As both the g and Ric are Ck,α for k ≥ 2 and α > 0 in some coordinates, we know
by Proposition 24 that both of them are Ck,α in harmonic coordinates. Now we use (1) to see that
g ∈ Ck+2,α. This yields (2) and proves the Theorem.

From this Theorem we see that if in harmonic coordinates φ the Ricci tensor is smooth and
the metric is C2,α, it follows that g is also smooth in the φ coordinates. In arbitrary coordinates
the Theorem only says that we gain two derivatives on the metric when we express it in harmonic
coordinates, but with respect to the regularity of the metric in the original coordinates, not to the
regularity of the Ricci tensor. The following example ilustrates this.

Example 6.
(a) Consider (Rn, g0) being g0 = Id the flat usual metric. Let ϕ be a diffeomorphism of class C3,

so that the pull-back metric g1 := (ϕ−1) ∗ g0 is C2. As the Ricci tensor is invariant under isometries,
Ric(g1) = 0, but the metric g1 is not smooth, not even C3. This happens because the coordinates
given by ϕ are not harmonic.

In particular, if n = 2 we see that g1(x, y) = D(ϕ−1)t(x, y)D(ϕ−1)(x, y) can not be the identity
matrix multiplied by a function unless ϕ ∈ C∞, by Proposition 25. This is a curious conclusion.

(b) Suppose that in harmonic coordinates the metric g is C2, and the curvature tensor r is zero.
Then in these coordinates Ric = 0, so g is smooth.

7.2. Definition of Tensors with Low Regular Metrics.

Now we adress the question of giving a similar result that Theorem 19 but for Cr metrics with r > 1.
The strategy will be to define the Ricci tensor in the weak sense, and deduce elliptic regularity results
as before. To give a characterization of conformal flatness for Cr metrics we will do more or less the
same thing with the Weyl and Cotton tensors. We will define the Weyl and Cotton tensors in the
weak sense, and then we will use elliptic regularity to prove that if such weak tensors vanish then the
metric is regular. Finally, when we know that the metric is regular, conformal flatness will follow from
the classic Weyl-Schouten Theorem.

From now on we will call E := W 1,2∩L∞. We will see that the condition g ∈ E in some coordinate
patch is enough to define the Weyl, Riemann curvature and Ricci tensors in coordinates. Call also
E′ := W 2,2 ∩W 1,∞. We will see that g ∈ E′ in some coordinate patch is enough to define the Cotton
tensor in coordinates. First we see that E is an algebra under pointwise multiplication.

Lemma 33. Let Ω ⊂ Rn. Let u, v ∈ Eloc(Ω). Then uv ∈ Eloc(Ω) and ∇(uv) = v∇u+ u∇v.

If we only suppose u, v ∈W 1,2
loc (Ω) then we have uv ∈W 1,1

loc (Ω) and ∇(uv) = v∇u+ u∇v.

If we additionally suppose that for some c > 0 we have |v(x)| ≥ c > 0 a.e. x ∈ Ω, then v−1 ∈ Eloc(Ω)
and ∇(v−1) = v−2∇v.
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Remark 41. If we suppose that u, v ∈ E then from this it follows that uv ∈ E, since the distributional
derivative keeps being the same. The same applies for v−1 under the additional assumption of non-
vanishing.

Proof. First suppose that v ∈ C1(Ω). Let ϕ ∈ C1
0 (Ω) be a text function, and K := Supp(ϕ). Note

that ϕxiv ∈ C1
0 (Ω) is also a test function, for which the usual product rule applies. Therefore∫

Ω
uvϕxidx =

∫
Ω
u[(vϕ)xi − vxiϕ]dx = −

∫
Ω

(uxiv + uvxi)ϕdx.

For general v ∈ E(Ω), take vn ∈ C1(Ω) such that vn → v in W 1,2(K). By the previous case and
Holder’s inequality we have

|
∫

Ω
uvϕxidx+

∫
Ω

(uxiv + uvxi)ϕdx|

= |
∫

Ω
(v − vn)uϕxidx+

∫
Ω
uvnϕxidx+

∫
Ω

(uxiv + uvxi)ϕdx|

= |
∫

Ω
(v − vn)uϕxidx+

∫
Ω
{uxi(v − vn) + u(vxi − vnxi)}ϕdx|

≤ ‖v − vn‖L2(K)

[
‖uϕxi‖L2(Ω) + ‖uxiϕ‖L2(Ω)

]
+ ‖vxi − vnxi‖L2(K)‖‖uϕ‖L2(Ω) → 0

as n → ∞. This proves that the distributional derivative of uv is ∇(uv) := v∇u + u∇v (note that
this is true only supposing that u, v ∈ W 1,2

loc (Ω)). Now, as u, v ∈ L∞loc(Ω), then ∇(uv) ∈ L2
loc(Ω), so

uv ∈ E(Ω).

Now suppose that v(x) ≥ c > 0 a.e. x ∈ Ω, and let vn ∈ C1(Ω) such that vn → v in W 1,2(K) and
vn(x) → v(x) a.e. x ∈ K. Since almost everywhere subsets are dense, by continuity |vn(x)| ≥ c and
|vn(x)| ≤ ‖v‖L∞(K) for all x ∈ K, so the usual derivative of (vn)−1 is −(vn)−2∇vn . Now we compute∣∣∣∣∫

Ω
[v−1ϕxi + v−2vxiϕ]dx

∣∣∣∣
=

∣∣∣∣∫
Ω

[v−1 − (vn)−1]ϕxidx+

∫
Ω

(vn)−1ϕxidx+

∫
Ω
v−2vxiϕdx

∣∣∣∣
=

∣∣∣∣∫
Ω

[v−1 − (vn)−1]ϕxidx+

∫
Ω

[v−2vxi − (vn)−2vnxi ]ϕdx

∣∣∣∣
≤
∣∣∣∣∫

Ω

vn − v
vvn

ϕxidx

∣∣∣∣+

∣∣∣∣∣
∫

Ω

(vn)2vxi − v2vnxi
v2(vn)2

ϕdx

∣∣∣∣∣
≤
∥∥∥∥vn − vvvn

∥∥∥∥
L2(K)

‖ϕxi‖L2(Ω) +

∥∥∥∥∥(vn)2vxi − v2vnxi
v2(vn)2

∥∥∥∥∥
L2(K)

‖ϕ‖L2(Ω) := An +Bn

Now note that both sequences fn := ‖[vn−v](vvn)−1‖ and gn :=
∥∥[(vn)2vxi − v2vnxi ](vv

n)−2
∥∥ converge

almost everywhere to 0 in K, and moreover fn and gn are uniformly bounded functions in K, so they
are dominated by an L2(K) function. By the Dominated Convergence Theorem we see that both An
and Bn tend to 0, as desired. This proves the Lemma.

Definition 44. Given Ω ⊂ Rn an open let and 1 ≤ p ≤ ∞ and p′ its conjugate. We denote
W−1,p′(Ω) := W 1,p(Ω)′ for the dual space of W 1,p

0 (Ω).

Using the isometric embbeding ι : W 1,p
0 (Ω) → F := Lp(Ω)n+1 : u → (u,∇u) we can have an

idea of how acts an element T of W−1,p′(Ω). Indeed, we see that T : W 1,p
0 (Ω) → R induces a linear
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continuous map T̂ := T ◦ ι−1 on its image ι(W 1,p
0 (Ω)) ⊂ F . By the Hanh-Banach Theorem we can

extend T̂ to a continuous functional T ∗ on F , i.e, T ∗ ∈ F ′ = Lp
′
(Ω)n+1. Therefore, when we restrict

T ∗ to ι(W 1,p
0 (Ω)), we see that there exists functions v0, . . . , vn ∈ Lp

′
(Ω) such that

T (u) =

∫
Ω
uv0dx+

n∑
i=1

∫
Ω
uxividx

Note that the functions vi are not unique, as neither is the extension T ∗ of T̂ .

Remark 42. Given f ∈ Lp′(Ω) = W 0,p′(Ω), we can consider f as a distribution, i.e, f ∈ (Lp(Ω))′ ⊂
D′(Ω). Then, as D(Ω) = C∞c (Ω) is dense in W 1,p

0 (Ω) it is obvious that its distributional derivatives
fxi ∈ D′(Ω) can be uniquely extended to an element to W−1,p′ and this element is of course the one
that acts by (fxi , u) := −(f, uxi) fro any u ∈W 1,p

0 (Ω). So we see that derivatives of Lp
′

functions fall
in W−1,p′ . This should explain a little bit the notation.

We prove now a couple of technical propositions that will be useful later.

