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Introduction

The first chapter of this essay is devoted to the study of a metric in the space of abstract
metric spaces (modulo isometries). The metric we will consider was defined by Mikhail
Gromov in 1981 and uses the Hausdorff distance between subsets of a metric space. It
is known as the Gromov-Hausdorff distance. We will mainly be concerned about the
topology induced and convergence issues. The topology turns out to be relatively weak,
and a good characterisation of precompact sets appears rapidly.

The next chapter focuses on proving the Bishop-Gromov inequality, named after
Richard L. Bishop and Gromov. This inequality is a comparison theorem in Riemannian
geometry relating curvature and volume. It is closely related to Myers’ theorem. We will
run over all necessary concepts of Riemannian geometry and develop some interesting
results on the way.

Using the Bishop-Gromov inequality, we then get that the space of Riemannian man-
ifolds of a given dimension with Ricci curvature bounded below and diameter bounded
above is precompact in the Gromov-Hausdorff topology. Learning what kind of spaces
appear in the closure would give a way to study smooth Riemannian manifolds, using
compactness theorems. Furthermore, since the Gromov-Hausdorff limit of length spaces is
again a length space, it would also open a window to define a notion of a length space hav-
ing ‘Ricci curvature bounded below’, special cases of which would be Gromov-Hausdorff
limits of manifolds with lower Ricci curvature bounds. Note that there is already a good
notion of a metric space having ‘sectional curvature bounded below by K’ or ‘sectional
curvature bounded above by K’, due to Alexandrov and dating back to 1951.

In this work we study an approach given by Lott and Villani in [16]. They use optimal
transport to give a notion for a measured length space having Ricci curvature bounded
below. Their definition allows one to obtain non-trivial consequences and in the case of
Riemannian manifolds it coincides with classical notions. Their work also has the goal
of extending results about optimal transport from the setting of smooth Riemannian
manifolds to the setting of length spaces.
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Chapter 1

Space of Metric Spaces

The idea of using a ‘global’ approach to metric spaces, instead of studying one metric
space at a time, is the first step towards the Gromov-Hausdorff distance. This ‘global’
approach is a usual way to work in mathematics.

The Hausdorff distance is a good example of this. Indeed, it turns the set of all
compact convex sets in Rn into a metric space, allowing us to apply ‘analytic techniques’
to convex sets, like using maxima and minima 1.

Our objective now is to extend this approach by introducing a distance between
abstract metric spaces, which will be considered up to an isometry. However, our main
concern is to study convergence and precompactness so the distance itself will not be
essential, what will matter is the topology induced.

1.1 Gromov-Hausdorff Distance

The Gromov-Hausdorff distance is closely related to the usual Hausdorff distance.

1.1.1 Hausdorff distance

We recall the definition of Hausdorff distance. Denote by Ur(S) the r-neighbourhood of
a set S in a metric space, that is

Ur(S) = {x : dist(x, S) < r} = ∪x∈SBr(x).

Definition 1.1.1 Let A and B be subsets of a metric space. The Hausdorff distance
between A and B, is

dH(A,B) = inf{r > 0 : A ⊂ Ur(B) and B ⊂ Ur(A)}.

A better grasp of the definition is obtained from the following reformulations:

•
dH(A,B) = max{sup

a∈A
dist(a,B), sup

b∈B
dist(b, A)}.

• dH(A,B) ≤ r if and only if dist(a,B) ≤ r for all a ∈ A and dist(b, A) ≤ r for all
b ∈ B.

1The space of convex sets is boundedly compact.

1
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1.1.2 Gromov-Hausdorff distance

The idea behind the Gromov-Hausdorff distance is that the following requirements are
satisfied:

1. The distance between subspaces in the same metric space is no greater than the
Hausdorff distance between them.

2. The distance between isometric spaces is zero.

The Gromov-Hausdorff distance is the maximum distance satisfying these two require-
ments.

Definition 1.1.2 Let X and Y be metric spaces. For an r > 0, the Gromov-
Hausdorff distance between them, denoted by dGH(X, Y ), satisfies dGH(X, Y ) < r if
and only if there exist a metric space Z and subspaces X ′ and Y ′ of it which are isomet-
ric to X and Y respectively and such that dH(X ′, Y ′) < r. In other words, dGH(X, Y ) is
the infimum of positive r for which the above Z, X ′ and Y ′ exist.

It follows that the Gromov-Hausdorff distance between isometric spaces is zero. We
will prove that, in fact, dGH is a metric on the space of the isometry classes of compact
metric spaces.

Remark 1.1.3 Note that, when we take the ambient space Z, the subsets X ′ and
Y ′ inherit its metric, i.e. they are considered with the restriction of the metric of Z and
not with the induced intrinsic metric. For example, if X is a sphere with its standard
Riemannian metric, we cannot take Z = R3 and X ′ = S2 ⊂ R3 because X and X ′ would
not be isometric.

Remark 1.1.4 The definition considers all metric spaces Z that contain subspaces
isometric to X and Y . However, it is possible to reduce this class to disjoint unions of
X and Y . Indeed, given some r > dGH(X, Y ) take X ′, Y ′ and Z as in the definition so
that dH(X ′, Y ′) < r and fix isometries f : X → X ′ and g : Y → Y ′. Now, for x ∈ X
and y ∈ Y define d(x, y) = dZ(f(x), g(y)), and take d to coincide with dX and dY on X
and Y , respectively. Then d is a semi-metric on X ∪ Y with dH(X, Y ) < r. To obtain
a metric, define d(x, y) = dZ(f(x), g(y)) + δ instead, where δ is any positive constant.
Then dH(X, Y ) < r + δ.

With this we may define the Gromov-Hausdorff distance between two metric spaces
(X, dX) and (Y, dY ) as the infimum of r > 0 such that there exists a semi-metric d
on the disjoint union X ∪ Y such that the restrictions of d to X and Y coincide with
dX and dY respectively and dH(X, Y ) < r in the space (X ∪ Y, d). In other words,
dGH(X, Y ) = inf{dH(X, Y )}, where the infimum is taken over all semi-metrics on X ∪ Y
extending the metrics of X and Y .

Let’s prove that dGH is in fact a metric. In first place we have the following proposition.

Proposition 1.1.5 dGH satisfies the triangle inequality:

dGH(X1, X3) ≤ dGH(X1, X2) + dGH(X2, X3)

for any metric spaces X1, X2, X3.

Página 2 Curso 2014-2015. Ricci curvature via optimal transport
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Proof Following the remark, let d12 and d23 be metrics on X1 ∪ X2 and X2 ∪ X3,
respectively, that extend the metrics of X1, X2 and X3. We will now build a metric on
X1 ∪X3. For x1 ∈ X1 and x3 ∈ X3, define

d13(x1, x3) = inf
x2∈X2

{d12(x1, x2) + d23(x2, x3)}.

On X1 and X3 we take d13 to coincide with the metrics of X1 and X3, respectively. It
then follows that d13 satisfies the triangle inequality and is therefore a semi-metric on
X1 ∪X3. Indeed, let x1, x′1 ∈ X1 and x3 ∈ X3. Given ε > 0 take x2 ∈ X2 such that

d13(x′1, x3) + ε ≥ d12(x′1, x2) + d23(x2, x3).

Then

d13(x1, x3) ≤ d12(x1, x2) + d23(x2, x3)

≤ d12(x1, x
′
1) + d12(x′1, x2) + d23(x2, x3)

= d13(x1, x
′
1) + d12(x′1, x2) + d23(x2, x3)

≤ d13(x1, x
′
1) + d12(x′1, x3) + ε.

But ε > 0 is arbitrary thus

d13(x1, x3) ≤ d13(x1, x
′
1) + d13(x′1, x3).

For other combinations of points in X1 and X3 the triangle inequality follows similarly.
The definition of d13 gives that

dH(X1, X3) ≤ dH(X1, X2) + dH(X2, X3),

where dH(Xi, Xj) is taken with respect to the metric dij (i, j = 1, 2, 3). Indeed, let
x1 ∈ X1, then d12(x1, X2) ≤ dH(X1, X2) so, given ε > 0, we may take x2 ∈ X2 such
that d12(x1, x2) ≤ dH(X1, X2) + ε. Similarly, there exists x3 ∈ X3 such that d23(x2, x3) ≤
dH(X2, X3) + ε. Consequently,

d13(x1, X3) ≤ d13(x1, x3) ≤ d12(x1, x2) + d23(x2, x3) ≤ dH(X1, X2) + dH(X2, X3) + 2ε.

But ε > 0 and x1 ∈ X1 are arbitrary thus

d13(x1, X3) ≤ dH(X1, X2) + dH(X2, X3)

for all x1 ∈ X1. The same argument yields

d13(x3, X1) ≤ dH(X1, X2) + dH(X2, X3),

for all x3 ∈ X3. These two inequalities together give

dH(X1, X3) ≤ dH(X1, X2) + dH(X2, X3).

Taking the infimum over all metrics d12 and d23 it follows from the previous remark
that

dGH(X1, X3) ≤ dGH(X1, X2) + dGH(X2, X3).

�
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1.1.3 Reformulations

The definition of Gromov-Hausdorff distance that we have given requires constructing a
new metric space Z and verifying the triangle inequality. This may lead to hard work
even in simple cases. We will now give equivalent definitions which are easier to deal
with. The idea is to compute or estimate dGH(X, Y ) by comparing the distances within
X and Y to each other. For this we introduce the notion of correspondence.

Definition 1.1.6 Let X and Y be two sets. A correspondence between X and Y is
a set R ⊂ X × Y such that for every x ∈ X there exists at least one y ∈ Y for which
(x, y) ∈ R, and for every y ∈ Y there exists at least one x ∈ X such that (x, y) ∈ R.

We will use correspondences to ‘compare’ metric spaces. To measure how well they’re
doing this comparison we define their distortion, which compares the distance of ‘corre-
sponding’ pairs of points.

Definition 1.1.7 Let R be a correspondence between metric spaces X and Y . The
distortion of R is defined by

disR = sup{|dX(x, x′)− dY (y, y′)| : (x, y), (x′, y′) ∈ R}

where dX and dY are the metrics of X and Y respectively.

Finding a correspondence with a small distortion implies that the spaces X and Y
are close in the Gromov-Hausdorff sense.

Theorem 1.1.8 For any two metric spaces X and Y ,

dGH(X, Y ) =
1

2
inf
R

(disR)

where the infimum is taken over all correspondences R between X and Y .

We are therefore saying that the Gromov-Hausdorff distance between X and Y is
equal to the infimum of r > 0 for which there exists a correspondence between X and Y
with disR < 2r.

Proof ≥ For any r > dGH(X, Y ), there exists a correspondence R with disR < 2r.
Indeed, if r > dGH(X, Y ) we may assume that X and Y are subspaces of some metric
space Z and dH(X, Y ) < r in Z. Define the correspondence

R = {(x, y) | x ∈ X, y ∈ Y, d(x, y) < r}

where d is the metric of Z. Since dH(X, Y ) < r we have that R is a correspondence.
Now, given (x, y) ∈ R and (x′, y′) ∈ R we have:

1. d(x, x′) ≤ d(x, y) + d(y, y′) + d(x′, y′)

2. d(y, y′) ≤ d(x, y) + d(x, x′) + d(x′, y′)

that together with the definition of R yields

|d(x, x′)− d(y, y′)| ≤ d(x, y) + d(x′, y′) < 2r.

Página 4 Curso 2014-2015. Ricci curvature via optimal transport
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Consequently, disR ≤ 2r. Since r > dGH(X, Y ) is arbitrary we get that 1
2

infR disR ≤
dGH(X, Y ).
≤ Let’s see that dGH(X, Y ) ≤ 1

2
disR for any correspondence R. For this let R be

a correspondence and r := 1
2
disR. We write dX and dY for the metrics of X and Y ,

respectively.
It suffices to show that there is a semi-metric d on the disjoint union X ∪Y such that

d �X×X= dX , d �Y×Y = dY , and dH(X, Y ) ≤ r in (X ∪Y, d). For this we take the distance
between x and y equal to r whenever (x, y) ∈ R, and then take the minimal metric d
generated by this condition. This metric is given by

d(x, y) = inf{dX(x, x′) + r + dY (y′, y) | (x′, y′) ∈ R} .

Let’s verify the triangle inequality for d:

1. Given x1, x2 ∈ X and y ∈ Y , and ε > 0, by definition of d there exist x′ ∈ X and
y′ ∈ Y such that (x′, y′) ∈ R and

dX(x2, x
′) + r + dY (y, y′) ≤ d(x2, y) + ε .

Now, using this and the definition of d (which coincides with dX and dY within X
and Y , respectively) we have

d(x1, y) ≤ dX(x1, x
′) + r + dY (y′, y)

≤ dX(x1, x2) + d(x2, x
′) + r + dY (y′, y)

≤ d(x1, x2) + d(x2, y) + ε .

Since ε > 0 is arbitrary we get

d(x1, y) ≤ d(x1, x2) + d(x2, y) .

2. Let x1, x2 ∈ X and y ∈ Y , and ε > 0 again. Take (x′1, y
′
1), (x′2, y

′
2) ∈ R such that

dX(x1, x
′
1) + r + dY (y′1, y) ≤ d(x1, y) + ε

and
dX(x2, x

′
2) + r + dY (y′2, y) ≤ d(x2, y) + ε .

Then, taking into account that 2r = disR ≥ dX(x′1, x
′
2)− dY (y′1, y

′
2),

d(x1, y) + d(x2, y) + 2ε ≥ d(x1, x
′
1) + dY (y′1, y) + d(x2, x

′
2) + d(y′2, y) + 2r

≥ d(x1, x
′
1) + d(x′1, x

′
2) + d(x2, x

′
2)︸ ︷︷ ︸

≥d(x1,x2)

+

+ d(y′1, y) + d(y, y′2)− d(y′1, y
′
2)︸ ︷︷ ︸

≥0

≥ d(x1, x2) .

Since ε > 0 is arbitrary we get

d(x1, x2) ≤ d(x1, y) + d(y, x2) .

Curso 2014-2015. Ricci curvature via optimal transport Página 5
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The other cases are analogous.
Finally, dH(X, Y ) ≤ r. Indeed, given x ∈ X there exists y ∈ Y such that (x, y) ∈ R

thus d(x, y) = r. Consequently, d(x, Y ) ≤ r. The inequality d(X, y) ≤ r for all y ∈ Y
follows similarly. �

We will now define another tool which allows us to handle the Gromov-Hausdorff
distance. First, we recall the following definitions.

Definition 1.1.9 Let X be a metric space and ε > 0. A set S ⊂ X is called an ε-net
if dist(x, S) ≤ ε for every x ∈ X.

Definition 1.1.10 Let X and Y be a metric spaces and f : X → Y an arbitrary
map. The distortion of f is defined by

disf = sup
x1,x2∈X

|dY (f(x1), f(x2))− dX(x1, x2)|

where dX and dY are the metrics of X and Y , respectively.

With these definitions we may now define the concept of ε-isometry and then give a
result in terms of ε-isometries which provides a quantity which differs from the Gromov-
Hausdorff distance by no more than two times. An estimate of this type is sufficient to
study the topology determined by the Gromov-Hausdorff distance.

Definition 1.1.11 Let X and Y be metric spaces and ε > 0. A map f : X → Y is
called an ε-isometry if disf ≤ ε and f(X) is an ε-net in Y .