Proposition 27. Let Ω ⊂ Rn be an open bounded set, and let E = W 1,2 ∩ L∞(Ω) as before. Given
f, g ∈ E, we have

∂l[fg] = f∂lg + g∂lf ∈ L1

∂k[f∂lg] = ∂kf∂lg + f∂klg as elements of W−1,q′ for any q > n.
(155)

Proof. The first equality follows from Proposition 33. Let us see the second. First note that, as
commented above, ∂kf∂lg + f∂klg ∈ L1(Ω) + W−1,q′(Ω) ⊂ W−1,q′(Ω) for any q > n, , being q′ the
Holder conjugate of q. On the other hand, f∂lg ∈ L2, so ∂k[f∂lg] ∈W−1,2(Ω) ⊂W−1,q′(Ω). We shall
see that both are equal in W−1,q′(Ω). Indeed, given ϕ ∈W 1,q

0 (Ω), on one hand we have

(∂k[f∂lg], ϕ) = −
∫

Ω
f∂lg∂kϕdx

On the other hand, recall that as q > n ≥ 2 we have W 1,q
0 (Ω) ⊂W 1,2

0 (Ω) so by Lemma 33 we see that
the pointwise product fϕ ∈ E and ∇(fϕ) = ϕ∇f + f∇ϕ ∈ L2, so we have

(∂kf∂lg + f∂klg, ϕ) =

∫
Ω
ϕ∂kf∂lgdx−

∫
Ω
∂lg∂k[fϕ]dx

=

∫
Ω
ϕ∂kf∂lgdx−

∫
Ω
ϕ∂lg∂kfdx−

∫
Ω
f∂lg∂kϕdx = −

∫
Ω
f∂lg∂kϕdx

and this proves the Proposition.

Proposition 28. Let Ω ⊂ Rn, n ≥ 2 be open and bounded. Given f ∈ E(Ω) and g = g1 + g2 ∈
W−1,2(Ω) + L1(Ω) we can define the product fg in such a way that fg ∈ W−1,q′(Ω) + L1(Ω) and
besides fg is the pointwise product of functions when g is a Lp(Ω) function for some p ≥ 2.

Remark 43. If h ∈ W−1,q′(Ω) can be expressed as h = eh′ for some e ∈ E(Ω) and h′ ∈ W−1,2(Ω) +
L1(Ω), then for f ∈ E we can still define fh := (fe)h′.

Proof. Let f ∈ E(Ω), g = g1 + g2 ∈ W−1,2(Ω) + L1(Ω). It is clear that we can define the pointwise
product fg2 ∈ L1(Ω). It remains to see how we define the product fg1. This will be similar to what
it is done for distributions. Let q > n ≥ 2. Note that, by the Sobolev Embeding Theorem and the
definition of norms, we know that W 1,q

0 ⊂ C0,δ ⊂ L∞ for some 0 < δ < 1, with continuous inclusions.
Taking duals we have Lp(Ω) ⊂ L1(Ω) ⊂W−1,q′(Ω) for p ≥ 1. Also note that W 1,q(Ω) ⊂ E(Ω).
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That said, we claim now that we have a well defined map

·f : W 1,q
0 (Ω)→W 1,2

0 (Ω) : g 7→ fg.

First note that, as g is continuous and has zero trace, then g is zero restricted to the boundary of the
coordinate patch Ω.

Let us see that the map above is well defined. As g ∈W 1,q
0 (Ω) ⊂ E(Ω), by Lemma 33 we see that

∇(fg) = f∇g + g∇f ∈ L2(Ω), since f, g ∈ L∞(Ω). From this we see that fg ∈ W 1,2(Ω). Note that
this fails for q < n as we are not sure that g∇f ∈ L2(Ω).

Finally let us see that Tr(fg) = 0. Let φn → f in W 1,2(Ω), φn ∈ C(Ω). We can suppose
φn ∈ L∞(Ω) since we can change φn by

φ′n = φnχ{|φn|≤‖f‖L∞(Ω)} + sign(φn)‖f‖L∞(Ω)χ{|φn|>‖f‖L∞(Ω)}

which satisfies φ′n ∈ C(Ω), ‖φ′n‖L∞(Ω) ≤ ‖f‖L∞(Ω), and |φ′n(x) − f(x)| ≤ |φn(x) − f(x)| so φ′n are a
better approximation of f . So we directly suppose φn ∈ E(Ω). Recall that this implies φng ∈W 1,2(Ω).

We claim in addition that φng → fg in W 1,2(Ω). To see this first note that ‖φng − fg‖L2(Ω) ≤
‖φn − f‖L2(Ω)‖g‖L2(Ω) → 0 as n→∞. Also we know that the product rule applies so

‖∇(φng)−∇(fg)‖L2(Ω) ≤ ‖g‖L2(Ω)‖∇φn −∇f‖L2(Ω) + ‖∇g‖L2(Ω)‖φn − f‖L2(Ω).

So, as Tr : W 1,2(Ω) → L2(∂Ω) is continuous and Tr(φng) = (φng)|∂Ω = 0, we see that Tr(fg) = 0,
so fg ∈W 1,2

0 (Ω) as we wanted. This proves that ·f is well defined as claimed. Therefore we have the
transpose map (·f)′ : W−1,2(Ω)→W−1,q′(Ω).

Suppose now that for some function g we have that Ig ∈W−1,2(Ω), (where Ig acts on W 1,2
0 (Ω) by

integrating against g), and suppose we have also that Ifg ∈ W−1,q′(Ω). For example this is true if
g ∈ Lp(Ω) for some p ≥ 2. We might wonder whether (·f)′Ig = Ifg, and we claim this is true. Indeed,

given h ∈W 1,q
0 (Ω) we have

((·f)′Ig, h) = (Ig, fh) =

∫
Ω
gfhdx = (Ifg, h)

So, as (·f)′ coincides with ·f when that makes sense, we denote simply (·f)′ = ·f , and the proposition
is proved.

Now we shall see how to define tensors that involve two derivatives of the metric if we only suppose
g ∈ E, and tensors that involve three derivatives supposing g ∈ E′.

First we write explicitly the expressions of the (3, 1) curvature tensor R, the Ricci tensor Ric,
the Schouten tensor s, the Weyl tensor w and the (3, 1)-Weyl tensor W . In Einstein notation the
tensors obtained by lowering and raising indexes are denoted with the same letter, so now we denote
all tensors with capital letters. Moreover the tensors obtained taking traces are denoted also with the
same letter. In particular note that the Ricci tensor is denoted Rij since it is obtained by taking the
trace from the curvature, Rij = Raij

a = Raijlg
al. In analogy, the scalar curvature is obtained as the

trace of the Ricci tensor, so it is denoted by R = Raa = Rabg
ab. That said, according to Definition 10,

we have

Rabc
d = ∂aΓ

d
bc − ∂bΓdac + ΓmbcΓ

d
am − ΓmacΓ

d
bm

Sab =
1

2− n

[
Rab +

1

2(1− n)
grsRrsgab

]
Wabcd = Rabcd − gacSbd + gadSbc − Sacgbd + Sadgbc

(156)
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Wabc
l = Wabcdg

ld = Rabc
l − gacSbdgld + δlaSbc − Sacδlb + Sadg

ldgbc

= Rabc
l +

1

2− n

[
−gacRbdgld + δlaRbc − δlbRac +Radg

ldgbc

]
+

1

2(1− n)(2− n)
grsRrs

[
−gacgbdgld + δlagbc − δlbgac + gadg

ldgbc

]
= Rabc

l +
1

2− n

[
−gacRbdgld + δlaRbc − δlbRac +Radg

ldgbc

]
+

1

(1− n)(2− n)
grsRrs

[
δlagbc − δlbgac

]
(157)

The next proposition shows how to define the Weyl tensor if the metric has just one derivative.

Proposition 29. Given a Riemmannian manifold (M, g), and a system of coordinates (ϕ,Ω), if the
metric gϕ ∈ E(Ω) = W 1,2(Ω) ∩ L∞(Ω), then we can make sense of the components of the Riemann
curvature, Weyl, and Ricci tensors in these coordinates (as distributions), and moreover if λ ∈ E(Ω)
is a positive function, and we define g′ = λg ∈ E(Ω), then the Weyl tensors w and w′ of g and g′

satisfy the same relation than in the case where g and g′ are C2, i.e, w′ = λw.

Proof. With the formulae above in mind, fix a coordinate patch Ω ⊂ Rn. In the following discussion all
the spaces are considered in Ω unless explicit mention. Suppose that gij ∈ E. Then |g| and |g|−1 ∈ E
by Lemma 33, so its inverse matrix gij ∈ E. Therefore we have

Γcab =
1

2
gcl[∂agbl + ∂bgal − ∂lgab] ∈ L2

since L∞Lp ⊂ Lp for all p ≥ 1. Also, if we consider Γcab ∈ D′, then looking at (156) we see that both
Rabc

d and Rbc ∈W−1,2 + L1.
In order to make sense of Sab for n ≥ 3, we would want to make sense of grsRrs. Looking at (156),

we have grsgab ∈ E and Rrs ∈W−1,2 +L1 so by Proposition 28 we have grsgabRrs ∈W−1,q′ +L1 and
Rabcd = Rabc

lgld ∈W−1,q′ +L1. As W−1,2 ⊂W−1,q′ , and we see that both Sab,Wabc
d can be regarded

in W−1,q′ + L1.
Also, we see that Wabcd = Wabc

lgld ∈W−1,q′ +L1, because Wabc
d ∈ E(W−1,2 +L1) so we can still

multiply W d
abc by functions on E (see Remark 43). It is important to note that with this definition

the curvature Rabcd has all the symmetries of the Riemann curvature tensor. To see this, look at the
expression of Rabc

d in (156), and note that we can expand, multiply and differentiate the expression
of the Christoffel symbols in terms of the metric as in the regular case, i.e,

ΓcabΓ
f
de = 1

4g
clgfl∂agbl∂dgel + 1

4g
clgfl∂agbl∂egdl + · · · ∈ L1

∂kΓ
c
ab = ∂k[

1
2g
cl][∂agbl + ∂bgal − ∂lgab] + 1

2g
cl[∂kagbl + ∂kbgal − ∂klgab] ∈ L1 +W−1,q′

Note that after expanding these expressions and inserting them in the formula for Rabc
d, we have lost

a bit a regularity, since now Rabc
d ∈W−1,q′+L1, but this is irrelevant. The simmetries of Rabc

d derive
from its formal expression in terms of the metric, so they are the same as in the smooth case. Note
also that, regarding Rabc

d ∈ W−1,q + L1, we can still make sense of Rabcd = gldRabc
l because Rabc

l is
a sum of things that lie in E(W−1,2 + L1), see Remark 43.

Therefore Rabcd has the same expression in terms of gij that in the smooth case, so necessarily it has
the same simmetries. Exactly the same argument applies to see that Wabcd has the same simmetries
as in the smooth case, so in particular its Ricci contraction is zero, i.e, Ric(W )bc = Wabc

a = 0.
Finally note that L1 ⊂ (L∞)′ ⊂ W−1,q′ , since W 1,q ⊂ L∞ with continuous inclusion by the

Sobolev Embeding. We see that all the tensors in (156) and (157) can be regarded as elements of
W−1,q′ + L1 ⊂W−1,q′ .
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Not let λ ∈ E, and define the conformal metric g′ := λg ∈ E being λ ≥ k > 0 for some constant
k. We claim that the conformal behaviour of the weekly defined Weyl tensor remains the same, i.e,
W ′abcd = λWabcd. The proof of this boils down to check that all the computations we did in 3 and 1 to
compare W ′abcd and Wabcd in the regular case (i.e, λ, g ∈ C2) are valid also in this less regular setting.

Note that in the regular case the equality W ′abcd = λWabcd holds, and it is derived from the fact
that, as g′ij = λgij , we can apply Leibnitz’s rule when taking derivatives up to order 2, and this gives
us a relation between both metrics. We will use Proposition 27 to show that we can do the same thing
for metrics in E.

In first place note that if g ∈ E, it is still true that the Riemann curvature tensor r admits a unique
descomposition r = w+s?g being w a curvature tensor with Ricci contraction 0. This descomposition
was proved in 1 using the simmetries of r and taking traces twice. We have seen that these simmetries
are the same here and we can take traces, so nothing changes.

Given this, it suffices to see that Rabc
d and R′abc

d are related in the same way than they are in the
regular case, because in that case we are done by Proposition 3 and the Corollary 1 below, since the
same arguments apply. To see that Rabc

d and R′abc
d are related as if they were regular, it is enough

to see that we can apply the Leibnitz rule when computing

R′abc
d

= ∂aΓ
′d
bc − ∂bΓ′dac + Γ′mbc Γ′dam − Γ′mac Γ′dbm.

To see this note that

Γ′mbc =
1

2
(λ)−1gml{∂b[λgcl] + ∂c[λgbl]− ∂l[λgbc]} =

1

2
(λ)−1gmlgcl∂bλ+

1

2
(λ)−1gmlλ∂bgcl + . . . (158)

since by Proposition 27 we can apply Leibnitz’s rule to each of the sumands and also we can apply
the distributive law. Note that each of the summands is in L2. So the products Γ′mbc Γ′dam can be
manipulated as if the metric were smooth.

Also, by the algebra properties of E in Lemma 33 and Proposition 27, we can apply Leibnitz’s
rule to each of the summands of the expanded expression of Γ′mbc in (158) as if these summands were
smooth so it follows that

∂aΓ
′m
bc =

1

2
∂a[(λ)−1gmlgcl∂bλ] + · · · = (λ)−1gmlgcl∂abλ− λ−2gmlgcl∂aλ∂bλ+ · · · ∈W−1,q′

Note that after expanding the expression of Γ′mbc we lose a bit of information because we know (by
another argument) that ∂aΓ

′d
bc actually lies in W−1,2.

We conclude from this that Rabc
d and R′abc

d are related in the same way as in the smooth case,
this time laying both in W−1,q′ (not in W−1,2 +L1 as before). From this we contract with the metric
and we see that also Rabcd = gldRabc

l and R′abcd = λgldR
′
abc

l are related as if they were smooth. We
must see that this contraction with the metric is valid. Although we a priori cannot make sense of gldh
for general h ∈ W−1,q′ , if h has the special form h = eh′ with e ∈ E and h′ ∈ W−1,2, then we define
gldh := (glde)h

′ and everything works fine, by Remark 43. Note that by the computations above, both
Rabc

d and R′abc
d are sums of functions hi = eih

′
i with this special form, so we can contract with the

metric without any problem.
Thus, as in the regular setting, R′abcd = λ[Rabcd + (bu ? g)abcd], being u := 1

2 log(λ), and bu =
Hess(u)− du⊗ du+ 1

2 |grad(u)|2gg. Note that u ∈ E and ∂au = 1
2λ
−1∂a[λ] by the Chain rule for weak

derivatives. Now we apply the argument given in Corollary 1 and we see that W ′abcd = λWabcd. This
completes the proof of the proposition.

Remark 44. One might wonder if it is really necessary to ask g ∈ E to define the Weyl tensor in the
weak sense. Of course the problem is not on defining the derivatives of g, since we can differentiate
g as many times as we want regarding g as a distribution. The problem lies on defining the products
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ΓcabΓ
k
ij which appear in Rabc

d, since we cannot multiply distributions in a satisfactory way (we do
multiply distributions with functions, but not with proper distributions).

Note for example that the tensorial product of distributions u1, u2 ∈ D′(Ω) given by (u1⊗u2, ϕ) :=
(u1, ϕ)(u2, ϕ) for ϕ ∈ D(Ω) does not work for two reasons. First it does not extend the product on
functions, i.e, (If ⊗ Ig, ϕ) =

∫
fϕdx

∫
gϕdx 6=

∫
fgϕdx = (Ifg, ϕ). The second reason, is that u1 ⊗ u2

is not linear, it is bilinear, so it does not belong to D′(Ω).

In fact, it is known that we cannot define a product on distributions that extend the pointwise
product of functions (see [18]). It is enough to note that x−

1
2χ(−1,1) is a distribution in Ω = (−1, 1),

but its square is x−1χ(−1,1) is not integrable near 0.

So we are not able to generalize the Riemann curvature tensor (and thus any of the above tensors)
unless the Christoffel symbols are regarded as functions, and this demands on g to have at least one
weak derivative.

Remark 45. Suppose now that the metric g is Cr∗ for some r > 1 in some local coordinates. Then gjk

are Cr∗ by the algebra properties of Zigmund spaces, and thus it is clear that Γcab are Cr−1
∗ . This implies

that Rabc
d and Rab are Cr−2

∗ , since differentiation (in distributional sense) subtracts one exponent in
the Zigmund spaces (see Remark after 9). Moreover, we can define the product gjkRab ∈ Cr−2

∗ by the
Corollary after Lemma 15, since r > 1 implies r > |r − 2|. Therefore Pab ∈ Cr−2

∗ and for the same
reason Wabc

d and Wabcd ∈ Cr−2
∗ .

Now we see that if we demand one more derivative on the metric, the Cotton tensor can also be
defined in the weak sense in a satisfactory manner. This time we need some properties of the space
E′ = W 2,2 ∩W 1,∞ in some open bounded set Ω ⊂ Rn, which the next propositions summarize.

Proposition 30. Let Ω ⊂ Rn. Let f, g ∈ E′(Ω) = W 2,2(Ω) ∩W 1,∞(Ω). Then fg ∈ E′(Ω). Therefore
E′(Ω) is an algebra.

Moreover, if we suppose that f(x) ≥ k > 0 a.e. x ∈ Ω for some constant k then f−1 ∈ E′(Ω).

Proof. As E′(Ω) ⊂ E(Ω) = W 1,2(Ω)∩L∞(Ω), we use Proposition 33 to see that (fg)xi = gfxi + fxig.
Now we note that fxi , gxi ∈ E(Ω), so (fg)xi ∈ E, and this gives fg ∈ E′(Ω).

If now we suppose f(x) ≥ k > 0, by Proposition 33 we know that f−1 ∈ E and that (f−1)xi =
−f−2fxi . From here we see that (f−1)xi ∈ E, since both f−2 = f−1f−1 and fxi lie in E, which is an
algebra.

Proposition 31. Let Ω ⊂ Rn be an open and bounded set, let f ∈ E′(Ω) = (W 2,2 ∩W 1,∞)(Ω) and
g ∈ L2(Ω). Then fg ∈ L2 and moreover (fg)xi = gfxi + fgxi as elements in W−1,2(Ω) (in particular
we are saying that fgxi ∈W−1,2(Ω)).