Note that f does not need to be continuous.
Now, let f : X → Y be an ε-isometry, we define an approximate inverse f ′ : Y → X

of f as follows. Given y ∈ Y , choose x ∈ X so that dY (f(x), y)) ≤ ε and put f ′(y) = x.
Then f ′ is a 3ε-isometry from Y to X. Moreover, for all x ∈ X, dX(x, (f ′ ◦ f)(x)) ≤ 2ε,
and for all y ∈ Y , dY (y, (f ◦ f ′)(y)) ≤ ε.

Corollary 1.1.12 Let X and Y be two metric spaces and ε > 0. Then

1. If dGH(X, Y ) < ε, there exists a 2ε-isometry from X to Y .

2. If there exists an ε-isometry from X to Y , dGH(X, Y ) < 2ε.

Proof 1. Since 1
2

infR dis(R) = dGH(X, Y ) < ε we may take a correspondence R such
that disR < 2ε. For every x ∈ X, choose f(x) ∈ Y such that (x, f(x)) ∈ R. This
defines a map f : X → Y and disf ≤ disR < 2ε. It only remains to prove that f(X) is
a 2ε-net in Y . Given y ∈ Y , consider x ∈ X such that (x, y) ∈ R. Then, since (x, y),
(x, f(x)) ∈ R, we have d(y, f(x)) ≤ d(x, x) + disR < 2ε. Hence dist(y, f(X)) < 2ε.

2. Let f be an ε-isometry. DefineR ⊂ X×Y byR = {(x, y) ∈ X×Y | d(y, f(x)) ≤ ε}.
Then R is a correspondence because f(X) is an ε-net in Y . If (x, y), (x′, y′) ∈ R, one
has 2

|d(y, y′)− d(x, x′)| ≤ |d(f(x), f(x′))− d(x, x′)|+ d(y, f(x)) + d(y′, f(x′))

≤ disf + ε+ ε ≤ 3ε .

2Start with
d(y, y′) ≤ d(y, f(x)) + d(f(x), f(x′)) + d(f(x′), y′) (1.1)

and
d(f(x), f(x′)) ≤ d(y, f(x)) + d(y, y′) + d(f(x′), y′) . (1.2)

Página 6 Curso 2014-2015. Ricci curvature via optimal transport
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Consequently, disR ≤ 3ε thus, theorem 1.1.8 implies that dGH(X, Y ) ≤ 3
2
ε < 2ε. �

We end this section by completing the proof that the Gromov-Hausdorff distance
defines a finite metric on the space of isometry classes of compact metric spaces.

Theorem 1.1.13 Gromov-Hausdorff distance is non-negative, symmetric and satis-
fies the triangle inequality; moreover dGH(X, Y ) = 0 if and only if X and Y are isometric.

Proof We start by proving that if X and Y are bounded metric spaces then dGH(X, Y ) <
∞. Let C = max{diamX, diamY } and define the following distance d on the disjoint
union X ∪ Y :

d(x, y) =


dX(x, y) if x, y ∈ X
dY (x, y) if x, y ∈ Y
C in any other case

The triangle inequality follows easily:

1. x,y ∈ X and z ∈ Y , then

d(x, y) ≤ C = d(x, z) ≤ d(x, z) + d(z, y) .

2. x ∈ X and y, z ∈ Y , then

d(x, y) = C = d(x, z) ≤ d(x, z) + d(z, y) .

3. x, z ∈ X and y ∈ Y , then

d(x, y) = C = d(x, z) ≤ d(x, z) + d(z, y) .

Now, since dH(X, Y ) = C when we consider X and Y as subspaces of their disjoint union
with the metric d, it follows that dGH(X, Y ) ≤ C.

It only remains to prove that dGH(X, Y ) = 0 implies that X and Y are isometric.
Let X and Y be two compact metric spaces with dGH(X, Y ) = 0. By Corollary 1.1.12
there exist maps fn : X → Y such that disfn → 0 when n → ∞. Now, since a compact
metric space is separable, we may take a countable dense set S ⊂ X. Then, using the
Cantor diagonal procedure, we extract a subsequence {fnk

} of {fn} such that for every
x ∈ S the sequence {fnk

(x)} converges in Y 3 For ease of notation we continue denoting
the subsequence by {fn}.

Then, (1.1) gives
d(y, y′)− d(f(x), f(x′)) ≤ d(y, f(x)) + d(f(x′), y′)

and (1.2)
d(f(x), f(x′))− d(y, y′) ≤ d(y, f(x)) + d(y′, f(x′)) .

Consequently,
|d(y′, y)− d(f(x), f(x′))| ≤ d(y, f(x)) + d(y′, f(x′))

but |a| − |b| ≤ |a− b| so

|d(y, y′)− d(x, x′)| − |d(f(x), f(x′))− d(x, x′)| ≤ |d(y′, y)− d(f(x), f(x′))| ≤ d(y, f(x)) + d(y′, f(x′)) .

3Remember that compact and sequentially compact are equivalent in metric spaces.

Curso 2014-2015. Ricci curvature via optimal transport Página 7



Marcos Solera Diana Universidad Autónoma de Madrid

Define a map f : S → Y as the limit of fn, i.e. f(x) = limn fn(x) for all x ∈ S. Since

|d(fn(x), fn(y))− d(x, y)| ≤ disfn → 0

we have that

d(f(x), f(y)) = lim
n
d(fn(x), fn(y)) = d(x, y)

for all x, y ∈ S. In other words, f is a distance-preserving map from S to Y , and it can
be extended to a distance preserving map from X to Y in the usual way. Similarly, there
is a distance preserving map from Y to X, g : Y → X.

Now, f ◦ g : Y → Y is a distance-preserving map from Y to itself, but Y is compact
so f ◦ g is bijective 4 and therefore f is surjective. This proves that f is an isometry.

�

1.2 Gromov-Hausdorff Convergence

In this section we consider converging sequences in the Gromov-Hausdorff space of com-
pact metric spaces. Since dGH is a metric, the limit is unique up to an isometry.

Corollary 1.1.12 gives a criterion for convergence in the Gromov-Hausdorff topology.
Namely, a sequence {Xn} of metric spaces converges to a metric space X if and only
if there exist a sequence of numbers {εn} and a sequence of maps fn : Xn → X (or,
fn : X → Xn) such that fn is an εn-isometry and εn → 0.

The following generalisation of the Arzelà-Ascoli theorem will be useful.

Lemma 1.2.1 Let {Xi}∞i=1 be a sequence of compact metric spaces converging to X
in the Gromov-Hausdorff topology, with εi-isometries fi : Xi → X. Let {Yi}∞i=1 be a
sequence of compact metric spaces converging to Y in the Gromov-Hausdorff topology,
with εi-isometries gi : Yi → Y . For each i, let f ′i : X → Xi be an approximate inverse to
fi. Let {αi}∞i=1 be a sequence of maps αi : Xi → Yi that are asymptotically equicontinuous
in the sense that for every ε > 0, there are δ = δ(ε) > 0 and N = N(ε) ∈ Z+ so that for
all i ≥ N ,

dXi
(xi, x

′
i) < δ ⇒ dYi(αi(xi), αi(x

′
i)) < ε.

Then after passing to a subsequence, the maps gi ◦αi ◦ f ′i : X → Y converge uniformly to
a continuous map α : X → Y .

Proof Can be found in ([14], page 66) and ([15], App. A). �

An important point is that finite spaces form a dense set in the Gromov-Hausdorff
space.

Example 1.2.2 Every compact metric space X is a limit of finite spaces. For this,
take a sequence εn → 0 of positive numbers and choose a finite εn-net Sn in X for every

n. Then Sn
GH−−→ X, simply because dGH(X,Sn) ≤ dH(X,Sn) ≤ εn.

Furthermore, taking appropriate ε-nets one can essentially reduce convergence of ar-
bitrary compact metric spaces to convergence of their finite subsets.

4A compact metric space cannot be isometric to a proper subset of itself (Theorem 1.6.14 in [5]).
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Definition 1.2.3 Let X and Y be two compact metric spaces, and ε, δ > 0. We say
that X and Y are (ε, δ)-approximations of each other if there exist finite collections of
points {xi}Ni=1 and {yi}Ni=1 in X and Y , respectively, such that:

1. The set {xi | 1 ≤ i ≤ N} is an ε-net in X, and {yi | 1 ≤ i ≤ N} is an ε-net in Y .

2. |dX(xi, xj)− dY (yi, yj)| < δ for all i, j ∈ {1, . . . , N}.
An ε-approximation is an (ε, ε)-approximation.

We now can give a criterion for convergence in terms of ε-approximations. Namely,

Xn
GH−−→ X if and only if, for any ε > 0, Xn is an ε-approximation of X for all sufficiently

large enough n.

Proposition 1.2.4 Let X and Y be compact metric spaces.

1. If Y is an (ε, δ)-approximation of X, then dGH(X, Y ) < 2ε+ δ.

2. If dGH(X, Y ) < ε, then Y is a 5ε-approximation of X.

Proof 1. Let X0 = {xi}Ni=1 and Y0 = {yi}Ni=1 as in the definition. The second condition
means that the correspondence {(xi, yi) | 1 ≤ i ≤ N} between X0 and Y0 has distortion
less than δ, so dGH(X0, Y0) < δ/2. Since X0 and Y0 are ε-nets in X and Y , respectively,
we have dGH(X,X0) ≤ ε and dGH(Y, Y0) ≤ ε. Hence the result follows by the triangle
inequality for dGH .

2. Corollary 1.1.12 gives us the existence of a 2ε-isometry f : X → Y . Let X0 =
{xi}Ni=1 be an ε-net in X and yi = f(xi). Then |d(xi, xj)− d(yi, yj)| < 2ε < 5ε for all i, j.
We must now see that Y0 = {yi}Ni=1 is a 5ε-net in Y . Let y ∈ Y , since f(X) is an 2ε-net
in Y , there exists x ∈ X such that d(y, f(x)) ≤ 2ε. But X0 is an ε-net in X so there
exists xi ∈ X0 such that d(x, xi) ≤ ε. Then

d(y, yi) = d(y, f(xi)) ≤ d(y, f(x)) + d(f(x), f(xi))

≤ d(y, f(x)) + disf + d(x, xi) ≤ 2ε+ ε+ 2ε ≤ 5ε

thus d(y, Y0) ≤ 5ε. �

This result can be given in a more elegant formulation:

Proposition 1.2.5 For compact metric spaces X and {Xn}∞n=1, Xn
GH−−→ X if and

only if the following holds. For every ε > 0 there exist a finite ε-net S in X and an ε-net

Sn in each Xn such that Sn
GH−−→ S.

Moreover, these ε-nets can be chosen so that, for all sufficiently large n, Sn have the
same cardinality as S.

Proof ← If such ε-nets exist, then Xn is an ε-approximation of X for all sufficiently

large n. Then Xn
GH−−→ X by the previous proposition. Note that this also follows from

the triangle inequality:

dGH(Xn, X) ≤ dGH(Xn, Sn) + dGH(Sn, S) + dGH(S,X) .

→ Take a finite (ε/2)-net S in X and construct corresponding nets Sn in Xn. Namely,
pick a sequence of εn-isometries fn : X → Xn where εn → 0 and define Sn = fn(S). Then

Sn
GH−−→ S and, as in the previous proposition, Sn is an ε-net in Xn for all large enough n.

Furthermore, for all sufficiently large n, we have that dis(fn) < min{d(x, y) | x, y ∈ S}
thus fn is injective on S for all sufficiently large n and therefore #Sn = #S. �
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1.2.1 Length spaces

This last proposition has important consequences. It opens a way to prove continuity
statements about the Gromov-Hausdorff space. Namely, if some property of spaces Xn

can be formulated in terms of finite collections of points, then this property is inherited
by the limit space X. As an example we have the property of a metric to be intrinsic,
which can be expressed in terms of triples of points . It follows that a limit of compact
length spaces is a length space ([5], Theorem 2.4.16). We recall that for us a length space
is a metric space (X, d) in which the distance between two points equals the infimum of
the lengths of curves joining the points.

1.2.2 Compactness theorem

As we said earlier on, the Gromov-Hausdorff topology is a relatively weak one, so we
expect that it has ‘many’ compact sets. We have seen that a sequence {Xn} converging
in the Gromov-Haudorff space must contain ε-nets of uniformly bounded cardinality.
It follows that, if a class X of metric spaces is pre-compact in the Gromov-Hausdorff
topology, then for every ε > 0 the size of a minimal ε-net is uniformly bounded over all
elements of X. It turns out that this property of X, along with the fact that the diameters
are uniformly bounded, is sufficient for pre-compactness.

Definition 1.2.6 We say that a class X of compact metric spaces is uniformly totally
bounded if

1. There is a constant D such that diamX ≤ D for all X ∈ X.

2. For every ε > 0 there exists a natural number N = N(ε) such that every X ∈ X
contains an ε-net consisting of no more than N points.

Theorem 1.2.7 A class X of compact metric spaces is pre-compact in the Gromov-
Hausdorff topology if, and only if, it is uniformly totally bounded.

Proof Let D and N(ε) be as in the previous definition. Define N1 = N(1) and Nk =
Nk−1 + N(1/k) for all k ≥ 2. Now, in each space Xn we construct a countable dense
collection Sn as follows. Consider a (1/k)-net of N(1/k) points in Xn for each k and then
take Sn to be the union of all. Then Sn is obviously a countable dense collection in Xn,
Sn = {xi,n}∞i=1 ⊂ Xn, where {xi,n}Nk

i=Nk−1
is the (1/k)-net taken, and therefore {xi,n}Nk

i=1 is
also a (1/k)-net in Xn.

Since all the Xn have diameter bounded above by D, the distances |xi,n − xj,n| are
≤ D, and therefore belong to a compact interval. Consequently, using the Cantor diagonal
procedure, we can extract a subsequence of {Xn} in which {|xi,n− xj,n|}∞n=1 converge for
all i, j. To simplify the notation, we assume that they converge without passing to a
subsequence. So we are assuming that the distances between points in our countable
dense collections Sn converge.

We will now construct the limit space X for {Xn}. This will be done by defining a
metric space that contains a countable dense subset with distances between points equal
to the limit of the distances between the points of Sn. For this, pick an abstract countable
set (for example, the set of positive integers) X = {xi}∞i=1 and define a semi-metric d on
X by

d(xi, xj) = lim
n→∞

|xn,i − xn,j| .
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Then, a usual quotient construction where points x, y with d(x, y) = 0 are taken to be
equivalent, gives us a metric space X/d. We will denote by xi the equivalence class of xi
in X/d. This quotient space may not be complete, so let X be the completion of X/d
([5], Theorem 1.5.10). We will prove that {Xn} converges to X.