Proof. First note that the multiplication by f satisfies

· f : W 1,2
0 (Ω)→W 1,2

0 (Ω) : ϕ 7→ fϕ (159)

Recall Proposition 28, where we only supposed that f ∈ E(Ω) = (W 1,2 ∩ L∞)(Ω) and then the
multiplication by f was worse behaved since it mapped the smaller space W 1,q

0 (Ω) (for q > n) into

W 1,2
0 (Ω) . However, if f ∈ E′(Ω), ϕ ∈ W 1,2

0 (Ω), then by Lemma 155 we know that the distributional
derivative of fϕ is ∇(fϕ) = ϕ∇f + f∇ϕ. As f ∈ L∞(Ω),∇f ∈ L∞(Ω;Rn), we see that ∇(fϕ) ∈
L2(Ω;Rn), so fϕ ∈W 1,2(Ω).

Now let us see that Tr(fϕ) = 0 ∈ L2(∂Ω). As ϕ ∈ W 1,2
0 (Ω) we can find φn ∈ D(Ω) such

that φn → ϕ in W 1,2(Ω). By the Sobolev Embeding, as f ∈ W 1,∞(Ω), f is continuous (in fact
Lipschitz), so fφn ∈ Cc(Ω) and therefore Tr(fφn) = 0. If we see that fφn → fϕ in W 1,2(Ω), by
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the continuity of the trace we will conclude that Tr(ϕf) = 0 as we want. To see this first note that
‖fφn − fϕ‖L2(Ω) ≤ ‖f‖L2(Ω)‖φn − ϕ‖L2(Ω) → 0 as n→∞. Also, aplaying the product rule, we have

‖∇(fφn)−∇(fϕ)‖L2(Ω) ≤ ‖∇f‖L2(Ω)‖φn − ϕ‖L2(Ω) + ‖f‖L2(Ω)‖∇φn −∇ϕ‖L2(Ω) → 0 as n→∞

So we have seen the mapping property (159). Now we can consider the transpose map (·f)′ of
·f , which we shall denote also by (·f)′ := ·f , since it is an extension of the original ·f regarding
W 1,2

0 (Ω) ⊂W−1,2(Ω) as usual. Therefore we have a well defined map

· f : W−1,2(Ω)→W−1,2(Ω) : T 7→ fT (160)

This shows in particular that for g ∈ L2(Ω) we can define fgxi . Now let us see (fg)xi = gfxi + fgxi
en W−1,2(Ω). Take ϕ ∈W 1,2

0 (Ω), and note that the product rule applies to fϕ. It follows that

((fg)xi , ϕ) = −(fg, ϕxi) = −
∫

Ω
fgϕxidx

(fxig + gxif, ϕ) =

∫
Ω
fxigϕdx−

∫
Ω
g(fϕ)xidx = −

∫
Ω
fgϕxidx

and this completes the Proposition.

Now let us write the expression of the Cotton tensor Cabc in local coordinates.

(∇∂aS)(∂b, ∂c) = ∂aSbc − S(Γlab∂l, ∂c)− S(∂b,Γ
l
ac∂l) = ∂aSbc − ΓlabSlc − ΓlacSbl

Cabc = (∇∂aS)(∂b, ∂c)− (∇∂bS)(∂a, ∂c) = ∂aSbc − ∂bSac + ΓlbcSal − ΓlacSbl
(161)

Proposition 32. Given a Riemmannian manifold (M, g), and a system of coordinates (ϕ,Ω), if the
metric gϕ ∈ E′(Ω) = (W 2,2 ∩W 1,∞)(Ω), then we can make sense of the components of the Cotton
tensor in these coordinates (as distributions), and moreover if λ ∈ E′(Ω) is a positive function, and
we define g′ = λg ∈ E′(Ω), then the Cotton tensors c and c′ of g and g′ satisfy the same relation than
in the case where g and g′ are C3, i.e, c′ = c − w(·, ·, ·, grad(u)), with u := 1

2 log(λ). In particular if
n = 3 we have c′ = c.

Proof. All spaces will be considered in Ω unless explicit mention. First note that by Proposition 30
the inverse gij ∈ E′ and therefore Γcab = 1

2g
cl[∂agbl + ∂bgal − ∂lgab] ∈ E = W 1,2 ∩ L∞. Also, from the

formula of Rabc
d given in (156) we see that Rabc

d ∈ L2 + E ⊂ L2, so also Rbc ∈ L2, and Sab ∈ L2.
From the formula 161 we readily see that Cabc ∈W−1,2 + L2 ⊂W−1,2.

It remains to see the transformation of the Cotton tensor under conformal change. Put g′ = λg
with λ ∈ E′. We shall see that we can apply the Leibnitz rule for the derivatives of the metric up to
order 3. If we see this, then the components C ′abc and Cabc of the Cotton tensors associated to g′ and
g will be related by the same formal expression (in terms of the metric g and λ) than in the smooth
case (this time making sense as distributions), and this will give the claim.

Recall that we already saw in Proposition 29 that we can make operations with the components
of tensors that involve ≤ 2 derivatives of the metric as if the metric were smooth, and it remains to
see that in this case we can do it with components of tensors that involve up to three derivatives of
the metric.

More concisely, to analize how the Cotton tensor change we are interested in the components S′ab
of the Schouten tensor, which depend on the second derivatives of the metric via the Ricci tensor R′ab
and the scalar curvature R′rsg

′rsg′ab (so via the Ricci tensor). The higher order terms (i.e, less regular,
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with more derivatives) of the Ricci tensor R′ab are things of the type ∂aΓ
′d
bc ∈ L2. More concisely we

have

Γ′cab = 1
2λ
−1gcl∂a[λglb] + similar things = 1

2λ
−1gclglb∂aλ+ 1

2g
cl∂aglb + · · · ∈ E

∂dΓ
′c
ab = 1

2λ
−1gclglb∂adλ+ 1

2g
cl∂adglb + similar higher order terms + things in E

From this we see that, in order to apply the Leibnitz rule again when computing ∂edΓ
′c
ab, we just

need to check that it is valid for things of the form fg with f ∈ E′ and g ∈ L2. This follows from
Proposition 31, where we saw that under these assumptions we have ∇(fg) = g∇f + f∇g in W−1,2.
Therefore we can apply the Leibnitz rule all the times we need in order to compute C ′abc in terms of
Cabc, and thus they are related by the same formulas here that in the regular case. This proves the
proposition.

Remark 46. Suppose now that the metric g is Cr∗ for some r > 2 in some local coordinates. Then
gjk are Cr∗ , so Γcab are Cr−1

∗ by the algebra properties of Zigmund spaces and therefore Rabc
d and Rab

are Cr−2
∗ . Also, the product gjkRab ∈ Cr−2

∗ , so Pab ∈ Cr−2
∗ and analogously Wabc

d and Wabcd ∈ Cr−2
∗ .

Looking at the components of Cabc we see that the Cotton tensor is in Cr−3
∗ , since differentiation

substracts one exponent as mentioned before.

7.3. Ellipticity of the Ricci Tensor in Harmonic Coordinates.

Having defined tensors in the weak sense we can give now some regularity properties of the type: if
the metric is Cr, for r > 1 and the tensor is more regular than expected (as a distribution), then the
metric gain almost all the derivatives one can expect. Let us start with the Ricci tensor. This case
will be the easiest.

Proposition 33. Let (M, g) be a Riemannian manifold and (y,Ω) a system of coordinates. Suppose
that the metric g ∈ Cr for some r > 1 in the y-coordinates near a point x0 ∈M . Then the expression
of the Ricci tensor in any system of harmonic coordinates near x0 can be regarded as an elliptic matrix
coefficient linear differential operator acting on g.

Proof. Take (ϕ)−1 = x any system of harmonic coordinates near x0, and recall that g ∈ Cr∗ expressed
in the ϕ coordinates. Note that as the x coordinates are harmonic, by Corollary 14 we know that in
the x coordinates we have

Rij(g) = alk(x)∂lkgij +A1(x)D1(g) +A0(x)g

being alk := glk and Ai(x) = Pi(g,D
1(g)) for i = 1, 0 are 1 × n2 rows which act on the n2 × 1

column g. The entries of Ai are algebraic expression involving the derivatives of g up to order 1.
It is clear that the entire operator Ric = (Rij(g))ij has as principal symbol the n2 × n2 matrix

P2(x, ξ) = alkξlkIdn2×n2 = |ξ|2Idn2×n2 , so its principal symbol is an isomorphism of Rn2
for each

ξ 6= 0. This shows that the Ricci operator is elliptic in harmonic coordinates.

Note that this is not really the differential operator associated to the Ricci tensor acting on g,
since we are regarding as coefficcients some expresions that depend on g. This formal issue can be
fixed by considering the linearization of the Ricci tensor at g. Later we shall make some comments
about this.

The ellipticity of the ricci tensor in harmonic coordinates results in the corresponding elliptic
regularity result.
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Theorem 20. Let (M, g) be a Riemannian manifold. Suppose that in some system of coordinates φ
the expression of the metric gφ is Cr for some r > 1. Suppose furthermore that the expression Rab
of the Ricci tensor in some system of harmonic coordinates ϕ satisfies Rab ∈ Cs∗ for some s > r − 2.
Then the expression gij of the metric in the ϕ coordinates actually satisfies gij ∈ Cs+2

∗ .