The last part consists in proving that X is compact and that the (1/k)-nets in the
Xn converge to (1/k)-nets in X, and then use Proposition 1.2.5. For k ∈ N, consider
the set S(k) = {xi | 1 ≤ i ≤ Nk} ⊂ X. It is a (1/k)-net in X. Indeed, every set

S
(k)
n = {xi,n | 1 ≤ i ≤ Nk} is a (1/k)-net in Xn. Consequently, for every xi,n ∈ Sn there is

a j ≤ Nk such that |xi,n− xj,n| ≤ 1/k. But the Nk do not depend on n so for every fixed
i ∈ N , given n ∈ N, we find a j ≤ Nk so that |xi,n− xj,n| ≤ 1/k. However, there are only
a finite number of j ≤ Nk so, for each i, there is a j ≤ Nk such that |xi,n − xj,n| ≤ 1/k
for infinitely many indices n. Passing to the limit we obtain that |xi − xj| ≤ 1/k for this
j. Therefore, S(k) is a (1/k)-net in X/d and hence in X. Since X is complete and has a
(1/k)-net for any k ∈ N , it is compact ([5], Theorem 1.6.5).

Furthermore, the set S(k) is a Gromov-Hausdorff limit of the sets S
(k)
n as n → ∞,

because these are finite sets consisting of Nk points (some of which may coincide) and
the distances converge. Thus for every k ∈ N we have a (1/k)-net in X which is a
Gromov-Hausdorff limit of some (1/k)-nets in the spaces Xn. By Proposition 1.2.5 it
follows that Xn → X. �

1.3 Measured Gromov-Hausdorff convergence

For this work it will be necessary to consider not only compact metric spaces, but mea-
sured compact metric spaces. This is why we need a notion of convergence in this context.

For our purposes, we will assume that the ε-isometries f and their approximate in-
verses f ′ are Borel. Let P (X) denote the space of Borel probability measures on X.
We consider P (X) with the weak-? topology, i.e. limi→∞ µi = µ if and only if for all
F ∈ C(X), limi→∞

∫
X
Fdµi =

∫
X
Fdµ.

Definition 1.3.1 Given µ ∈ M(X), consider the metric-measure space (X, d, ν). A
sequence {(Xi, di, νi)}∞i=∞ converges to (X, d, ν) in the measured Gromov-Hausdorff topol-
ogy if there are εi-isometries fi : Xi → X, with limi→∞ εi = 0, so that limi→∞(fi)?νi = ν
in the weak topology of measures.

In this context we have the following compactness theorem.

Theorem 1.3.2 Let C > 0, D > 0 and 0 < m ≤ M be finite positive constants, and
let F be a family of compact metric-measure spaces, such that for each (X, d, ν) ∈ F

1. the diameter of (X, d) is bounded above by D;

2. the measure ν has a doubling constant bounded above by C 5 ;

3. m ≤ ν[X] ≤M .

Then F is precompact in the measured Gromov-Hausdorff topology.

5ν(B2r(x)) ≤ Cν(Br(x)) for all x ∈ X and r > 0.
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The proof of this theorem follows from our previous compactness theorem and the
following propositions.

Proposition 1.3.3 (Prokhorov’s theorem in Gromov-Hausdorff converging
sequences) Let (Xk)k∈N be a sequence of compact metric spaces, converging in the
Gromov-Hausdorff topology to some compact metric space X, by means of εk-isometries
fk : Xk → X. For each k, let µk be a probability measure on Xk. Then, after extraction
of a subsequence, (fk)#µk converges in the weak topology to a probability measure µ on
X as k →∞.

Proposition 1.3.4 (Doubling implies uniform total boundedness) Let (X, d)
be a Polish space 6 with diameter bounded above by D, equipped with a finite (non-zero)
C-doubling measure ν 7. Then for any ε > 0 there is a number N = N(ε), only depending
on D, C and ε, such that X can be covered with N balls of radius ε.

Proof Without loss of generality, we can assume that ν[X] = 1 8. Let r = ε/2, and
take n such that D ≤ 2nr. Choose an arbitrary point x1 ∈ X, then a point x2 ∈
X \ (B2r(x1)), a point x3 in X \ (B2r(x1) ∪ B2r(x2)), and so forth. All the balls Br(xj)
are disjoint, and by the doubling property each of them has a measure at least C−n 9. So
X \ (Br(x0)∪ · · · ∪Br(xk)) has measure at most 1− kC−n, and therefore Cn is an upper
bound on the number of points xj that can be chosen.

Now let x ∈ X. There is at least one index j such that d(x, xj) < 2r (otherwise x
would lie in the complement of the union of all the balls B2r(xj), and could be added to
the family {xj}). Consequently, {xj} is a 2r-net in X, with cardinality at most N = Cn.
This concludes the proof. �

6A polish space is a separable completely metrizable topological space.
7 µ(B(x, 2r)) ≤ Cµ(B(x, r)) for all x ∈ X and r > 0.
8We could just take dν̃ = dν

ν[X] .
9ν(B2r(x)) ≤ Cν(Br(x)) thus

ν(Br(x)) ≥ ν(B2r(x))

C
≥ · · · ≥ ν(B2nr(x))

Cn
=

1

Cn

since D ≤ 2nr so B2nr(x) = X.
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Chapter 2

Bishop-Gromov’s theorem

In this section we present the Bishop-Gunther-Gromov inequality relating curvature and
volume. We will assume that the results given in the basic Differential Geometry course
of the masters degree are known. In fact, we will refer to the notes of this course if
necessary.

2.1 Jacobi fields

This first section is devoted to Jacobi fields. We start by proving the uniqueness of Jacobi
fields with given initial conditions and an observation relating Jacobi fields and geodesic
variations. We will not prove this relation in the case J(0) 6= 0 but a similar construction
may be done. For ease of notation we will consider geodesics defined on intervals of the
form [0, a] but, obviously, this is no restriction.

We recall that a Jacobi field along a geodesic γ is a vector field satisfying the Jacobi
equation

D2

dt2
J(t) +R(J(t), γ′(t))γ′(t) = 0,

where D denotes the covariant derivative with respect to the Levi-Civita connection, R
the Riemann curvature tensor 1, γ′(t) the tangent vector field, and t is the parameter of
the geodesic.

Proposition 2.1.1 A Jacobi field J , along a geodesic γ : [0, a] → M is determined

by its initial conditions J(0) and
DJ

dt
(0).

Proof Let E1(t), . . . , En(t) be a parallel orthonormal frame along γ which can be ob-
tained by choosing an orthonormal basis of Tγ(0)M and then taking the parallel transport
along γ.

We may write J as a combination of the vector fields E1, . . . , En,

J(t) =
n∑
i=1

fi(t)Ei(t) .

1We take

R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z .

13
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Denote
aij(t) = 〈R(γ′(t), Ei(t))γ

′(t), Ej(t)〉
for i, j = 1, . . . , n = dimM . Then, since the Ei are parallel vector fields we have that
D2J

dt2
=

n∑
i=1

f ′′i (t)Ei(t) and

R(γ′, J)γ′ =
n∑
j=1

〈R(γ′, J)γ′, Ej〉Ej =
n∑
j=1

〈R(γ′,
n∑
i=1

fi(t)Ei(t))γ
′, Ej〉Ej =

=
∑
ij

fi〈R(γ′, Ei)γ
′, Ej〉Ej =

∑
ij

fiaijEj =
n∑
j=1

(
n∑
i=1

fiaij

)
Ej.

Therefore, the Jacobi equation
D2J

dt2
+R(γ′, J)γ′ = 0 is equivalent to the system

f ′′j (t) +
n∑
i=1

aij(t)fi(t) = 0, j = 1, . . . , n

which is a linear system of second order. Thus, given the initial conditions there exists a
unique solution. �

In fact, given J ′(0) and supposing that J(0) = 0 we can construct the geodesic
variation which has as its variation field the unique Jacobi field satisfying these initial
conditions. The same can be done if J(0) 6= 0 but it is not necessary for our purposes.

Proposition 2.1.2 Let γ : [0, a]→M be a geodesic and J a Jacobi field along γ with

J(0) = 0. Put ω =
DJ

dt
(0) and v = γ′(0). Considering ω as an element of Tv(Tγ(0)M)

construct a curve v(s) in Tγ(0)M with v(0) = v and v′(0) = ω. Take f(t, s) = expp (tv(s))

where p = γ(0), and define a Jacobi field J by J(t) = ∂f
∂s

(t, 0). Then J = J on [0, a].

Proof Thanks to Proposition 4.2.5 on page 73 of the notes [11] we know that J , defined
in this way, is a Jacobi field along γ so, following the previous proposition, we only need
to show that the initial conditions coincide.

Now, at s = 0 we have

D

dt

∂f

∂s
=
D

dt

∂

∂s
(expp(tv(s)) =

D

dt
((d expp)tv(tω)) =

D

dt
(t(d expp)tv(ω)) =

= (d expp)tv(ω) + t
D

∂t
((d expp)tv(ω))

which at t = 0 gives

DJ

dt
(0) =

D

dt

∂f

∂s
(0, 0) = (d expp)0(ω) = idTpM(ω) = ω .

�

Corollary 2.1.3 Given a geodesic γ : [0, a] → M and a Jacobi field J along γ with
J(0) = 0 we have that

J(t) = (dexpp)tγ′(0)(tJ
′(0)), t ∈ [0, a].

Página 14 Curso 2014-2015. Ricci curvature via optimal transport



Universidad Autónoma de Madrid Marcos Solera Diana

2.2 Conjugate points

Definition Given a geodesic γ : [0, a] → M and t0 ∈ (0, a], the point γ(t0) is said to be
conjugate to γ(0) along γ if there exists a non identically cero Jacobi field along γ with
J(0) = 0 = J(t0). The maximum number of such linearly independent Jacobi fields is
called the multiplicity of the conjugate point γ(t0).

The next proposition relates the conjugate points to p along a geodesic with the
critical points of expp.

Proposition 2.2.1 Let γ : [0, a]→M be a geodesic and put γ(0) = p. For t0 ∈ (0, a],
the point q = γ(t0) is conjugate to p along γ if and only if v0 = t0γ

′(0) is a critical point of
expp. In addition, the multiplicity of q as a conjugate point of p is equal to the dimension
of the kernel of (dexpp)v0.

Proof ⇒ Suppose that q is conjugate to p along γ. Then, there exists a non-identically
zero Jacobi field J along γ with J(0) = 0 = J(t0). Thanks to Corollary 2.1.3, we know
that J(t) = (d expp)tγ′(0)(tJ

′(0)) for t ∈ [0, a]. Then, since J is non-zero we get that
J ′(0) 6= 0 so

0 = J(t0) = (d expp)t0γ′(0)(t0J
′(0))

with J ′(0) 6= 0, that is, t0γ
′(0) is a critical point of expp.

⇐ Conversely, suppose that v0 = t0γ
′(0) is a critical point of expp. Then, there

exists ω ∈ Tv0(TpM), ω 6= 0, such that

(d expp)t0γ′(0)(t0ω) = 0 .

Now, following the construction of Proposition 2.1, J(t) = (d expp)tγ′(0)(tω) is a Jacobi
field along γ and J is non-zero because J ′(0) = ω 6= 0. Then, q is conjugate to p because

J(t0) = (d expp)t0γ′(0)(t0J
′(0)) = 0 .

For the last statement note that Jacobi fields J1, . . . , Jk along γ with Ji(γ(0)) = 0
are linearly independent if and only if J ′1(0), . . . , J ′k(0) are linearly independent in TpM .
Then, following the construction above we get that the multiplicity of q is equal to the
kernel of (d expp)t0γ′(0). �

From this it follows that if a point p = γ(0) has no conjugate points along the geodesic
γ : [0, a] → M then expp is a diffeomorphism on a neighbourhood of each point of the
form tγ′(0), t ∈ [0, a].

2.3 Index Form

In proposition 4.2.8 on page 76 of the notes [11] we find the second variation formula:

Proposition 2.3.1 If V is the variation field associated to a proper variation of a
geodesic γ : [0, 1]→M then

E ′′(0) = −2

∫ 1

0

〈
V ,

D2V

dt2
+R(V, γ′)γ′

〉
dt .
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Following the proof we notice that we may rewrite this formula as

E ′′(0) = −2

∫ 1

0

(
〈V , R(γ′, V )γ′〉 −

〈
DV

dt
,
DV

dt

〉)
dt

and this serves as motivation for the next definition.
Definition The index form of a geodesic γ is

I(X, Y ) =

∫ b

a

(〈
DX

dt
,
DY

dt

〉
−R(γ′, X, γ′, Y )

)
dt

where X,Y are two vector fields along γ.
Then, for a proper variation of a geodesic γ with variation field V we have

E ′′(0) = 2I(V, V ) .

Note that after an integration by parts computation, we have

I(X, Y ) = −
∫ b

a

〈
D2X

Dt2
+R(γ′, X)γ′, Y

〉
dt+

[〈
DX

dt
, Y

〉]b
a

. (2.1)

Therefore, for a jacobi field J along γ : [a, b]→M we have

I(J, J) = 〈J ′(b), J(b)〉 − 〈J ′(a), J(a)〉 . (2.2)

We also obtain the next lemma.

Lemma 2.3.2 (Index lemma) Suppose that p = γ(a) has no conjugate point along
a geodesic γ. If X is a Jacobi field along γ, and Y is a vector field along γ satisfying
Y (a) = X(a) and Y (b) = X(b), then I(X,X) ≤ I(Y, Y ). Further, equality holds if, and
only if, X = Y .

The proof of the lemma may be found on [10] (Chapter 10, Lemma 2.2). However,
we will now provide a different proof using the next theorem due to Jacobi which we will
not prove.

Theorem 2.3.3 (Jacobi) Let γ : [a, b]→M be a geodesic. Let p = γ(a) and q = γ(b),
then if there are no conjugate points of p along γ there exists ε > 0 so that for any
piecewise smooth curve γ : [a, b]→M from p to q satisfying dist(γ(t), γ(t)) < ε, we have
L(γ) ≥ L(γ), with equality if and only if γ is a reparameterization of γ.

Proof The proof uses the fact, mentioned above, that, since p has no conjugate points
along γ then expp is a diffeomorphism at each point tγ′(0), with t ∈ [0, b− a], and hence
in a neighbourhood of these points. �

Thus, for a geodesic γ : [a, b] → M such that γ(a) has no conjugate points along γ
we have that γ is locally length minimizing. Therefore, for any proper variation of γ,
we have E ′(0) = 0 and E ′′(0) ≥ 0. In other words, for any vector field X along γ with
X(a) = 0 = X(b) we have I(X,X) ≥ 0. This is the same reasoning as the one used in
the proof of Theorem 4.2.9 (Bonnet-Myers) in the notes [11], the difference being that in
this case the geodesic is locally minimizing but not necessarily globally minimizing.

We also need two more theorems to prove the last assertion of the lemma. Put
V = {X : X is a vector field along γ} and

V0 = {X : X ∈ V with X(a) = 0 = X(b)} .
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Theorem 2.3.4 Let X ∈ V, then X is a Jacobi field along γ if, and only if, I(X, Y ) =
0 for every Y ∈ V0.

Proof From equation (2.1) we get that if X is a Jacobi field then I(X, Y ) = 0 for any
Y ∈ V0.

Conversely, if X is a vector field along γ satisfying I(X, Y ) = 0 for every Y ∈ V0 then
taking a smooth function f : [a, b] → R with f(a) = 0 = f(b) and f(t) > 0 for t ∈ (a, b)
we define

Y = f(t)

(
D2X

dt2
+R(γ′, X)γ′

)
.

We have Y ∈ V0 and therefore

0 = I(X, Y ) = −
∫ b

a

f(t)

∣∣∣∣D2X

dt2
+R(γ′, X)γ′

∣∣∣∣2 dt .
It follows that X is a Jacobi field as required. �

Theorem 2.3.5 Let γ : [a, b]→ M be a geodesic, p = γ(a) and q = γ(b). Then, if p
has no conjugate point along γ the index form I is positive definite on V0.

Proof We have already discussed that I(X,X) ≥ 0 for any X ∈ V0 so if I is not positive
definite on V0 then there exists Y ∈ V0 not identically zero such that I(Y, Y ) = 0. Then,
for any Z ∈ V0 and any λ ∈ R, we have

0 ≤ I(Y − λZ, Y − λZ) = −2λI(Y, Z) + λ2I(Z,Z) .

But this is true for all Z ∈ V0 and λ ∈ R so we must have I(Y, Z) = 0 for all Z ∈ V0.
Therefore, by the previous theorem, Y is a Jacobi field with Y (a) = 0 = Y (b) but γ(b) is
not a conjugate point of p so we must have Y = 0 which is a contradiction. �

Proof (of the Index lemma) Since X is a Jacobi field and Y is a vector field with the
same values at the boundary, it follows from equation (2.1) that I(X,X) = I(X, Y ).
Now, by our previous argument

0 ≤ I(X − Y,X − Y ) = I(X,X)− 2I(X, Y ) + I(Y, Y ) = −I(X,X) + I(Y, Y )

and we are done. Now, equality holds if, and only if, I(X − Y,X − Y ) = 0 and the
previous theorem yields X − Y = 0. �

2.4 Jacobi Fields on Spaces with Constant Sectional

Curvature

Let (M, g) be a Riemannian manifold with constant sectional curvature k. Then the
curvature tensor is given by

R(X, Y )Z = k(〈X,Z〉Y − 〈Y, Z〉X) .

This may be found in Chapter 4, Lemma 3.4 of [10].
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With this in mind we can easily obtain the Jacobi fields along geodesics in manifolds
with constant sectional curvature. Remember that a Jacobi field along γ is called a
normal Jacobi field if it is perpendicular to γ′ along γ. In general, these are the Jacobi
fields that we are interested in.2

In this context, if γ is a geodesic parametrized by arc-length, then the Jacobi equation
for a normal Jacobi field J along γ is

D2J

dt2
+ kJ = 0 .

Take a parallel orthonormal frame {Ei(t)} along γ with E1(t) = γ′(t), and write J(t) =
m∑
i=2

J i(t)Ei(t), then the equation of the coefficient J i(t) is

(J i)′′(t) + kJ i(t) = 0, 2 ≤ i ≤ n. (2.3)

If J(0) = 0 the solution of this equation is

J i(t) =


ci sin(

√
kt), if k > 0;

cit, if k = 0;

cisinh(
√
−kt), if k > 0;

where ci are constants.

2.5 Cut locus

In this section we consider (M, g) a complete Riemannian manifold. For p ∈ M and
v ∈ Tp(M), denote γv the unique geodesic satisfying γv(0) = p and γ′v(0) = v, in other
words, γv(t) = expp(tv). Let

Iv = {t ∈ R : γv is minimal on [0, t]}.

Now, we know that any geodesic is locally minimal and that if a geodesic is minimal on
an interval I, then it is also minimal on any subinterval J ⊂ I. Therefore, our interval
Iv is closed. Let Iv = [0, ρ(v)] where ρ(v) may be infinite. We call γv(ρ(v)) the cut point
of γ(0) = p along γ and denote by Cut(p) the set of all cut points of p along all geodesics
that start from p, and call it the cut locus of p.

If ω = λv, then ρ(v) = λρ(ω) so we can restrict the study of the map ρ to the unit
bundle of M . We will denote by SpM ⊂ TpM the set of unit vectors in TpM , and by
SM ⊂ TM the set

{(p, v) ∈ TM : 〈v, v〉p = 1} .

We will denote by θ the unit vectors.
Then, the function ρ : SM → R ∪ {∞} which we have just defined as:

ρ(p, θ) = ρ(γ(0), γ′θ(0)) =

{
t0, if γθ(t0) is the cut point of γ(0) along γ,

∞, if the cut point along γ does not exist.

2The Jacobi fields γ′ and tγ′ will not be important in our developments.
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is continuous. A proof is found in Chapter 13, Proposition 2.9 of [10]. It can also be
proved ([12], Proposition 2.113) that

M = expp(U(p)) ∪ Cut(p) .

Furthermore, in ([10], Chap.13 Proposition 2.2), we find that

Proposition 2.5.1 If γ(t0) is the cut point of p = γ(0) along γ, then one of the
following is true:

• γ(t0) is the first conjugate point of p = γ(0) along γ,

• there exists a geodesic σ 6= γ from p to γ(t0) such that l(σ) = l(γ).

Conversely, if either of the previous is satisfied, then there exists t in (0, t0] such
that γ(t) is the cut point of p along γ.

Then, if we define U(p) = {tv | v ∈ SpM, 0 ≤ t ≤ ρ(v)}, thanks to this result and
previous results concerning the relation between conjugate points and singularities of the
exponential map we have that expp : U(p)→M \ Cut(p) is a diffeomorphism.

Further, since U(p) is an open star-shaped domain in TpM , we can take (exp−1
p , V (p) =

M \Cut(p))} as a coordinate chart on V (p). Then, we can fix an orthonormal basis {ei}
in U(p), and denote the corresponding coordinate functions on V (p) by {ui}.

Definition 2.5.2 The local chart {V (p);u1, . . . , un} is called normal coordinate sys-
tem at p.

2.6 Riemannian volume

Let (M, g) be an n-dimensional Riemannian manifold and {(Uk, ϕk)} an atlas. We define
the canonical measure of (M, g), and denote it vg, as the measure corresponding to the
density given in each chart (Uk, ϕk) of our atlas by

µ =
√

det(gij) ◦ ϕ−1
k Ln,

where Ln = dx1 · · · dxn is the Lebesgue measure in Rn. It can be proved that this is well
defined (see for example Chapter 1, section 2 in [10]).

Lemma 2.6.1 For any p ∈M , the cut-locus Cutp has measure zero.

Proof Note that Cut(p) = expp(∂U(p)) and, since every ray from the origin in TpM
cuts ∂U(p) once at most, we have that ∂U(p) has measure zero. Therefore, Cut(p) =
expp(∂U(p)) has measure zero. �

If M is orientable, and we take an atlas compatible with the orientation, then vg
can be given by a volume form. We define the volume of a Riemannian manifold as the
integral

∫
M
vg.

For example, if R ⊂ M is a region whose closure is compact and R is contained in a
coordinate neighbourhood x(U) with a parametrization x : U → M , and the boundary
of x−1(R) ⊂ U has measure zero in Rn we have that the volume Vol(R) of R is

Vol(R) =

∫
x−1(R)

√
det(gij)dx

1 · · · dxn .
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In particular, we have the following case. Consider the chart (exp−1
p , V (p) = M \

Cut(p))} given in the previous section and on U(p) (or TpM) we decompose the Lebesgue
measure via polar coordinates

dx1 . . . dxn = rn−1drdθ,

where dθ is the usual surface measure on Sn−1. Then, in this chart we may write the
Riemannian density as

µ = λ(r, θ)drdθ

where λ(r, θ) =
√
G ◦ expp(r, θ)r

n−1 with G = det(gij).
Now, taking λ(r, θ) = 0 outside U(p) since, by definition,

Br(p) = expp(Br(0)) = expp(Br(0) ∩ U(p))

and Cut(p) is of zero measure in M , we have

Vol(Br(p)) =

∫
Br(0)∩U(p)

λ(r, θ)drdθ =

∫
Br(0)

λ(r, θ)drdθ.

Then, if M is complete, since M = expp(U(p)) ∪ Cut(p) we have

Vol(M) =

∫
U(p)

(expm)?vg =

∫
U(p)

λ(r, θ)drdθ =

∫
Sn−1

∫ ρ(θ)

0

λ(r, θ)drdθ .

We will now calculate the function λ(r, θ). For this we will fix a tangent vector
θ ∈ SpM and consider Jacobi fields along the geodesic γ(t) = expp(tθ).

Proposition 2.6.2 Fix θ ∈ SpM . Let J2, . . . , Jn be normal Jacobi fields along the
geodesic γ(t) = expp(tθ), with Ji(0) = 0 and (J ′2(0), . . . , J ′n(0)) linearly independent.
Then, for rθ ∈ Up,

λ(r, θ) =
det(J2(r), . . . , Jn(r))

det(J ′2(0), . . . , J ′n(0))

where the determinant is taken with respect to an orthonormal frame Ei(t), i = 2, . . . , n,
in (γ′(t))⊥ along the geodesic γ.

Proof Take e1 = θ and e2, . . . , en a set of linearly independent vectors in e⊥1 ⊂ TpM .
Using this basis of TpM we can define global coordinates u1, u2, . . . , un on TpM . With
these coordinates on TpM we have

du1 · · · dun =
1

det(e2, . . . , em)
dx1 · · · dxn =

rn−1

det(e2, . . . , em)
drdθ

and ei = ∂i �u=0.
In particular, we take ei = J ′i(0). Following proposition 2.1.3 we have that

Ji(t) = (d expp)tθ(tej).

Since rθ ∈ U(p) we have that expp is a diffeomoprhism on a neighbourhood of rθ so
under expp, our coordinate system u1, u2, . . . , un also gives a coordinate system in a
neighbourhood of expp(rθ). For this coordinate system we have

∂1 =
d

dt
(expp((r + t)θ)) �t=0=

d

dt
(γθ(r + t)) �t=0= γ′θ(r)
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and

∂i =
d

dt
(expp(rθ + tei) �t=0= (d expp)rθ(ei) =

1

r
Ji(r) .

It follows that
r2gij = r2〈∂i, ∂j〉 = 〈Ji, Jj〉

for i, j ≥ 2 along γ. Now, γ is normal so 〈∂1, ∂1〉 = 1. Furthermore, 〈e1, ei〉 = 0 for i ≥ 2
so by the Gauss lemma we get

〈∂1, ∂i〉 = 〈(d expp)rθ(e1), (d expp)rθ(ei)〉 = 0

for i ≥ 2. Then

G = det(gij) = r−2(n−1) det(〈Ji, Jj〉)i,j≥2 = r−2(n−1) det(J2(r), . . . , Jn(r))2 .

Finally,

√
Gdu1 · · · dun =

√
G

rn−1

det(J ′2(0), . . . , J ′n(0))
drdθ =

det(J2(r), . . . , Jn(r))

det(J ′2(0), . . . , J ′n(0))
drdθ .

�

2.7 Geometric meaning of the Ricci and scalar cur-

vatures

It can be proved that, with respect to normal coordinates around p, the function gij(u
1, . . . , un)

admits the Taylor expansion at x = 0,

gij = δij +
1

3
Riklj(p)u

kul +O(|x3|) .

The proof uses Jacobi fields and the fact that they determine the metric as we have seen
in the proof of the previous proposition. This result allows us to give some geometric
interpretations of the different curvatures. For example, the sectional curvature measures
the deviation of the geodesic circle to the standard circle in Euclidean space. But the
interpretation that we are interested in relates to the Ricci curvature. It states that the
Ricci curvature measures the change of the volume element in a given direction, more
precisely, in normal coordinates the volume element has the expansion√

det(gij) = 1− 1

6
Rkl(p)x

kxl +O(|x|3) .

From this we obtain the expansion for the volume of a small enough geodesic ball:

Theorem 2.7.1 For r small enough

Vol(Br(p)) = ωnr
n

(
1− Scal(p)

6(n+ 2)
r2 +O(|r3|)

)
,

where ωn is the volume of the unit ball in Rn.

Since this will only be used for a small detail in the proof of the Bishop-Gunther-Gromov
inequality we will not provide a proof. However, proofs may be found in ([13], Theorem
3.1) or in ([12], Theorem 3.98).
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2.8 Bishop-Gromov-Gunther inequality

Before proving the Bishop-Gunther-Gromov inequality we need the following lemma
which compares volume densities of a Riemannian manifold with Ricci curvature bounded
below and of the space form Mn

k of Riemannian manifolds of constant sectional curvature.
Mn

k may be seen as the simply connected Riemannian manifold of constant curvature k.
If k > 0 we have a sphere, if k = 0 the euclidean space and for k < 0 we get an hyperbolic
space.

We will denote by λk(r) the density function µ for the space form Mn
k , in this way

λk(r) is independent of p and of θ.

Lemma 2.8.1 If (M, g) is a complete Riemannian manifold with Ric ≥ (n − 1)k, 3

then for any fixed θ ∈ SpM and any r with rθ ∈ U(p), we have

λ′(r, θ)

λ(r, θ)
≤ λ′k(r)

λk(r)
,

where the derivative is taken with respect to r.
If, on the other hand, KM ≤ k 4 then

λ′(r, θ)

λ(r, θ)
≥ λ′k(r)

λk(r)
.

Proof 1 Suppose first that Ric ≥ (n− 1)k. Given θ ∈ SpM and r such that rθ ∈ U(p)
consider a parallel orthonormal frame {Ei(t)} along γ = γθ with E1(0) = θ (hence,
E1(t) = γ′(t)). Take, as in the proof of the previous proposition, the Jacobi fields Ji(t)
along γ such that Ji(0) = 0 and Ji(r) = Ei(r).

Denote A(t) = (〈Ji(t), Jj(t)〉)i,j≥2 and D(t) = detA(t). Then, since

{J1(r) = E1(r), . . . , Jn(r) = En(r)}

is an orthonormal basis of Tγ(r)M we have A(r) = Id and therefore D(r) = 1. Now,

remembering that λ(r, θ) = C−1
√
D(r) where C = det(J ′2(0), . . . , J ′n(0)) we have

λ′(r, θ)

λ(r, θ)
=

1/2C−1(D(r))−1/2D′(r)

C−1(D(r))1/2
=

1

2

D′(r)

D(r)
=

1

2
D′(r) .

By a well known formula D′(t) = D(t)Tr(A−1(t)A′(t)), so

λ′(r, θ)

λ(r, θ)
=

1

2
det (Id) Tr(IdA′(t)) =

1

2
Tr(A′(t)) =

n∑
i=2

〈Ji(r), J ′i(r)〉 =
n∑
i=2

I(Ji, Ji) (2.4)

where we have also used (2.2).

We now consider the vector fields Hi(t) =
Sk(t)

Sk(r)
Ei(t), where Sk(t) is the solution of

S ′′k + kSk = 0 with conditions Sk(0) = 0, S ′k(0) = 1 (equation (2.3)). Then Hi and Ji
have the same values at the end points and by the index lemma we get

I(Ji, Ji) ≤ I(Hi, Hi).

3By Ric ≥ (n− 1)k we mean that for all unit tangent vectors v, Ric(v, v) ≥ (n− 1)k.
4We say that KM ≤ k if for all orthonormal tangent vectors x, y we have K(x, y) ≤ k where K(x, y)

is the sectional curvature of the plane σp generated by x and y.