Proof. We know by Proposition 24 that gij ∈ Cr∗ expressed in the ϕ coordinates. Recall that this
automatically implies that Rab ∈ Cr−2

∗ in harmonic coordinates by Remark 45, which is why are
supposing that Rab ∈ Cs∗ for some s > r − 2 in the hipothesis of this Theorem.

That said, as the ϕ coordinates are harmonic, by Corollary 14 we know that in the ϕ coordinates
we have

f̃ := Rij − f = alk∂lkgij

with alk := glk ∈ Cr∗ by the algebra properties of Zigmund spaces, and f = T1(g) ∈ Cr−1
∗ , since

f = T1(g) depends algebraically (and therefore smoothly) on the metric and its first derivatives. This
is a linear elliptic operator of order 2 acting on gij . Besides, f̃ = Rij−f ∈ Cσ∗ where σ = min{s, r−1}.
We have −r < r − 2 < σ < r and gij ∈ C2−r+ε

∗ where ε = 2r − 2 > 0. Therefore Theorem 12 applies.
If σ = s, we get gij ∈ Cs+2

∗ and we are done.
If σ = r − 1 we get gij ∈ Cr+1

∗ , so alk = glk ∈ Cr+1
∗ and f̃ ∈ Cσ1

∗ , where σ1 = min{s, r}. We

have −r − 1 < σ1 < r + 1 and gij ∈ C2−(r+1)+ε
∗ where ε = 2r > 0 so again by Theorem 12 we get

gij ∈ Cσ1+2
∗ . If σ1 = s we are done.

If σ1 = r we get gij ∈ Cr+2
∗ , so alk ∈ Cr+2

∗ and f̃ ∈ Cσ2
∗ , where σ2 = min{s, r + 1}, so we can

apply again Theorem 12 (note that at each stage the hipothesis are satisfied more comfortably) and
get gij ∈ Cσ2+2

∗ .
Repeating this process m times for m large enough we get σj = min{s, r + m − 1} = s and

gij ∈ Cs+2
∗ . This proves the Theorem.

Remark 47. Note that this Theorem weakens the hipothesis of Theorem 19 in the sense that it works
for Cr metrics for r > 1 while in Theorem 19 we had to suppose that the metric was at least C2.

An inmediate consequence of Theorem 20 above is the following.

Corollary 15. Let (M, g) be a Riemannian manifold. Suppose that in some system of coordinates φ
the expression of the metric gφ is Cr for some r > 1. We have:

(1) Suppose that in some system of harmonic coordinates ϕ the expression Rab of the Ricci tensor
is smooth. Then the expression gij of the metric in the ϕ coordinates is also smooth.

(2) In particular, ifRab = 0 in some harmonic coordinates ϕ, then gij is smooth in the ϕ coordinates.

From this we can prove the test case for metrics less regular than C2.

Corollary 16. (Test case for non-regular metrics) Let (M, g) be a Riemannian manifold. Suppose
that in some system of coordinates φ the expression of the metric gij(φ) is Cr for some r > 1 and
that the curvature tensor Rabcd(φ) vanishes (as a distribution) in the φ coordinates. Then we can find
another system of coordinates φ∗ so that the metric gij(φ

∗) expressed in these coordinates is flat, i.e,
gij(φ

∗) = δij .

Proof. As Rabcd(φ) = 0 and gij(φ) is Cr in the φ coordinates, then in any harmonic coordinates ϕ we
have that gij(ϕ) is Cr∗ , so we can make sense of the curvature tensor in the ϕ coordinates also. Denote
Rabcd(ϕ) for the curvature tensor in the ϕ coordinates. Then by tensoriality we have Rabcd(ϕ) = 0, so
if Rab(ϕ) denote the components of the Ricci tensor in the ϕ coordinates, we have Rab(ϕ) = 0.

By the Corollary above, we conclude that the metric gij(ϕ) is smooth in these ϕ coordinates.
Moreover, as Rabcd(ϕ) = 0, from the cassical version of the test case for regular metrics we see that
there exists another coordinate system φ∗ so that gij(φ

∗) = δij in the φ∗ coordinates. This proves the
Corollary.
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Remark 48.
(1) Note that the components Rij of the Ricci tensor depend on all the metric g and not only

on the component gij , so the Ricci tensor is a differential operator acting on g, but it is not linear.
However, the ricci tensor depens algebraically on the derivatives of the metric up to order 2, and if we
look at its expression, we have

Ric(g) = (Rij)
n
i,j=1(g) = f1[g(x)]D2g + f2[g(x), D1g(x)]D1g + f3[g(x), D1g(x)]g

= B1(x)D2g +B2(x)D1g +B3(x)g

B1(x) := f1[g(x)] ; B2(x) := f2[g(x), D1g(x)] ; B3(x) := f3[g(x), D1g(x)]

for some n2 × n2 matrixes Bi(x) whose entries are polinomials depending on the derivatives of g up
to order 1, in fact B1(x) only depends on g. Note that g is regarded as an n2 × 1 column here. In
general, to establish regularity results for tensors which are non-linear differential operators on g, we
shall consider the linearizations of the corresponding tensors. Let us consider now the Ricci tensor.

Given an open set Ω ⊂ Rn, as the set of metrics in Ω, denoted by M(Ω), is an open set in the
vectorial space of simmetric (2,0)-tensors in Ω, denoted ST 2(Ω), then for every g ∈M(Ω), the tangent
space TgM(Ω) is canonically identified as ST 2(Ω). Given the Ricci tensor Ric, we can consider its
differential at g denoted dgRic, and we have

Ric :M(Ω)→ ST 2(Ω) ; dgRic : ST 2(Ω)→ ST 2(Ω) : h→ d

dt

∣∣∣
0
Ric(g + th)

From the expression of Ric we have Tg(h) := dgRic(h) = f1[g(x)]D2(h) + T1,g(h), where

T1,g(h) = A1[g(x), D1g(x)]D1h+A2[g(x), D1g(x)]h

is a linear function on h which depens on the derivatives of h up to order 1. The coefficients of
Ai(g(x), D1g(x)), which are n2×n2 matrixes, depend algebraically on the derivatives of g up to order
1.

That said, to establish regularity of the Ricci tensor, we consider the principal symbol of the now
linear operator Tg(h) = dgRic(h), which is P2(x, ξ) := B1(x)ξ2, where ξ2 stands for products of two of
the components of ξ ∈ Rn. The important thing here is that we can regard the Ricci tensor as a linear
differential operator of order 2 acting on g, by considering Bi(x) as fixed matrix functions depending
only on x and not on g.

Moreover if g ∈ Cr∗ for r > 1 then these matrix coefficients Bi(x) of the Ricci tensor are Cr−1
∗ .

And the crucial point is that the principal symbol of the Ricci tensor regarded as a linear operator via
this trick is again B1(x)ξ2. We conclude that the ricci tensor and its linearization at g have the same
principal symbol . So if we see that Tg(h) = dgRic(h) is a linear elliptic (or overdetermined elliptic)
operator, then also the Ricci tensor regardad as a linear operator will be elliptic (overdetermined
elliptic).

Besides, the same argument applies for the Weyl tensor. The only difference is that the matrix
coefficients have other dimensions.

(2) Note that the principal symbol of the Ricci tensor Ric is a diagonal matrix, i.e, the higher
order term of the expression of Rij only depends on gij , and the other components of g appear only
as lower order terms. This is why in establishing regularity for the Ricci tensor we can work as with
single equations, and there is no need of elliptic regularity results for matrix differential operators.
We shall see later that this is not the case for the Weyl tensor.

(3) It can be proved (see [21], Section 2.3, page 76 for example) that the Ricci tensor is never an
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elliptic differential operator, i.e, its symbol has non-trivial kernel. This shows how important it is to
work in harmonic coordinates in order to make the expression of the ricci tensor an elliptic equation.
This explains also Example 6 where we saw that it can happen that Ric = 0 but g is not smooth.

7.4. Ellipticity of the Weyl Tensor in n-Harmonic Coordinates

.
Now we shall make some computations (yet more) to see that, working in special coordinates,

the expression of the Weyl tensor becomes an overdetermined elliptic operator acting on g. For the
Weyl tensor these coordinates will not be in general harmonic. This time we will require that in some
coordinates the determinant of g, denoted by |g|, satisfies |g| = 1.

This will simplify a lot the expression of the Weyl tensor and will allow us to prove ellipticity.
Of course this assumption is not valid for every metric g, but it is valid for every conformal class of
metrics [g]. Therefore we must work in some special coordinates (special in the sense that are good
to establish regularity results) and we require that the special property that the coordinates have is
conformally invariant. We saw before that being an n-harmonic function is a conformally invariant
condition, so we shall choose n-harmonic coordinates and then we can suppose that |g| = 1.