Página 22 Curso 2014-2015. Ricci curvature via optimal transport



Universidad Autónoma de Madrid Marcos Solera Diana

Now, by definition

I(Hi, Hi) = −
∫ r

0

〈
D2Hi

dt2
+R(γ′, Hi)γ

′ , Hi

〉
dt+

〈
DHi

dt
(r) , Hi(r)

〉
=

= −
∫ r

0

〈
S ′′k (t)

Sk(r)
Ei +R(γ′,

Sk(t)

Sk(r)
Ei)γ

′ ,
Sk(t)

Sk(r)
Ei

〉
dt+

〈
DHi

dt
(r), Hi(r)

〉
=

= −
∫ r

0

〈
−kSk(t)
Sk(r)

Ei +R(γ′,
Sk(t)

Sk(r)
Ei)γ

′ ,
Sk(t)

Sk(r)
Ei

〉
dt+

〈
DHi

dt
(r), Hi(r)

〉
=

=

∫ r

0

(
Sk(t)

Sk(r)

)2

(k − 〈R(γ′, Ei)γ
′, Ei〉)dt+

〈
DHi

dt
(r), Hi(r)

〉
and summing over the i = 2, . . . , n, we get

n∑
i=2

I(Hi, Hi) =

∫ r

0

(
Sk(t)

Sk(r)

)2

((n− 1)k − Ric(γ′, γ′))dt+
n∑
i=2

〈
DHi

dt
(r), Hi(r)

〉
.

On the other hand, we may do the same construction for the space form Mn
k , i.e.

consider a normal geodesic γk in Mn
k together with an orthonormal parallel frame {Ek

i }
along it and let Hk

i (t) = Sk(t)
Sk(r)

Ek
i (t). In this case, following our arguments of section 2.4,

we get that Hk
i are Jacobi fields so

λ′(r)

λ(r)
=

n∑
i=2

〈
Hk
i (r),

DHk
i

dt
(r)

〉
=

n∑
i=2

〈
Hi(r),

DHi

dt
(r)

〉
Putting everything together and using the hypothesis we get

λ′(r, θ)

λ(r, θ)
≤ λ′(r)

λ(r)
.

2 Suppose now that KM ≤ k. Denote by Jki the vector field along γk in Mn
k whose

coordinates in the orthonormal frame {Ek
i } are the same as the coordinates of Ji in {Ei}.

Now, by definition

I(Ji, Ji) =

∫ r

0

(〈
DJi
dt

,
DJi
dt

〉
−R(γ′, Ji, γ

′, Ji)

)
dt

and by construction we have 〈Ji, Ji〉 = 〈Jki , Jki 〉 and〈
DJi
dt

(r) ,
DJi
dt

(r)

〉
=

〈
DJki
dt

(r) ,
DJki
dt

(r)

〉
.

Finally, since |γ′| = 1 and Ji is normal, the hypothesis KM ≤ k yields

R(γ′, Ji, γ
′, Ji)

〈Ji, Ji〉
≤ k

thus

I(Ji, Ji) =

∫ r

0

(〈
DJi
dt

,
DJi
dt

〉
−R(γ′, Ji, γ

′, Ji)

)
dt ≥

∫ r

0

(〈
DJi
dt

,
DJi
dt

〉
− k〈Ji, Ji〉

)
dt =

=

∫ r

0

(〈
DJki
dt

,
DJki
dt

〉
− k〈Jki , Jki 〉

)
dt = Ik(J

k
i , J

k
i ) .
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We end as before, the Index lemma yields

I(Ji, Ji) ≥ Ik(J
k
i , J

k
i ) ≥ Ik(H

k
i , H

k
i )

and summing over i = 2, . . . , n we get

λ′(r, θ)

λ(r, θ)
=

n∑
i=2

I(Ji, Ji) ≥
n∑
i=2

I(Hk
i , H

k
i ) =

λ′k(r)

λk(r)

where the equalities follow from equation (2.4). �

With this we now prove the theorem.

Theorem 2.8.2 (Bishop-Gromov-Gunther). If (M, g) is a complete manifold with
Ric ≥ (n− 1)k, and p ∈M is an arbitrary point then the function

r 7→ Vol(Br(p))

Vol(Bk
r )

(2.5)

is a non-increasing function which tends to 1 as r goes to 0, where Bk
r is a geodesic ball

of radius r in the space form Mn
k . In particular, Vol(Br(p)) ≤ Vol(Bk

r ).
If, on the other hand, KM ≤ k and Br(p) does not cut Cut(p), then the preceding

function is non-decreasing and tends to 1 as r goes to 0. In particular, Vol(Br(p)) ≥
Vol(Bk

r ).

Proof 1 Suppose first that Ric ≥ (n − 1)k. Let a(t) =

∫
Sn−1

λ(t, θ)dθ and b(t) =∫
Sn−1 λk(t)dθ. Then Vol(Br(p)) =

∫ r

0

a(t)dt and Vol(Bk
r ) =

∫ r

0

b(t)dt. Hence,

d

dr

(
log

Vol(Br(p))

Vol(Bk
r )

)
=

a(r)∫ r
0
a(t)dt

− b(r)∫ r
0
b(t)dt

=

∫ r
0

(a(r)b(t)− a(t)b(r))dt∫ r
0
a(t)dt

∫ r
0
b(t)dt

.

To prove that the function in the statement is non-increasing, we will prove that its
logarithm is non-increasing. For this, it is enough to see that a(r)b(t) − a(t)b(r) ≤ 0

for t ≤ r, in other words, that
a(r)

b(r)
≤ a(t)

b(t)
for t ≤ r. We will now prove that

a(t)

b(t)
is

non-increasing. Since λk(r) is independent of θ we have,

a(t)

b(t)
=

∫
Sn−1 λ(t, θ)dθ∫
Sn−1 λk(t)dθ

=
1

4π

∫
Sn−1

λ(t, θ)

λk(t)
dθ .

Therefore, it is enough to prove that the function
λ(t, θ)

λk(θ)
is non-increasing in t for any

fixed θ but this follows immediately from the previous lemma. Indeed,

d

dt

(
log

λ(t, θ)

λk(t)

)
=
λ′(t, θ)

λ(t, θ)
− λ′k(t)

λk(t)
≤ 0 .

Note first that if rθ ∈ U(p) then tθ ∈ U(p) for 0 ≤ t ≤ r. On the other hand, if

tθ 6∈ U(p) then we have established that λ(t, θ) = 0 so the function t 7→ λ(t, θ)

λk(t)
≥ 0 is

still non-increasing.
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2 Suppose now that KM ≥ k. The proof is analogous, with the only difference being
that we must restrict the value of r to ensure that Br(p) does not cut Cut(p) so that

t 7→ λ(t, θ)

λk(t)
is non-decreasing.

In both cases, the fact that the function tends to 1 as r → 0+ follows from Theorem
2.7.1. �

If we go over the proof of the lemma, we realise that for Br(p) disjoint of Cut(p),

Vol(Br(p)) = Vol(Bk
r )

if, and only if Br(p) is isometric to Bk
r .

Indeed, if Vol(Br(p)) = Vol(Bk
r ) then Vol(Bt(p)) = Vol(Bk

t ) for all t ∈ [0, r]. But
then, following the proof of the theorem we must have that

λ′(t, θ)

λ(t, θ)
=
λ′k(t)

λk(t)

for any θ ∈ SpM and 0 ≤ t ≤ r. If we now go back to the proof of the lemma we get that
I(Ji, Ji) = I(Hi, Hi) and by the Index Lemma this implies that Ji = Hi. Now, as in the
proof of Proposition 2.6.2 we have

t2gij = 〈Ji, Jj〉 = 〈Hk
i , H

k
j 〉 = t2gkij

and then gij(t, θ) = gkij(t) for 0 < t ≤ r, θ ∈ SpM and also for t = 0 by continuity.
If we identify the ball Br(0) ⊂ TpM and the ball Bk

r (0) ⊂ TpM
n
k for some p ∈ Mn

k it
can be proved that the isometry would be given by expp ◦ exp−1

p : Br(p)→ Bk
r (p).

Similarly,
Vol(Br(p))

Vol(Bk
r )

=
Vol(BR(p))

Vol(Bk
R)

for r < R if, and only if, BR(p) is isometric to Bk
R.

With this remark we may now prove a nice consequence of the theorem.

Theorem 2.8.3 (S.Y. Cheng) Let (M, g) be a complete Riemannian manifold with
Ric ≥ (n − 1)k for some k > 0, and diam(M, g) = π√

k
, then M is isometric to the

standard sphere of radius 1√
k
.

Proof (Shiohama) For simplicity assume k = 1. Then since diam(M, g) = π we have
that Vol(M) = Vol(Bπ(p)).

By the Bishop-Gunther-Gromov theorem, for any p ∈M ,

Vol(Bπ/2(p))

Vol(M)
=

Vol(Bπ/2(p))

Vol(Bπ(p))
≥

Vol(B1
π/2(p))

Vol(B1
π)

=
1

2
.

Now, the manifold is complete with diameter π so we may take p,q ∈ M so that
dist(p, q) = π. Then, by the above inequality we have

Vol(Bπ/2(p)) ≥ 1

2
Vol(M), Vol(Bπ/2(q)) ≥ 1

2
Vol(M) .
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Since d(p, q) = π we have Bπ/2(p)∩Bπ/2(q) = ∅, this yields Vol(Bπ/2(p)) = 1
2
Vol(M) and

Vol(Bπ/2(q)) = 1
2
Vol(M). Then

Vol(Bπ/2(p))

Vol(Bπ(p))
=

Vol(B1
π/2(p))

Vol(B1
π)

=
1

2
,

Vol(Bπ/2(q))

Vol(Bπ(q))
=

Vol(B1
π/2(p))

Vol(B1
π)

=
1

2
.

Then, by the previous comments we have that Bπ/2(p) and Bπ/2(q) are both isometric to
half sphere so M is isometric to Sm. �

There are many other important applications, we will now state one of them. This
result can be proved in a few lines using the Bishop-Gunther-Gromov inequality. It gives
a lower bound for the volume growth.

Theorem 2.8.4 (Calabi-Yau) Let (M, g) be a complete non-compact Riemannian
manifold with Ric ≥ 0. Then there exists a positive constant c depending only on p
and the dimension n so that

Vol(Br(p)) ≥ cr

for any r > 2.

2.9 Gromov’s precompactness theorem

We now prove one of the main theorems in this essay.

Theorem 2.9.1 For any n ∈ N, k ∈ R and D > 0, the class of all n-dimensional
Riemannian manifolds with diameter ≤ D and Ricci curvature ≥ (n−1)k is pre-compact
in the Gromov-Hausdorff topology.

Proof Choose a maximal set of points x1, . . . , xN ∈M with d(xi, xj) ≥ ε. Then Bε(xi),
i = 1, . . . , N , covers M , so N(ε) ≤ N . As before, N(ε) denotes the minimum number of
points we need in order to build an ε-net in X. Since (M, g) is equal to any geodesic ball
of radius D, by the Gromov-Bishop theorem

Vol(M)

Vol(Bε/2(xi)
≤
∫ D

0
(sinh(

√
|k|t))n−1dt∫ ε/2

0
(sinh(

√
|k|t))n−1dt

≤ Cε−n

for all ε ≤ D and some C = C(k,D). Therefore, we get an estimate of type N(ε) ≤
C(k,D)ε−n, with an explicit function C of k and D. Indeed, N ·min{Vol(Bε/2(xi)) | i =
1, . . . , N} ≤ Vol(M), because the balls Bε/2(xi) are disjoint. Theorem 1.2.7 then gives
the result. �

The same result is true with the measured Gromov-Hausdorff topology and is obtained
similarly using Theorem 1.3.2.

Corollary 2.9.2 Let K ∈ R, n ∈ (1,∞] and D ∈ (0,+∞). LetM(n,K,D) be the set
of Riemannian manifolds (M, g) such that dim(M) ≤ n, RicM ≥ Kg and diam(M) ≤ D,
equipped with their geodesic distance and their volume measure. Then M(n,K,D) is
precompact in the measured Gromov-Hausdorff topology.
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2.9.1 Ricci limits

Let M denote the set of compact metric spaces (modulo isometry) with the Gromov-
Hausdorff topology. The limit points in M of the subset M(n,K,D) will be metric
spaces of Hausdorff dimension at most n ([15], Theorem A), but they are not generally
manifolds. However, one would like to say that in some generalized sense they do have
Ricci curvature bounded below by K, this is what will be studied in the last chapter.
The structure of such limit points, which are called Ricci limits, was studied by Cheeger
and Colding [[6],[7],[8]].

Remark 2.9.3 A limit of n-dimensional spaces may have dimension strictly less than
n. For example, for every compact non negatively curved space X rescaled spaces {λX}
are non negatively curved and converge to a point as λ → 0. It is possible to make
the dimension drop in the limit keeping both lower and upper curvature bounds. For
example, ‘thin’ flat tori S1 × (λS1) converge to the circle as λ→ 0.

2.10 Generalised Ricci tensor

The necessity for a modified Ricci tensor appears when we consider a reference measure
ν(dx) = e−ψ(x)vol(dx) different from the volume measure. Indeed, the Jacobian deter-
minants (regarded as the limit of the relative change in volume) are affected. Then,
since Ricci curvature can be defined in terms of the the Jacobian of the exponential map,
the change of reference measure makes the Ricci curvature estimates lose their meaning.
This means that we must change the definition of Ricci tensor to take the new reference
measure into account. However, this may affect the dependence of estimates on the di-
mension, so we must also introduce an ‘effective dimension’ N , which may be larger then
the dimension n of the manifold. If ψ is constant, i.e., if ν = dvolM

vol(M)
, then we take the

usual Ricci tensor Ric. For general ψ, a modified Ricci tensor

Ric∞ = Ric + Hess(ψ)

was introduced by Bakry and Émery [2]. Moreover, if N ∈ (n,∞) then put

RicN = Ric + Hess(ψ)− 1

N − n
dψ ⊗ dψ,

where dim(M) = n. In general we have:

Definition 2.10.1 Let (M, g, ν) be a Riemannian manifold with a given reference
measure ν. For N ∈ [1,∞], define the N -Ricci tensor RicN of (M, g, ν) by

RicN =


Ric + Hess(ψ) if N =∞,
Ric + Hess(ψ)− 1

N−ndψ ⊗ dψ if n < N <∞,
Ric + Hess(ψ)−∞(dψ ⊗ dψ) if N = n,

−∞ if N < n,

where ν(dx) = e−ψ(x)vol(dx) and by convention ∞ · 0 = 0.

If (M,d, ν) satisfies RicN ≥ K then M is said to satisfy the CD(K,N) curvature-
dimension bound.

We now give the one-dimensional CD(K,N) model spaces.
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Example 2.10.2 1. For K > 0 and 1 < N <∞, consider

M =

(
−
√
N − 1

K

π

2
,

√
N − 1

K

π

2

)
⊂ R,

equipped with the usual distance on R, and the reference measure

ν(dx) = cosN−1

(√
K

N − 1
x

)
dx;

then M satisfies CD(K,N).

2. For K < 0, 1 ≤ N <∞, the same is true if M = R and

ν(dx) = coshN−1

(√
|K|
N − 1

x

)
dx.

3. For N ∈ [1,∞), M = (0,+∞) with the reference measure ν(dx) = xN−1dx, gives
an example of CD(0, N) space.

4. For any K ∈ R, take M = R and equip it with the reference measure

ν(dx) = e−
Kx2

2 dx

then M satisfies CD(K,∞).
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Chapter 3

Optimal transport

3.1 Introduction

The optimal transportation problem arises, for example, when one considers the problem
of moving a pile of sand in order to completely fill up a hole. In this context, we would
obviously ask for both the pile and the hole to have the same total volume, so that all the
sand is used to fill up the hole. With this in mind, we may model (after normalizing) both
the pile and the hole by Borel probability measure spaces (X,µ) and (Y, ν) respectively,
such that for any measurable A ⊂ X, µ(A) measures the volume of sand on A, and for
any measurable B ⊂ Y , ν(B) measures how much sand can be piled on B.

This transportation of sand has a cost, which depends on how it is done. We will
model the effort required to move the sand around by a cost function, which we assume
to be measurable and non-negative, c : X × Y → R+ ∪ {∞}. In some sense, c(x, y)
measures the cost of moving one unit of mass from location x to location y.

The question that arises is, how do we realize the transportation at minimal cost?

3.1.1 Kantorovich’s problem

Before answering this question we need to give a definition of transference plan, which
tells us how the sand is being moved. We model transference plans by Borel probability
measures π on the product space X × Y . Informally, dπ(x, y) measures the amount of
mass transported from location x to location y. So, for a transference plan π ∈ P (X×Y )
to go along with our model, we must have

π[A× Y ] = µ[A], π[X ×B] = ν[B] (3.1)

for all measurable subsets A of X and B of Y . This ensures that all the sand on A is
moved to somewhere on Y , while B receives all the sand it can. We denote by Π(µ, ν)
the set of all Borel probability measures on X × Y satisfying this condition. This set is
non-empty, since the tensor product µ⊗ν lies in it, and it can easily be seen to be convex.
Furthermore, π ∈ Π(µ, ν) if and only if it is a non-negative measure on X ×Y such that,
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for all measurable functions (ϕ, ψ) ∈ L1(dµ)×L1(dν), or equivalently L∞(dµ)×L∞(dν),∫
X×Y

[ϕ(x) + ψ(y)]dπ(x, y) =

∫
X

ϕdµ+

∫
Y

ψdν.1

We may use a narrower class of test functions under some topological assumptions:

1. When X and Y are Polish spaces (complete separable metric spaces), and µ, ν
are Borel probability measures, it is sufficient to consider (ϕ, ψ) ∈ Cb(X) × Cb(Y )
only. This follows from the fact that Borel probability measures on Polish spaces
are regular, thus we may build the usual bump functions and approximate simple
functions by continuous bounded ones.

2. If in addition X and Y are locally compact, then we can require (3.2) for (ϕ, ψ) ∈
C0(X)× C0(Y ).

From now on P (X) will stand for the set of Borel probability measures on X, and
Π(µ, ν) will be the set of all Borel probability measures on X × Y satisfying (3.1).

Definition 3.1.1 Kantorovich’s optimal transportation problem consists in minimiz-
ing the linear functional

π 7−→ I[π] =

∫
X×Y

c(x, y)dπ(x, y)

on Π(µ, ν). For a given transportation cost π, the quantity I[π] is called the total
transportation cost associated to π.

Any minimizer for this variational problem is called an optimal transference plan.

Example 3.1.2 Assume that ν is a Dirac mass: ν = δa. Then there is a unique
element in Π(µ, ν), and

inf I[π] =

∫
X

c(x, a)dµ(x).

1Indeed, if π ∈ Π(µ, ν) then, for any measurable sets A ⊂ X and B ⊂ Y we have∫
X×Y

[χA(x) + χB(y)]dπ(x, y) =

∫
X×Y

χA(x)dπ(x, y) +

∫
X×Y

χB(y)dπ(x, y)

=

∫
X×Y

χA×Y (x, y)dπ(x, y) +

∫
X×Y

χX×B(x, y)dπ(x, y)

= π[A× Y ] + π[X ×B] = µ[A] + ν[B]

=

∫
X

χA(x)dµ(x) +

∫
Y

χB(y)dν(y).

The general case now follows by the density of simple functions in L1 or L∞. To prove that π is non-
negative we first prove (easily) that π is non-negative on sets of type A×B, and then, since this kind of
sets form a basis of open sets in X × Y , we deduce that the same is true for any Borel set.

The reciprocal follows similarly.
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3.1.2 Monge’s problem.

Although we have started with Kantorovich’s problem, this problem is a relaxed version
of the original mass transportation problem considered by Monge. Monge considered the
same problem but, in order to move the sand around, he only accepted transference plans
which took all the mass on a location x to a destination y, i.e. the mass could not be
split. We are therefore asking for π to have the special form

dπ(x, y) = dπT (x, y) = dµ(x)δ [y = T (x)] ,

where T is a measurable map X → Y . In other words,

π = (Id× T )#µ.

This is the probability measure on X × Y satisfying:∫
X×Y

ζ(x, y)dπT (x, y) =

∫
X

ζ(x, T (x))dµ(x)

for every measurable function ζ on X × Y . Consequently,

I[πT ] =

∫
X

c(x, T (x))dµ(x).

Condition (3.2) is now∫
X

[ϕ(x) +ψ ◦ T (x)]dµ(x) =

∫
X

ϕ(x)dµ(x) +

∫
Y

ψ(y)dν(y) =⇒
∫
X

(ψ ◦ T )dµ =

∫
Y

ψdν

for all ψ ∈ L1(dν), or ψ ∈ L∞(dν). With this we mean that for all ψ ∈ L1(dν),
the measurable function ψ ◦ T should lie in L1(dµ), and the preceding integrals should
coincide.

This condition for π ∈ Π(µ, ν) is equivalent to

ν[B] = µ[T−1(B)], ∀ measurable B ⊂ Y.

If these equivalent conditions are satisfied then we say that ν is the push-forward of µ
by T (or that T transports µ onto ν) and we write ν = T#µ. Then

Definition 3.1.3 Monge’s optimal transportation problem consists in minimizing the
linear functional

T 7−→ I[T ] =

∫
X

c(x, T (x))dµ(x)

over the set of all measurable maps T such that T#µ = ν.

3.1.3 d2/2-concave functions

A function ϕ : X → [−∞,∞) is d2

2
-concave if it is not identically −∞ and it can be

written in the form

ϕ(x) = inf
x′∈X

(
d(x, x′)2

2
− ϕ̃(x′)

)
for some function ϕ̃ : X → [−∞,∞). Such functions play an important role in the
description of optimal transport on Riemannian manifolds.
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3.2 Optimal transport on Riemannian manifolds

Optimal transport with a quadratic cost (i.e. square of the distance) in Rn has been
thoroughly studied, good references are [25] and [26]. In this context, optimal transport
is very well understood and optimal transference plans have been characterised in terms
of convex functions. Under some extra conditions on the measures, it has been proved
that the transference plans are unique and correspond to Monge transports.

Namely, given µ0, µ1 ∈ P (Rn) which are compactly supported and absolutely continu-
ous with respect to Lebesgue measure, it was proved by Brenier [4] and Rachev-Rüschen-
dorf [22] that there is a unique optimal transference plan between µ0 and µ1, which is
a Monge transport. Moreover, there is a convex function ϕ on Rn such that for almost
all x, the Monge transport is given by the gradient of ϕ. Therefore, finding a convex
function ϕ such that the push-forward, under the map ∇ϕ : Rn → Rn, sends µ0 to µ1

gives us the optimal transport.
However, it is not easy to extend these results to Riemannian manifolds. In [20], Mc-

Cann achieved the desired extension by noticing that, on Rn, we may write ∇ϕ = x−∇φ,

where φ(x) = |x|2
2
− ϕ(x). McCann then proved that, on a Riemannian manifold (M, g),

an optimal transference plan between two compactly supported absolutely continuous
measures is a Monge transport F that satisfies F (m) = expm(−∇mφ) for almost all m.
Here φ is d2

2
-concave, that is, it can be written in the form

φ(m) = inf
m′∈M

(
d(m,m′)2

2
− φ̃(m′)

)
for some function φ̃ : M → [−∞,∞).

3.3 Wassertian distance

Optimal transport can be used to produce a useful metric on P (X). Indeed, using a
quadratic cost function, and given µ0, µ1 ∈ P (X), we consider the variational problem

W2(µ0, µ1)2 = inf
π∈Π(µ0,µ1)

∫
X×X

d(x0, x1)2dπ(x0, x1).

We will now prove that there always exists at least one optimal transference plan so we
may replace the infimum by a minimum.

Theorem 3.3.1 Let X be a Polish space and µ0, µ1 ∈ P (X) Borel probability mea-
sures on X. The minimization problem inf{I[π] : π ∈ Π(µ0, µ1)} admits a minimizer.

Proof Since we may always obtain a transference plan given by the tensor product
µ0 ⊗ µ1 of the initial measures, Π(µ0, µ1) is non-empty. The key point is that Π(µ0, µ1)
is compact for the weak topology of probability measures 2. Indeed, following Ulam’s
lemma 3 we get that µ0 and µ1 are tight thus, given δ > 0, we may take compact subsets
K ⊂ X, L ⊂ Y such that

µ0[X \K] ≤ δ, µ1[Y \ L] ≤ δ.

2The topology induced by Cb(Rn × Rn).
3 Ulam’s lemma [3]: A probability measure µ on a Polish space X is tight, which means that for

any ε > 0 there exists a compact Kε such that µ[X \Kε] ≤ ε.
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Then, for any π ∈ Π(µ0, µ1),

π[(X × Y ) \ (K × L)] ≤ π[(X \K)× L] + π[X × (Y \ L)] = µ0[X \K] + µ1[Y \ L] ≤ 2δ.

This proves that the set Π(µ0, µ1) is tight, and then Prokhorov’s theorem 4 gives that
Π(µ0, µ1) is precompact with respect to the weak topology . But the conditions which
define Π(µ0, µ1) are continuous with respect to the weak topology so Π(µ0, µ1) is weakly
closed and therefore compact.

We now prove that there exists a minimizer for I. Let (πk)k∈N be a sequence of
probability measures on X × X such that

∫
cdπk converges to the infimum cost. Since

we have just proved that Π(µ0, µ1) is weakly compact, we may extract a subsequence,
that converges to some π ∈ Π(µ0, µ1). For simplicity of notation we continue denoting
this subsequence by (πk)k∈N. Write the cost function c(x, y) = d(x, y)2 as the supremum
of a non-decreasing sequence (cl)l∈N of bounded continuous functions. By using the
monotone convergence theorem, the fact that π is the limit point, the inequality cl ≤ c
and the minimizing property of (πk), we obtain∫

c(x, y)dπ(x, y) = lim
l→∞

∫
cl(x, y)dπ(x, y)

= lim
l→∞

lim
k→∞

∫
cl(x, y)dπk(x, y)

≤ lim inf
k→∞

∫
c(x, y)dπk(x, y) = inf I.

This shows that π is a minimizer of I. �

Definition 3.3.2 The quantity W2 will be called the Wassertian distance of order 2
between µ0 and µ1.

When X is compact the Wassertian distance defines a metric on P (X) 5 and induces
the weak-? topology on P (X) ([25], Ths. 7.3 and 7.12). We denote P (X) equipped with
the metric W2 by P2(X). If X is compact then so is P2(X), thus to each compact metric
space X we have assigned another compact metric space P2(X).

Remark 3.3.3 In general, given (X, d) a Polish metric space, and p ∈ [1,∞), for any
two probability measures µ0, µ1 on X, the Wassertian distance of order p between µ0 and
µ1 is defined by the formula

Wp(µ0, µ1) =

(
inf

π∈Π(µ0,µ1)

∫
X

d(x, y)pdπ(x, y)

)1/p

.

So, why are Wassertian distances useful? One reason is that the definition makes them
work well in problems where optimal transport is being used. Furthermore, since they

4Prokhorov’s theorem [3]: If X is a Polish space, then a set P ⊂ P (X) is precompact for the weak
topology if and only if it is tight, i.e. for any ε > 0 there is a compact set Kε such that µ[X \Kε] ≤ ε
for all µ ∈ P.

5Since X has finite diameter, the infimum is obviously finite. If X is a Polish space, the Wassertian
distance defines a metric on P2(X) which is the subset of P (X) formed by measures with finite second
order moments. This restriction is done because W2 takes finite values on P2(X) × P2(X). In our case
P2(X) = P (X).
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are defined as an infimum, they are easy to bound from above. Indeed, any admissible
transference plan between µ0 and µ1 will give us a bound on the distance between µ0 and
µ1. In addition, there is an isometric embedding X → P2(X) given by x → δx. Indeed,
W2(δx, δy) = d(x, y) (in fact, Wp(δx, δy) = d(x, y) for all p ∈ [1,∞)). This shows that
diam(P2(X)) ≥ diam(X). But the reverse inequality follows from the definition of W2,
thus diam(P2(X)) = diam(X).
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Chapter 4

Wassertian space

This section is devoted to the study of the Wassertian space P2(X) associated to a
compact length space (X, d). We will show that P2(X) is again a length space, and
characterise its geodesics.

4.1 Displacement interpolations

A transference plan tells us how much mass is moved from one point to another, but it
does not specify the path followed for this transportation. This information is given by
a dynamical transference plan.

Before defining this notion we give some notation. The space of Lipschitz continuous
maps c : [0, 1]→ X with the uniform topology is denoted by Lip([0, 1], X). Furthermore,
for any k > 0,

Lipk([0, 1], X) = {c ∈ Lip([0, 1], X) | d(c(t), c(t′)) ≤ k|t− t′| for all t, t′ ∈ [0, 1]} .

Then Lipk([0, 1]) is a compact subset of Lip([0, 1], X), this follows from a Cantor diagonal
procedure and the following proposition:

Proposition 4.1.1 Let X be a metric space and X ′ a dense subset of X. Let Y be a
complete space and f : X ′ → Y a Lipschitz map. Then there exists a unique continuous
map f : X → Y such that f �X′= f . Moreover f is Lipschitz and dilf = dilf .

We denote the set of minimizing, constant speed geodesics on X, γ : [0, 1] → X, by
Γ. This is a closed subspace 1 of Lipdiam(X)([0, 1], X), defined by the equation L(c) =
d(c(0), c(1)), and is therefore compact.

An evaluation map tells us where has the geodesic arrived on time t and the endpoints
map gives us the initial and final points of a geodesic.

Definition 4.1.2 For any t ∈ [0, 1], the map et : Γ→ X defined by

et(γ) = γ(t)

is an evaluation map and it is continuous. We define the endpoints map E : Γ→ X ×X
by

E(γ) = (e0(γ), e1(γ)) .

It follows that E is also continuous.
1This follows from the fact that the length of continuous curves is lower semicontinuous ([5], Propo-

sition 2.3.4).
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We are now in place to define a dynamical transference plan.

Definition 4.1.3 A dynamical transference plan consists of a transference plan π
and a Borel measure Π on Γ such that E?Π = π. It is said to be optimal if π is.

It seems obvious that the movement of mass in an optimal transference plan must
occur along geodesics, since these are the shortest paths. However, there can be more
than one geodesic between a pair of points so the transport may be divided among them.
Informally, if Π gives mass to a certain geodesic we are saying that this geodesic is being
used for the transport and how much of the mass flows through that particular one.

We will now see how these dynamical transference plans give us the geodesics in the
Wassertian space P2(X).

Definition 4.1.4 If Π is an optimal dynamical transference plan then for t ∈ [0, 1],
put

µt = (et)?Π .