That said, let us go for the calculations. First note that, as done before with the ricci tensor, if
we regard the metric g = (gij)ij as a column of size n2, the (non-linear) differential operator W (g)
admits the expression

W (g) = (Wabcd(g))na,b,c,d=1(g) = f1[g(x)]D2g + f2[g(x), D1g(x)]D1g + f3[g(x), D1g(x)]g

= B1(x)D2g +B2(x)D1g +B3(x)g

B1(x) := f1[g(x)] ; B2(x) := f2[g(x), D1g(x)] ; B3(x) := f3[g(x), D1g(x)]

this time Bi(x) are n4 × n2 matrixes, and the Weyl tensor is regarded as a n4 × 1 column. Therefore
the principal symbol of the Weyl tensor regarded as a linear operator is the same as the principal
symbol of its linearization at g, commonly called its differential dgW . If we consider the scalar valued
differential operators Wabcd(g), then the coefficients are 1× n2 rows acting on g.

It is convenient to set some notation.

Definition 45. Fix some coordinates (Ω, x) on a Riemannian manifold (M, g). For a tensor T (g)
(expressed in the x coordinates) regarded as a differential operator acting on the set of metrics g ∈
M(Ω), we denote dgT as the differential (or linearization) of T at the fixed metric g. Note that dgT is
a linear differential operator acting on simmetric (2, 0) tensors s ∈ ST 2(Ω) (as before, s is considered
a n2× 1 column valued function), and dgT (s) is a tensor with the same simmetries as T (since the set
of tensors having some simmetries is a vectorial space, and then it coincides with its tangent space).

Also, we denote σg(T )(x, ξ) as the principal symbol of the linearization of T at the fixed metric g.
Note that σg(T )(x, ξ) acts on simmetric bilinear forms h identified as n2×1 columns, and σg(T )(x, ξ)(h)
is a column of the same dimensions that T .

In particular, σg(Wabcd)(x, ξ) is an 1 × n2 row-valued polinomial in ξ of degree 2. This rows as
commented above, depend on x via the metric g(x) (and not on its derivatives). The same applies for
σg(Rab)(x, ξ).

Proposition 34. Let (x,Ω) some system of coordinates on the Riemannian manifold (M, g). Suppose
that g ∈ Cr∗ in these coordinates. Then we have

ξaξbσg(Wabcd)(x, ξ)

= − n− 3

2(n− 2)

[
−2|ξ|2σg(Rbc)(x, ξ) +

n− 2

n− 1
ξbξcσg(R)(x, ξ) +

1

n− 1
|ξ|2gbcσg(R)(x, ξ)

] (162)



122

Proof. Remind the first contracted and second contracted Bianchi Identities from 32 and 34. In
Einstein notation they have the form

gdm∇mRabcd = ∇dRabcd = ∇aRbc −∇bRac ; gma∇mRab = ∇aRab =
1

2
∇bR (163)

These identities require 3 derivatives on the metric, but here g ∈ Cr∗ so they are not valid. However the
Bianchi identities imply the corresponding identities for the symbols. If we consider the components
of the tensors above as differential operators acting on metrics which are identically the same, then
its linealizations at g must have the same principal symbol.

Note also that for a differential operator T (g) of order 2 and for a smooth function f(x, g,D1g)
which depends on the lower order derivatives of g, then we have

σg(T (g)f(x, g,D1g))(x, ξ) = f(x, g,D1g)σg(T )(x, ξ)

The last assertion can be seen, for example, using the formula which says that for s ∈ ST 2(Ω) we
have dg(Tf)(s) = ∂t|0[T (g + ts)f(x, g + th,D1g + tD1s)], and applying leibnitz rule to see that the
second order derivatives of s are multiplied by f . So, taking the symbols in 163 above we have

ξdσg(Rabcd)(x, ξ) = ξaσg(Rbc)(x, ξ)− ξbσg(Rac)(x, ξ)

ξaσg(Rab)(x, ξ) =
1

2
ξbσg(R)(x, ξ)

These identities do not require 3 derivatives anymore, but only require that the operators Rabcd(g),
R(g), and Rab(g) are well defined, and we know this is true (in the distributional sense) for Cr∗ metrics
if r > 1. Therefore these identities hold also for Cr∗ metrics. Equivalent identities are

ξdσg[Rabcd + gbdRac − gadRbc](x, ξ) = 0

ξaσg[Rabgcd −
1

2
gcdgabR](x, ξ) = 0

(164)

Taking into account the expresion of Sab given in 157 we want to see the expression of the Weyl
tensor. Below, underlined terms on the same color mean that they are summed and subtracted on the
expression, so they cancel, but we want them to be in the expression to use 164.

Wabcd = Rabcd − Sacgbd + Sadgbc − gacSbd + gadSbc

= Rabcd + (Racgbd −Rbcgad) +

(
1

n− 2
− 1

)
(Racgbd −Rbcgad)

+
1

n− 2
(Rbdgac −Radgbc)−

R

(n− 1)(n− 2)
(gacgbd − gadgbc)

= (Rabcd +Racgbd −Rbcgad)−
n− 3

n− 2
[Racgbd −

1

2
Rgacgbd]

+
1

n− 2
[Rbdgac −

1

2
Rgbdgac −Radgbc +

1

2
Rgadgbc] +

n− 3

n− 2
Rbcgad

− n− 3

2(n− 2)
Rgacgbd +

1

2(n− 2)
[Rgbdgac −Rgadgbc]−

R

(n− 1)(n− 2)
(gacgbd − gbcgad)
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Now we take symbols and contract, and we use 164 to get

ξaξdσg(Wabcd)(x, ξ) =
n− 3

n− 2
ξaξdgadσg(Rbc)(x, ξ)

+

[
1

2(n− 2)
+

3− n
2(n− 2)

− 1

(n− 2)(n− 1)

]
ξaξdgacgbdσg(R)(x, ξ)

+

[
−1

2(n− 2)
+

1

(n− 1)(n− 2)

]
ξaξdgbcσg(R)(x, ξ)

= − n− 3

2(n− 2)

[
−2|ξ|2σg(Rbc)(x, ξ) +

n− 2

n− 1
ξbξcσg(R)(x, ξ) +

1

n− 1
|ξ|2gbcσg(R)(x, ξ)

]
and this concludes the proof.

Remark 49. Remind now some notations previously introduced, as Γl = Γlabg
ab and Γk = Γlgkl.

Suppose that the metric g is Cr∗ for r > 1 in coordinates. Note that from what we saw in (152) we
have that in any coordinate system where the metric is C2 we have

Rab = −1

2
gkl∂klgab +

1

2
[gla∂bΓ

l + glj∂iΓ
l] + T1(g)

= −1

2
∆gab +

1

2
[glag

lk∂bΓk + glbg
lk∂aΓb] + T1(g)

= −1

2
∆gab +

1

2
[∂bΓa + ∂aΓb] + T1(g)

(165)

This formula also holds for Cr∗ metrics in the distributional sense, as mentioned so many times, and
will be very useful. We see taking the principal symbol that

σg(Rab)(x, ξ)h = −1

2
|ξ|2hab +

1

2
[ξaσg(Γb)(x, ξ)h+ ξbσg(Γa)(x, ξ)h] (166)

The following Lemma shows us how the condition |g| = 1 simplifies the expression of the scalar
curvature.

Lemma 34. Let (x,Ω) a system of coordinates in the Riemannian manifold (M, g). Suppose that g
is Cr∗ for r > 1, and |g| = 1 in the x coordinates. Then we have

Rab = −1
2∆gab + 1

2(∂aΓb + ∂bΓa) + T1(g) = ∂lΓ
l
ab + T1(g)

R = ∂aΓ
a + T1(g) ; σg(R)(x, ξ) = ξaσg(Γ

a)(x, ξ)
(167)

in the distributional sense.

Proof. First note that from (14) that

Γk = −∂igki −
1

2
gki|g|−1∂i|g| = −∂igki −

1

2
∂i[log(|g|)]

so Γk = −∂igki if |g| = 1. So if |g| = 1 we have Γj = −gjk∂lgkl and

∂iΓj = −gjk∂ilgkl + T1(g) = gkl∂ilgjk + T1(g)

The last equality follows applying ∂il to the expression δlj = gjkg
lk. From (165) we see that this implies

Rab = −1

2
gkl∂klgab +

1

2
gkl∂algbk +

1

2
gkl∂blgak + T1(g)

= 1
2g
kl[∂algbk + ∂blgak − ∂klgab] + T1(g) = ∂lΓ

l
ab + T1(g)

R = Rabg
ab = gab∂lΓ

l
ab + T1(g) = ∂l[Γ

l
abg

ab] + T1(g) = ∂lΓ
l + T1(g)
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Note that all the manipulations done are valid for Cr∗ metrics, since only second derivatives of the
metric are involved. This concludes the Lemma.

Substituting formulas (166) and (167) for the symbols of the Ricci tensor and scalar curvature (for
metrics with determinant one) into the general expression of σg(Wabcd) given in (162) we obtain the
following.

Corollary 17. Let (x,Ω) some system of coordinates on the Riemannian manifold (M, g). Suppose
that g ∈ Cr∗ and |g| = 1 in these coordinates. Then the symbol of the linearization of the Weyl tensor
satisfies

ξaξdσg(Wabcd)(x, ξ)h = − n− 3

2(n− 2)

[
|ξ|4hbc − |ξ|2[ξbσg(Γc)(x, ξ)h+ ξcσg(Γb)(x, ξ)h]

+
n− 2

n− 1
ξbξcξlσg(Γ

l)(x, ξ)h+
1

n− 1
|ξ|2gbcξlσg(Γl)(x, ξ)h

] (168)

This Corollary in turn yields the main result, which we state now. First we need a remark.