Then the one-parameter family of measures {µt}t∈[0,1] is called a displacement interpola-
tion.

Intuitively, µt is what has become of the mass of µ0 after it has travelled from time 0
to time t according to the dynamical transference plan Π.

Lemma 4.1.5 The map c : [0, 1] → P2(X) given by c(t) = µt has length L(c) =
W2(µ0, µ1).

Proof Given 0 ≤ t ≤ t′ ≤ 1, since

(p0)?[(et, et′)?Π] = (p0 ◦ (et, et′))?Π = (et)?Π = µt

(p1)?[(et, et′)?Π] = (p1 ◦ (et, et′))?Π = (et′)?Π = µt′

we have that (et, et′)?Π is a particular transference plan from µt to µt′ . Therefore,

W2(µt, µt′)
2 ≤

∫
X×X

d(x0, x1)2d((et, et′)?Π)(x0, x1) =

∫
Γ

d(γ(t), γ(t′))2dΠ(γ)

=

∫
Γ

(t′ − t)2L(γ)2dΠ(γ) = (t′ − t)2

∫
Γ

d(γ(0), γ(1))2dΠ(γ)

= (t′ − t)2

∫
X×X

d(x0, x1)2(dE?Π)(x0, x1) = (t′ − t)2W2(µ0, µ1)2 .

Consequently, L(c) ≤ W2(µ0, µ1) 2, and so L(c) = W2(µ0, µ1) 3. �

With this in mind, the following proposition proves that the Wassertian space of a
compact length space is itself a compact length space.

2If γ is a curve in a metric space X, meaning that γ : [0, 1]→ X is a continuous map, then its length
is

L(γ) = sup
J∈N

sup
0=t0≤t1≤···≤tJ=1

J∑
j=1

d(γ(tj−1), γ(tj)).

3Clearly L(c) ≥W2(µ0, µ1).
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Proposition 4.1.6 Let (X, d) be a compact length space. Then any two points µ0,
µ1 ∈ P2(X) can be joined by a displacement interpolation.

To prove this result we will use the following result ([28], Corollary A.6).

Proposition 4.1.7 Suppose that X, Y are metrizable by complete separable metrics.
Let f : X → Y be a Borel map such that for each y ∈ Y , f−1(y) is a countable union of
compact sets. Then f(X) is Borel and there is a Borel section f(X)→ X of f .

Proof (of Proposition 4.1.6) The endpoints map is Borel, in fact, we mentioned before
that it is continuous. Furthermore, since X is a compact length space every pair of points
can be connected by a minimizing geodesic 4, this is equivalent to E being surjective.
Now, given (x0, x1) ∈ X × X, the Arzela-Ascoli Theorem 5 tells us that E−1(x0, x1) is
sequentially compact and hence compact. Then the previous proposition gives us the
existence of a Borel map S : X × X → Γ so that E ◦ S = IdX×X . The map S gives a
way of joining points by minimizing geodesics in a measurable manner. Finally, given
µ0, µ1 ∈ P2(X), let π be an optimal transference plan between µ0 and µ1, and take
Π = S?(π). The corresponding displacement interpolation joins µ0 to µ1. Indeed,

(p0)?(E?(Π)) = (p0)?(E?(S?(π))) = (p0)?((S ◦ E)?(π)) = (p0)?π = µ0

and, similarly, (p0)?(E?(Π)) = µ1. �

Corollary 4.1.8 If X is a compact length space then P2(X) is a compact length space.

Proof We have mentioned before that P2(X) is compact. Now, given µ0, µ1 ∈ P2(X),
Proposition 4.1.6 gives a displacement interpolation from µ0 to µ1 but, following Lemma
4.1.5, this path has precisely length W2(µ0, µ1). �

Furthermore, every Wassertian geodesic arises from a displacement interpolation.

Proposition 4.1.9 ([16], Proposition 2.10) Let (X, d) be a compact length space
and let {µt}t∈[0,1] be a geodesic path in P2(X). Then there exists some optimal dynamical
transference plan Π such that {µt}t∈[0,1] is the displacement interpolation associated to Π.

Between two points in P2(X) there may exist an infinity of Wassertian geodesics. The
following is an example of this.

Example 4.1.10 Let X = A ∪ B ∪ C, where A, B and C are subsets of the plane
defined as

A = {(x1, 0) : −2 ≤ x2 ≤ −1}
B = {(x1, x2) : x2

1 + x2
2 = 1}

C = {(x1, 0) : 1 ≤ x2 ≤ 2}

4([5], Theorem 2.5.23) Let (X, d) be a complete locally compact length space. Then this space is
strictly intrinsic.

5([5], Theorem 2.5.14) In a compact metric space, any sequence of curves with uniformly bounded
lengths contains a uniformly converging subsequence.
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Take µ0 the one-dimensional Hausdorff measure of A and µ1 be the one-dimensional
Hausdorff measure of C. Then there is an uncountable number of Wassertian geodesics
from µ0 to µ1, determined by whether each piece of the mass is taken along the top or
bottom semicircumference.

4.1.1 Riemannian case

In the Riemannian case, given µ0, µ1 ∈ P2(M) which are absolutely continuous with
respect to the Riemannian volume measure dvolM , there is a unique Wasserstein geodesic
c joining µ0 to µ1 ([20], Th. 9). In addition, for each t ∈ [0, 1], c(t) is absolutely
continuous with respect to dvolM ([9], Prop. 5.4). Consequently, the space P ac

2 (M) of
Borel probability measures on M that are absolutely continuous with respect to dvolM ,
considered with the metric W2, is a length space and it is a totally convex subset of
P2(M).

On the other hand, if µ0 = δm0 and µ1 = δm1 then some Wassertian geodesics from
µ0 to µ1 are of the form µt = δc(t), where c is a minimizing geodesic from m0 to m1.
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Chapter 5

Ricci curvature for metric-measure
spaces via optimal transport

Finally, in this chapter we will define the notion given by Lott and Villani in [16] of
a measured length space X having non-negative N -Ricci curvature, for N ∈ [1,∞), or
having ∞-Ricci curvature bounded below by K, for K ∈ R. Lately, the terminology has
changed, and it is said that X satisfies the weak CD(0, N) and CD(K,∞) condition, re-
spectively. The definitions are in terms of the displacement convexity of certain functions
on the Wassertian space P2(X).

For motivation we remind a similar notion which has proved useful in generalising
results in Riemannian geometry. Namely, the definition given by Alexandrov of a length
space having ‘curvature bounded below by K’, with K a real number. In [5], Chapter
10, we find a good introduction to this theory. The definition is given in terms of the
geodesic triangles in X and, in the case of a Riemannian manifold M with the induced
length structure, we recover the Riemannian notion of having sectional curvature bounded
below by K. It is important to remark that length spaces with Alexandrov curvature
bounded below by K form a closed set with respect to the Gromov-Hausdorff topology
on compact metric spaces.

Then, a natural question is whether one can find a notion of ‘Ricci curvature bounded
below’ for length spaces. Some of the attempts to define such a notion have made it clear
that it is important to consider a measure on the metric spaces, i.e. the definition must be
formulated for metric spaces where a reference non negative measure is also given. This
was not obvious, mainly because in the Riemannian case the necessity for the measure is
hidden, as a natural reference measure is already given by the volume measure. We will
now give some of the reasons which made clear this need for a reference measure.

A first one is the fact that in most of the inequalities where the Ricci curvature
appears, the reference measure also appears. We mention the following inequalities,
which are given for Riemannian manifolds with Ricci curvature bounded below, as an
example.

1. Brunn-Minkowsky. Suppose that M has non negative Ricci curvature, and for
any A0, A1 ⊂M compact, let

At := {γ(t) : γ is a constant speed geodesic such that γ0 ∈ A0, γ1 ∈ A1} , ∀t ∈ [0, 1].

Then it holds

(Vol(At))
1/n ≥ (1− t)(Vol(A0))1/n + t(Vol(A1))1/n, ∀t ∈ [0, 1], (5.1)
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where n is the dimension of M .

2. Bishop-Gromov Theorem 2.8.2

A second hint that suggests the need of a reference measure comes from studying stability
issues. Suppose that we have a sequence (Mn, gn) of Riemannian manifolds with Ricci
curvature uniformly bounded below by some K ∈ R. If this sequence converges to another
Riemannian manifold (M, g) in the Gromov-Hausdorff topology, does (M, g) have Ricci
curvature bounded below by K? The answer is no. However, one can see that when
Ricci bounds are not preserved upon the limiting process, then the the volume measures
of the (Mn, gn) do not converge to the volume measure of (M, g). We remark that the
same question has a positive answer when considering sectional curvature instead of Ricci
curvature.

Furthermore, the definition of ‘Ricci curvature bounded below’ for length spaces has
another element: an N ∈ [1,∞] which plays the role of the dimension of X. The necessity
for this ‘synthetic’ dimension can be seen in the Brunn-Minkowski and the Bishop-Gromov
inequalities above. Indeed, both of them require the dimension of the manifold to be
known, and not just that its Ricci curvature is bounded from below. For example, the
Bishop-Gromov inequality says that r−nvol(Br(m)) is non-increasing in r, where Br(m)
is the r-ball centered at m and n is the dimension of M . If we want to reproduce Bishop-
Gromov type inequalities (or derive other useful analytic/geometric consequences) for
length spaces, we will therefore need an N doing the job of the dimension. In conclusion,
the notion we are looking for will be that of (X, d, ν) having ‘N -Ricci curvature bounded
below by K’. Since there is no a priori N , this notion will be considered for each N ∈
[1,∞].

The following are some of the properties we expect from the definition:

1. Intrinsicness. We want the definition to be intrinsic, meaning that it is based
only on properties of the space itself. This discards the possibility of saying that
(X, d, ν) has ‘Ricci curvature bounded below by K’ if and only if it is a measured
Gromov-Hausdorff limit of Riemannian manifolds with Ric ≥ Kg.

2. Compatibility. If the metric-measure space is a Riemannian manifold with the
canonical volume measure, then the definition must coincide with the usual notion
of Ricci curvature bounded below.

3. Stability. The curvature bounds are stable under measured Gromov-Hausdorff
limits.

4. Interest. Geometrical and analytical consequences on a space can be derived from
the curvature-dimension condition.

The idea then is to find some property which we know holds for N -dimensional Rie-
mannian manifolds with Ricci curvature bounded below, and turn it into a definition
for measured length spaces. One could attempt to use the Bishop-Gromov inequality, at
least if N < ∞, for example to say that (X, d, ν) has ‘non-negative N -Ricci curvature’
if and only if for each x ∈ supp(ν), r−Nν(Br(x)) is non-increasing in r. However, it has
been observed ([17], Remark 4.9) that this is not satisfactory.

The definition given in [16] comes from a different field, a branch of applied mathe-
matics: optimal transport. The motivation for this comes from work of Otto-Villani [21]

Página 40 Curso 2014-2015. Ricci curvature via optimal transport



Universidad Autónoma de Madrid Marcos Solera Diana

and Cordero-Erausquin-McCann-Schmuckenschläger [9], who showed that optimal trans-
port on a Riemannian manifold is affected by the Ricci tensor. Indeed, they proved the
convexity of certain functions on P (M) when M has dimension n and non-negative Ricci
curvature. Let’s take a closer look at this. Suppose that A : [0,∞)→ R is a continuous
convex function with A(0) = 0 such that λ→ λnA(λ− n) is a convex function on R+. If
µ = ρ dvolM

vol(M)
is an absolutely continuous probability measure then put

HA(µ) =

∫
M

A(ρ)
dvolM
vol(M)

.

The statement is that, under the assumption of non-negative Ricci curvature, if µ0,
µ1 ∈ P (M) are absolutely continuous, and {µt}t∈[0,1] is the unique Wasserstein geodesic
between them, then HA(µt) is convex in t. In addition, von Renesse and Sturm [23]
extended the work of Cordero-Erausquin-McCann-Schmuckenschläger to show that the
function H∞, defined by

H∞

(
ρ
dvolM
vol(M)

)
=

∫
M

ρ log ρ
dvolM
vol(M)

,

is K-convex along Wasserstein geodesics between absolutely-continuous measures if and

only if Ric ≥ Kg. Note that the functional H∞

(
ρ dvolM

vol(M)

)
is minimized, among absolutely

continuous probability measures on M , when ρ = 1. Therefore, we can say that H∞
measures the non-uniformity of µ with respect to dvolM

vol(M)
.

Example 5.0.11 Take M = S2. Let µ0 and µ1 be two small balls of the same
radius, centered at the north and south poles respectively. Then U∞(µ0) = U∞(µ1). The
Wasserstein geodesic from µ0 to µ1 takes the ball µ0 and pushes it down in some way
until it becomes µ1. Along this transformation, say at time t = 1/2, the ball has spread
out to form a ring. When it spreads, it becomes more uniform with respect to dvolM

vol(M)
.

Consequently, the non-uniformity at an intermediate time is at most that at times t = 0 or
t = 1. This can be seen as a consequence of the convexity of H∞(µt) in t, i.e., for t ∈ [0, 1]
we have H∞(µt) ≤ H∞(µ0) = H∞(µ1). One may then see the displacement convexity
of H∞ as an averaged form of the focusing property of positive curvature. However,
this example does not indicate why Ricci curvature is the relevant one, instead of some
other curvature, but it gives an indication of why curvature is related to displacement
convexity.

Then, the idea, used independently by Lott-Villani and Sturm, is to define the prop-
erty ‘N -Ricci curvature bounded below by K’, for a measured length space (X, d, ν), in
terms of the convexity of certain entropy functionals along optimal transport paths in
the space P (X).

5.1 Functionals on the Wassertian space

In this section we will study certain functionals on the Wassertian space P2(X). For this,
we will define the notion of λ-displacement convexity, and some variants. As always,
by measured length space we mean a triple (X, d, ν), where (X, d) is a compact length
space and ν is a Borel probability measure on X. Given U : [0,∞) → R a convex lower
semicontinuous function, we write U ′(∞) = limr→∞ U

′
+(r).
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Definition 5.1.1 Define

P2(X, ν) = {µ ∈ P2(X) : supp(µ) ⊂ supp(ν)}

and P ac
2 (X, ν) the elements of P2(X, ν) that are absolutely continuous with respect to ν.

Definition 5.1.2 Let (X, d, ν) be a measured length space and let U be a continuous
convex function on [0,∞) with U(0) = 0. We define the functional Uν : P2(X)→ R∪{∞}
by

Uν(µ) =

∫
X

U(ρ(x))dν(x) + U ′(∞)µs(X),

where
µ = ρν + µs

is the Lebesgue decomposition of µ with respect to ν into an absolutely continuous part
ρν and a singular part µs.

Note that if U ′(∞) =∞, then finiteness of Uν(µ) implies that µ is absolutely contin-
uous with respect to ν. We will now prove that, as a function of µ, Uν is minimized at
ν.

Lemma 5.1.3 Let U be a continuous convex function on [0,∞) with U(0) = 0.

Uν(µ) ≥ Uν(ν) = U(1).

If µ is absolutely continuous with respect to ν then this is just Jensen’s inequality∫
X

U(ρ(x))dν(x) ≥ U

(∫
X

ρ(x)dν(x)

)
.