Remark 50. Recall that in n-harmonic coordinates Γl has a nice expression given in 15. Now we
shall make a minor modification from the formula given in 15. We compute

Γl = (2− n)
glaglb

gll
Γlab =

2− n
2

glaglb

gll
glr[∂agbr + ∂bgar − ∂rgab] =

2− n
2gll

[A+B + C]

A = glaglbglr∂agbr = −glaglbgbr∂aglr = −gla∂agll

B = glaglbglr∂bgar = −glb∂ggll = A

C = −glbglrgla∂rgab = glrglbgab∂rg
la = glr∂rg

ll = −A = −B

Therefore we conclude that

Γl =
n− 2

2

C

gll
=

2− n
2

glrglbgla

gll
∂rgab (169)

This formula will be crucial to the the ellipticity of the weyl tensor in n-harmonic coordinates.

Proposition 35. Let (Ω, x) be a coordinate system of a Riemannian manifold (M, g) of dimension
n ≥ 4. Suppose that the metric g is Cr∗ in the x coordinates and satisfies |g| = 1. Suppose furthermore
that the coordinates x are n-harmonic. Then the expression Wabcd(g) of the Weyl tensor in the x
coordinates is such that the principal part of its linearization σg(W )(x, ξ) is injective.

Therefore, if we regard W as a linear operator acting on g (via the trick mentioned above), then
W (g) is an overdetermined elliptic operator in the x-coordinates.

Proof. As the coordinates are n-harmonic, the formula (169) given in the remark above is true, and
it implies that for s ∈ ST 2(Ω), and h a bilinear form we have

Γl(g) =
2− n

2

glrglaglb

gll
∂rgab ; dgΓ

l(s) =
2− n

2

glrglaglb

gll
∂rsab

σg(Γ
l)(x, ξ)h =

2− n
2

glrglaglb

gll
ξrhab =

2− n
2

hll

gll
ξl

σg(Γa)(x, ξ)h = σg(glaΓ
l)(x, ξ)h = glaσg(Γ

l)(x, ξ)h = gla
2− n

2

hll

gll
ξl
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Coming back to 168 we have

ξaξdσg(Wabcd)(x, ξ)h = − n− 3

2(n− 2)

[
|ξ|4hbc − |ξ|2[ξbglc + ξcglb]σg(Γ

l)(x, ξ)h

+
n− 2

n− 1
ξbξcξlσg(Γ

l)(x, ξ)h+
1

n− 1
|ξ|2gbcξlσg(Γl)(x, ξ)h

]
:= − n− 3

2(n− 2)
(Q(x, ξ)h)bc

(170)

Being Q(x, ξ) the n2 × n2 matrix symbol acting on a bilinear simmetric form h, regarded as a n2 × 1
column, by the formula

(Q(x, ξ)h)ab = |ξ|4hab − |ξ|2[ξagbm + ξbgam]σg(Γ
m)(x, ξ)h

+
n− 2

n− 1
ξaξbξmσg(Γ

m)(x, ξ)h+
1

n− 1
gab|ξ|2ξmσg(Γm)(x, ξ)h

(171)

Let us see that Q(x, ξ) is injective, i.e, if Q(x, ξ)h = 0 then h = 0. Computations will be easier by
raising the index and consider Q(x, ξ)hab.

(Q(x, ξ)h)lk = |ξ|4hlk − |ξ|2[ξlgkm + ξkglm]
2− n

2

hmm

gmm
ξm

+
n− 2

n− 1
ξlξkξm

2− n
2

hmm

gmm
ξm +

1

n− 1
glk|ξ|2ξm

2− n
2

hmm

gmm
ξm

(Q(x, ξ)h)ab = (Q(x, ξ)h)lkg
lagkb = |ξ|4hab − |ξ|2[ξaδbm + ξbδam]

2− n
2

hmm

gmm
ξm

− (n− 2)2

2(n− 1)
ξaξbξm

hmm

gmm
ξm +

2− n
2(n− 1)

gab|ξ|2ξm
hmm

gmm
ξm

(Q(x, ξ)h)aa = |ξ|4haa + (n− 2)|ξ|2(ξa)2h
aa

gaa

− (n− 2)2

2(n− 1)
(ξa)2ξm

hmm

gmm
ξm +

2− n
2(n− 1)

gaa|ξ|2ξm
hmm

gmm
ξm

=
[
gaa|ξ|2 + (n− 2)(ξa)2

] [
|ξ|2h

aa

gaa
− n− 2

2(n− 1)
ξmξ

mh
mm

gmm

]
Suppose ξ 6= 0 and Q(x, ξ)h = 0, which is equivalent to (Q(x, ξ)h)ab = 0 for all a, b = 1, . . . , n. In the
factorization of (Q(x, ξ)h)aa the first factor is stricty positive if ξ 6= 0, so we must have

haa

gaa
=

n− 2

2(n− 1)
|ξ|−2ξmξ

mh
mm

gmm
:= λx,ξ (172)

With λ independent of the index a. So inserting this in 172 we have

λ =
n− 2

2(n− 1)
|ξ|−2ξmξ

mλ =
n− 2

2(n− 1)
λ

And therefore λ = 0, so haa = 0 for all a = 1, . . . , n. This implies that 0 = (Q(x, ξ)h)ab = |ξ|4hab for
all a, b, so h = 0. So Q(x, ξ) is an invertible n2 × n2 matrix for all x ∈ Ω and all ξ 6= 0. This implies
that σg(W )(x, ξ) is inyective.

Indeed, if σg(Wabcd)(x, ξ)h = 0 for all a, b, c, d, then in particular

ξaξdσg(Wabcd)(x, ξ)h = − n− 3

2(n− 2)
(Q(x, ξ)h)bc = 0

for all b, c. As Q(x, ξ) is inyective and n 6= 3, we see that h = 0. This proves the Proposition.
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Remark 51.
(1) In the prove above both the n-harmonic coordinates and the condition |g| = 1 have been crucial.

We have used the fact that the symbol σg(Γ
m) has a very simple expression in these coordinates to

conclude that the symbol of the Weyl tensor is inyective, and the condition |g| = 1 has been used
also to obtain a simple expression of the Weyl tensor. We show now that these conditions are really
needed for the ellipticity of W (g).

First, the Weyl tensorW regardad as an operator acting on metrics is not elliptic in any coordinates,
not even in n-harmonic coordinates. This is easy to see. Take a C3 (and not C4) positive function
u defined in an open set Ω ⊂ Rn and consider the conformally flat metric given by g = uId. As the
metric is conformally flat, we know by classical arguments that W = 0. If the Weyl tensor was elliptic,
the typical boothstrap argument combined with classical elliptic regularity results would imply that
g is smooth, but this is not true by the choice of u.

Note that as g is diagonal, the identity coordinates in Ω are n-harmonic for g, so necessarily it
must fail that |g| = 1, and this clearly fails since |g| = un is not C4.

The operator W (g) is not elliptic either if we only ask |g| = 1 whitout the condition that the
coordinates are n-harmonic. Consider the metric

g := |dϕ|
−2
n dϕt · Id · dϕ

with ϕ ∈ C4. By construction |g| = 1, and by classical arguments W (g) = 0 but g is not smooth as ϕ
is not smooth.

(2) Suppose for a moment that some metric g can be expressed in harmonic coordinates ϕ and
moreover the pull-back gϕ satisfies |gϕ| = 1. Then we would have Γl = 0 for all l, and then the proof
of the ellipticity of the Weyl tensor Wϕ in the ϕ coordinates would be trivial. However it is not clear
how to find such a pull-back of g, even allowing conformal change of the metric g.

Indeed, take a system ϕ of harmonic coordinates for g. Then the coordinates of the pull-back gϕ
are harmonic, but we do not necessarily have |gϕ| = 1. This situation cannot be fixed by a conformal
change: if we consider the conformal metric

g̃ := |gϕ|−
1
n gϕ

then of course |g̃| = 1, but the ϕ coordinates are not harmonic for g̃ anymore.

The problem above is fixed if instead of harmonic we suppose that ϕ is an n-harmonic coordinate
for g, since in this case the ϕ coordinates keep being n-harmonic for g̃.

If we try the inverse order, it does not work either. Indeed, let g be a metric expressed in
arbitrary coordinates, and make the conformal change g̃ := |g|−

1
n g so that |g̃| = 1. If we consider a

system ϕ of harmonic coordinates for g̃, then obviously g̃ϕ is expressed in harmonic coordinates but
|g̃ϕ| = |dϕtg̃dϕ| = |dϕ|2 6= 1 in general. So this does not work.

Now we are ready to prove conformal flatness for low regular metrics.

Theorem 21. Let (M, g) a Riemannian manifold of dimension n ≥ 4, and suppose that in some
system of coordinates near x0 ∈M the expression of the metric g is Cr for some r > 1. Suppose that
the expression of the Weyl tensor W d

abc satisfies that W d
abc ∈ Cs∗ for some s > r − 2 in some system ϕ

of n-harmonic coordinates. Then the metric g̃ := |gϕ|−
1
n gϕ ∈ Cs+2

∗ in the ϕ coordinates.
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Proof. We know by Theorem 18 that n-harmonic coordinates exists near x0 and moreover the expres-
sion of the metric is Cr∗ in any system of n-harmonic coordinates. So let gab ∈ Cr∗ and W d

abc(g) ∈ Cs∗
be the metric and Weyl tensor in a fixed system (ϕ)−1 = x of n-harmonic coordinates. Write

g̃ab := |gϕ|−
1
n gab. We have g̃ab ∈ Cr∗ , by the algebra properties of Zigmund spaces, and the fact

that they are closed for composition for r > 1. Besides we obviously have |g̃| = 1.
By conformal invariance for the (3, 1)-Weyl tensor we have

Wabc
d(g̃) = Wabc

d(g) := f (173)

The expression 173 above can be regarded as a second order linear differential operator acting on g̃
with f ∈ Cs∗ . As we mentioned above, the coefficients of the differential operator Wabc

d(g̃) depend
algebraically on the derivatives up to order 1 of g̃, and in fact the second order coefficients of W (g̃)
only depend on g̃. Besides, the principal symbol of the differential operator Wabc

d(g̃) coincides with
the principal symbol of its linearization σg̃(Wabc

d(g̃))(x, ξ).
Now, by the calculation done in 35, we know that σg̃(Wabcd)(x, ξ) is injective. From the relation

g̃ldWabc
l = Wabcd we get

g̃ldσg̃(Wabc
l)(x, ξ) = σg̃(Wabcd)(x, ξ)

So if σg̃(Wabc
d)(x, ξ)h = 0 for some bilinear form h and all a, b, c, d, then also σg̃(Wabcd)(x, ξ)h = 0 for

all a, b, c, d, so h = 0. This argument obviously generalizes to see that the ellipticity of a tensor T is
equivalent to the ellipticity of any tensor obtained from T by raising or lowering the index.

Therefore we have a system of the following type

W (x,D)g̃ − T1(ĝ) =
∑
|α|=2

Aα(x)Dαg̃ = f − T1(g̃) = f̂

where Aα(x) are n4 × n2 matrixes with entries in Cr∗ (since they depend only on g̃ and not on its
derivatives), f = (Wabc

d(g)) ∈ Cs∗ for s > r−2 is an n4×1 column, and T1(g̃) is also an n4×1 column
which depends algebraically on the derivatives up to order 1 of the metric g̃, so T1(g̃) ∈ Cr−1

∗ and
f̂ ∈ Cσ∗ for σ = min{r − 1, s}. Also g̃ ∈ C2−r+ε

∗ for ε = 2r − 2 > 0.
As the linear differential operator W (x,D) is overdetermined elliptic in the x coordinates and it

is defined in some open set Ω, we want to apply Proposition 12. Note that as r > 1, −r < r − 2 < s,
so σ > r − 2 > −r also. As −r < σ < r we get g̃ ∈ Cσ+2

∗ . If σ = s we are done.
If s > r − 1, then σ = r − 1, and f̂ ∈ Cr−1

∗ with −r < r − 1 < r. Then we obtain g̃ ∈ Cr+1
∗ ,

so Aα(x) ∈ Cr+1
∗ . We have −r − 1 < r − 1 < s and g̃ ∈ C

2−(r+1)+ε+2
∗ . If besides s ≤ r + 1 then

apply again Proposition 12 to get g̃ ∈ Cs+2
∗ . If on the contrary s > r + 1 we obtain g̃ ∈ Cr+3

∗ , so
Aα(x) ∈ Cr+3

∗ . If we have s ≤ r+ 3 we are done. On the contrary, if we still have s > r+ 3 we repeat
this argument to get Aα(x) ∈ Cr+5

∗ .
Iterating this argument k times we get Aα ∈ Cr+2k−1

∗ so for k large we will have s ≤ r + 2k − 1,

and then g̃ = |g|−
1
n g ∈ Cs+2

∗ expressed in any system of n-harmonic coordinates ϕ. This completes
the proof.

Remark 52. The proof also works if we consider the (4, 0)-Weyl tensor Wabcd instead of Wabc
d. Take

the n-harmonic coordinates x = ϕ−1 and suppose that Wabcd(g) ∈ Cs∗ for s > r−2 in the x coordinates.

We work in these coordinates. In this case Wabcd(g̃) = |g|−
1
nWabcd(g). By hipothesis Wabcd(g) ∈ Cs∗ for

s > r−2 and also |g|−
1
n ∈ Cr∗ . We have two cases. If s > 0 then f := |g|−

1
nWabcd(g) ∈ Cmin{s,r} by the

algebra properties of the Zigmund spaces with positive exponent. If s < 0, then |s| = −s < 2− r < r,
so Cr∗C

s
∗ ⊂ Cs∗ by Lemma 15. In any case, and with notations as above, we obtain that also f̂ ∈ Cσ∗

for σ = min{r − 1, s} in the first step, and the rest of the proof is identical.
However note that using the conformal invariance for the (3, 1)-tensor we avoid appealing to the

technichal results about Zigmund spaces.
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Theorem 22. Let (M, g) be a Riemannian manifold of dimension n ≥ 4. Suppose that the metric
is Cr for some r > 1 in some system of local coordinates φ near a point x0 ∈ M . If the Weyl tensor
satisfies W = 0 near x0 in the φ coordinates, then the metric g is conformally flat in some system
of n-harmonic coordinates ϕ1 near x0, i.e, there exists a positive function λ which is Cr∗ in the ϕ1

coordinates and such that the metric satisfies gij = λδij in the ϕ1 coordinates.

Remark 53. The converse is also true: if gij = λδij in some coordinates x for some function λ ∈ Cr∗ ,
then the Weyl tensor of g must vanish on this coordinates, and then it also vanish in any other Cr∗
coordinates.

Proof. Take any system of n-harmonic coordinates η and express g in the η coordinates, denote gη
for this expression, and note that by the properties of p-harmonic coordinates we have gη ∈ Cr∗ , so
we can still define the Weyl tensor in the η coordinates, denote Wη for this expression. Now, since
the expression of the Weyl tensor Wφ vanishes near x0 we must necessarily have that also Wη = 0 by

tensoriality. Now we apply Theorem 21 above to conclude that the conformal metric g̃ := |gη|−
1
n gη is

smooth in the η coordinates. Recall that η is an arbitrary sistem of n-harmonic coordinates.
As g̃ is smooth and besides W (g̃) = Wη = 0, we can use the classical Weyl-Schouten Theorem to

conclude that there exists another system of smooth coordinates ϕ such that the expresion g̃ϕ in the
ϕ coordinates has the form g̃ϕ = cϕId for some smooth function cϕ in the ϕ coordinates.

The fact that the ϕ coordinates are smooth is because the metric g̃ is smooth, and the ϕ coordinates
are n-harmonic for g̃ by Proposition 25, so the ϕ coordinates gain one derivative respect to the
regularity of the metric g̃, as proved in Theorem 18. However, this also can be derived directly from
the classical proof of the Weyl-Schouten Theorem.

That said, by the definition of the metric g̃ we see that

cϕId = g̃ϕ = ϕ∗(|gη|−
1
n gη) = (|gη|−

1
n ◦ ϕ)gη◦ϕ and thus

(η ◦ ϕ)∗g = gη◦ϕ = cϕ(|gη|
1
n ◦ ϕ)Id = λId

with λ := cϕ(|gη|
1
n ◦ ϕ) a Cr∗ function since both ϕ and cϕ are smooth, and |gη|

1
n ∈ Cr∗ .

Finally note that the coordinates ϕ1 := η ◦ ϕ have to be n-harmonic by Proposition 25. This
concludes the Theorem.

This Theorem, as we announced in the introduction, characterizes when a Cr metric for r > 1 is
locally conformally flat in dimension n ≥ 4.

Remark 54.
1) It remains to characterize conformal flatness for low regular metrics for the case n = 3, if we

require that g ∈ Cr for r > 2 (this seems necessary to define the Cotton tensor as mentioned above).
To do this we can proceed with the Cotton tensor as we did with the Weyl, and prove that a 3-manifold
with Cr metric for r > 2 is locally conformally flat if and only if its Cotton tensor (defined in the
weak sense) vanishes. The procedure is totally analogous. See [15] for details.

2) As mentioned in the introduction, it would be of interest to characterize conformal flatness for
measurable metrics in order to solve the Beltrami system. If we want to obtain results for measurable
metrics this approach does not seem to work for two reasons

The first reason is that the Weyl and Cotton tensors appear not to be well defined unless the
Cristoffel symbols are distributions regular enough to allow pointwise multiplication of distributions
to be well defined.

The second reason is that the techniques used here rely on elliptic regularity results for second
order pseudodifferential operators with Cr∗ symbols, and the results avaliable on the literature require
r > 1 to work. This may be just a technical reason and not an actual obstruction.
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Therefore, the problem of characterize conformal flatness for measurable metrics remains open, at
least as far as we know, and seems to require another approach.
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