Proof Since U is convex, for any α ∈ (0, 1) we have

U(αr + 1− α) ≤ αU(r) + (1− α)U(1),

so

U(r)− U(1) ≥ U(αr + 1− α)− U(1)

α
.

We take ρ as in the previous definition. Then∫
X

U(ρ)dν − U(1) ≥
∫
X

U(αρ+ 1− α)− U(1)

αρ− α
(ρ− 1)dν (5.2)

where we take the integrand of the right-hand-side to vanish whenever ρ(x) = 1. We
separate the right-hand-side of (5.2) according to whether ρ(x) ≤ 1 or ρ(x) > 1. Now,
since U is convex, it admits both left and right derivatives and they are non-decreasing.
We write U ′(∞) = limr→∞ U

′
+(r) ∈ R ∪ {∞}. Moreover, the convexity of U implies

that there exists ε > 0 such that U is monotone both in (1− ε, 1) and (1, 1 + ε). Then,
following the monotone convergence theorem, for ρ ≤ 1 we have

lim
α→0+

∫
X

U(αρ+ 1− α)− U(1)

αρ− α
(ρ− 1)χρ≤1dν = U ′−(1)

∫
X

(ρ− 1)χρ≤1dν,
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while for ρ > 1 we have

lim
α→0+

∫
X

U(αρ+ 1− α)− U(1)

αρ− α
(ρ− 1)χρ>1dν = U ′+(1)

∫
X

(ρ− 1)χρ>1dν.

∫
X

U(ρ)dν − U(1) ≥ U ′−(1)

∫
X

(ρ− 1)dν + (U ′+(1)− U ′−(1))

∫
X

(ρ− 1)χρ>1dν

≥ U ′−(1)

∫
X

(ρ− 1)dν ≥ U ′(∞)

∫
X

(ρ− 1)dν

= −U ′(∞)µs(X)

where the last step follows from the fact that µ = ρν+µs and both µ and ν are probability
measures. Since Uν(ν) = U(1), we get the result. �

We go on with the first notion which will play an important role in the definition of
Ricci curvature on an abstract length space.

Definition 5.1.4 Given a compact measured length space (X, d, ν) and a number
λ ∈ R, we say that Uν is

1. λ-displacement convex if for all Wassertian geodesics {µt}t∈[0,1] with µ0, µ1 ∈
P2(X, ν), we have

Uν(µt) ≤ tUν(µ1) + (1− t)Uν(µ0)− 1

2
λt(1− t)W2(µ0, µ1)2 (5.3)

for all t ∈ [0, 1].

2. weakly λ-displacement convex if for all µ0, µ1 ∈ P2(X, ν), there is some Wassertian
geodesic from µ0 to µ1 along which (5.3) is satisfied.

3. (weakly) λ-a.c. displacement convex if the condition is satisfied when we take µ0,
µ1 ∈ P ac

2 (X, ν).

We write displacement convex instead of 0-displacement convex.

In summary, ‘weakly’ means that we only ask for the condition to hold on some
geodesic, instead of all geodesics, and a.c. means that we only require the condition to
hold when the two measures are absolutely continuous.

Remark 5.1.5 1. In the previous definition we have that supp(µ0) ⊂ supp(ν) and
supp(µ1) ⊂ supp(ν), but we don not know if supp(µt) ⊂ supp(ν) for t ∈ (0, 1).

2. If Uν is λ-displacement convex and supp(ν) = X then the function t → Uν(µt) is
λ-convex on [0, 1]. Indeed, for all 0 ≤ s ≤ s′ ≤ 1 and t ∈ [0, 1],

Uν(µts′+(1−t)s) ≤ tUν(µs′) + (1− t)Uν(µs)−
1

2
λt(1− t)(s′ − s)2W2(µ0, µ1)2. (5.4)

This is not necessarily true if we only assume that Uν is weakly λ-displacement
convex.

Aside from the obvious implications, we also have the following one.
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Proposition 5.1.6 Let U be a continuous convex function on [0,∞) with U(0) = 0.
Let (X, d, ν) be a compact measured length space. Then Uν is weakly λ-displacement
convex if and only if it is weakly λ-a.c. displacement convex.

Proof We want to show that if Uν is weakly λ-a.c. displacement convex then it is
weakly λ-displacement convex. That is, for µ0, µ1 ∈ P2(X, ν), which are not necessarily
absolutely continuous with respect to ν, we must show that there is some Wassertian
geodesic {µt}t∈[0,1] from µ0 to µ1 along which

Uν(µt) ≤ tUν(µ0) + (1− t)Uν(µ1)− 1

2
λt(1− t)W2(µ0, µ1)2. (5.5)

We can assume that Uν(µ0) <∞, as otherwise (5.5) is true for any Wassertian geodesic
from µ0 to µ1. From ([16], Theorem C.12 in Appendix C), we get that there are sequences
{µk,0}∞k=1 and {µk,1}∞k=1 in P ac

2 (X, ν) such that{
limk→∞ µk,0 = µ0 limk→∞ µk,1 = µ1,

limk→∞ Uν(µk,0) = Uν(µ0) limk→∞ Uν(µk,1) = Uν(µ1).
(5.6)

Since µk,0, µk,1 ∈ P ac
2 (X, ν) and Uν is weakly λ-a.c. displacement convex there exists a

minimal geodesic ck : [0, 1]→ P2(X) from µk,0 to µk,1 such that for all t ∈ [0, 1],

Uν(ck(t)) ≤ tUν(µk,1) + (1− t)Uν(µk,0)− 1

2
λt(1− t)W2(µk,0, µk,1)2. (5.7)

After taking a subsequence, we may assume that the geodesics {ck}∞k=1 converge uniformly
to a geodesic c : [0, 1]→ P2(X) from µ0 to µ1 ([5], Theorems 2.5.14, 2.5.17) 1. The lower
semicontinuity of Uν ([16] Theorem B.33(i) in Appendix B) 2, implies that

Uν(c(t)) ≤ lim inf
k→∞

Uν(ck(t)).

This, together with (5.6) and (5.7) gives us the proposition. �

In fact, the previous proof gives the following stronger result.

Lemma 5.1.7 Let U be a continuous function on [0,∞) with U(0) = 0. Let (X, d, ν)
be a compact measured length space. Suppose that for all µ0, µ1 ∈ P ac

2 (X, ν) with con-
tinuous densities, there is some Wassertian geodesic from µ0 to µ1 along which (5.3) is
satisfied. Then Uν is weakly λ-displacement convex.

There is also the following non-trivial implication under sufficient conditions.

1Theorem 2.5.14 (Arzela-Ascoli Theorem). In a compact metric space, any sequence of curves with
uniformly bounded lengths contains a uniformly converging subsequence.

Proposition 2.5.17 If shortest paths γi in a length space (X, d) converge to a path γ as i→∞, then
γ is also a shortest path.

2Theorem B.33. Let X be a compact Hausdorff space. Let U : [0,∞)→ R be a continuous convex
function with U(0) = 0. Then Uν(µ) is a lower semicontinuous function of (µ, ν) ∈ P (X)× P (X). That
is, if {µk}∞k=1 and {ν}∞k=1 are sequences in P (X) with limk→∞ µk = µ and limk→∞ νk = ν in the weak-?
topology then

Uν(µ) ≤ lim inf
k→∞

Uνk(µk).
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Lemma 5.1.8 (i) Suppose that X has the property that for each minimizing geodesic
c : [0, 1] → P2(X), there is some δc > 0 so that the minimizing geodesic between c(t)
and c(t′) is unique whenever |t − t′| ≤ δc. Suppose that supp(ν) = X. If Uν is weakly
λ-displacement convex then it is λ-displacement convex.

(ii) Suppose that P ac
2 (X, ν) is totally convex in P2(X). Suppose that X has the property

that for each minimizing geodesic c : [0, 1]→ P ac
2 (X, ν), there is some δc > 0 so that the

minimizing geodesic between c(t) and c(t′) is unique whenever |t− t′| ≤ δc. Suppose that
supp(ν) = X. If Uν is weakly λ-a.c. displacement convex then it is λ-a.c. displacement
convex.

Proof (i) Suppose that Uν is weakly λ-displacement convex. Given a minimizing

geodesic c : [0, 1]→ P2(X), we want to show that Uν is λ-convex along c.
By definition of weak λ-displacement convexity we have that, for all 0 ≤ s ≤ s′ ≤ 1,

there is some geodesic from c(s) to c(s′) so that (5.4) is satisfied for all t ∈ [0, 1]. But, if
|s− s′| ≤ δc, then this geodesic must be c �[s,s′]. It follows that the function s 7→ Uν(c(s))
is λ-convex on each interval [s, s′] with |s− s′| ≤ δc, and hence on [0, 1].

(ii) Apply the same argument with absolutely continuous measures.
�

The following functionals will play an important role.

Definition 5.1.9

UN(r) =

{
Nr(1− r−1/N) if 1 < N <∞,
r log r if N =∞

(5.8)

Definition 5.1.10 We define HN,ν : P2(X)→ [0,∞] as the functional associated to
UN :

1. For N ∈ (1,∞),

HN,ν = N −N
∫
X

ρ1− 1
N dν, (5.9)

where ρν is the absolutely continuous part in the Lebesgue decomposition of µ with
respect to ν.

2. For N =∞, the functional H∞,ν is defined as follows: if µ is absolutely continuous
with respect to ν, with µ = ρν, then

H∞,ν(µ) =

∫
X

ρ log ρdν, (5.10)

while if µ is not absolutely continuous with respect to ν then H∞,ν(µ) =∞.

To verify that HN,ν is indeed the functional associated to UN , we note that U ′N(∞) =
N and write

N

∫
X

ρ
(

1− ρ−
1
N

)
dν +Nµs(X) = N

∫
X

ρ
(

1− ρ−
1
N

)
dν +N

(
1−

∫
X

ρdν

)
= N −N

∫
X

ρ1− 1
N dν.

Remark 5.1.11 As a function of µ, HN,ν(µ) attains a minimum when µ = ν. There-
fore, in some sense, HN,ν(µ) is a way of measuring the non-uniformity of µ with respect
to ν.
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5.2 Weak displacement convexity and measured

Gromov-Hausdorff limits

In this section we first show that if a sequence of compact metric spaces converges in the
Gromov-Hausdorff topology then their associated Wasserstein spaces also converge in the
Gromov-Hausdorff topology. We then prove that weak displacement convexity of Uν is
preserved by measured Gromov-Hausdorff limits. Finally, we define the notion of weak
λ-displacement convexity for a family F of convex functions U .

Proposition 5.2.1 If f : (X1, d1) → (X2, d2) is an ε-Gromov-Hausdorff isometry
then f? : P2(X1)→ P2(X2) is an ε̃-Gromov-Hausdorff isometry, where

ε̃ = 4ε+
√

3ε(2diam(X2) + 3ε).

Proof Given µ1, µ′1 ∈ P2(X1), let π1 be an optimal transference plan for µ1 and µ′1.
Then π2 = (f × f)?π1 ∈ P2(X2×X2) is a transference plan between f?µ1 and f?µ

′
1. Now,

W2(f?µ1, f?µ
′
1)2 ≤

∫
X2×X2

d2(x2, y2)2dπ2(x2, y2)

=

∫
X1×X1

d2(f(x1), f(y1))2dπ1(x1, y1).

Since

|d2(f(x1), f(y1))2−d1(x1, y1)2| = |d2(f(x1), f(y1))−d1(x1, y1)|(d2(f(x1), f(y1))+d1(x1, y1)),

and |d2(f(x1), f(y1)) − d1(x1, y1)| ≤ ε by definition of ε-isometry (Definition 1.1.11), we
have

|d2(f(x1), f(y1))2 − d1(x1, y1)2| ≤ ε(2diam(X1) + ε)

and
|d2(f(x1), f(y1))2 − d1(x1, y1)2| ≤ ε(2diam(X2) + ε).

It follows that
W2(f?µ1, f?µ

′
1)2 ≤ W2(µ1, µ

′
1)2 + ε(2diam(X1) + ε) (5.11)

and
W2(f?µ1, f?µ

′
1)2 ≤ W2(µ1, µ

′
1)2 + ε(2diam(X2) + ε). (5.12)

Then, from (5.12), we get

W2(f?µ1, f?µ
′
1) ≤ W2(µ1, µ

′
1) +

√
ε(2diam(X2) + ε). (5.13)

Now, let f ′ : (X2, d2) → (X1, d1) be an approximate inverse of f , which as we know
is a 3ε-isometry. We proceed analogously as before taking f ′, f?µ1 and f?µ

′
1 in place of

f , µ1 and µ2, respectively. Then, using the corresponding equation to (5.11) we obtain

W2(f ′?(f?µ1), f ′?(f?µ
′
1)) ≤ W2(f?µ1, f?µ

′
1) +

√
3ε(2diam(X2) + 3ε). (5.14)

But f ′ ◦ f is an admissible Monge transport between µ1 and (f ′ ◦ f)?µ1, or between µ′1
and (f ′ ◦ f)?µ

′
1, and d(x1, (f

′ ◦ f)(x1)) ≤ 2ε for all x1 ∈ X1, thus

W2((f ′ ◦ f)?µ1, µ1) ≤
∫
X1×X1

d(x1, y1)2d(Id× (f ′ ◦ f))?µ1(x1, y1)

=

∫
X1×X1

d(x1, (f
′ ◦ f)(x1))2dµ1 ≤ 2ε
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and, analogously,
W2((f ′ ◦ f)?µ

′
1, µ

′
1) ≤ 2ε.

It follows by (5.14) and the triangle inequality,

W2(µ1, µ
′
1) ≤ W2(f?µ1, f?µ

′
1) + 4ε+

√
3ε(2diam(X2) + 3ε). (5.15)

Equations (5.13) and (5.15) show that

|W2(f?µ1, f?µ
′
1)−W2(µ1, µ

′
1)| ≤ 4ε+

√
3ε(2diam(X2) + 3ε) .

Since µ1 and µ′1 are arbitrary, the first condition of Definition 1.1.11 is satisfied.
Finally, given µ2 ∈ P2(X2), consider the Monge transport f ◦f ′ from µ2 to (f ◦f ′)?µ2.

Then, since d2(x2, (f ◦f ′)(x2)) ≤ ε for all x2 ∈ X2, we have that W2(µ2, f?(f
′
?µ2)) ≤ ε. We

have therefore proven that for each µ2 ∈ P2(X2) there exists µ1 (in this case µ1 = f ′?µ2)
such that W2(µ2, f?(µ1)) ≤ ε, i.e. f?(P2(X1)) is an ε-net in P2(X2). That is, the second
condition is satisfied. �

Corollary 5.2.2 If a sequence of a compact metric spaces {(Xi, di)}∞i=1 converges
in the Gromov-Hausdorff topology to a compact metric spaces (X, d) then {P2(Xi)}∞i=1

converges in the Gromov-Hausdorff topology to P2(X).

We proceed to study the stability of weak displacement convexity under Gromov-
Hausdorff limits.

Theorem 5.2.3 Let {Xi, di, νi)}∞i=1 be a sequence of compact measured length spaces
so that limi→∞(Xi, di, νi) = (X, d, ν∞) in the Gromov-Hausdorff topology. Let U be a
continuous convex function on [0,∞) with U(0) = 0. Given λ ∈ R, suppose that for all i,
Uνi is weakly λ-displacement convex for (Xi, di, νi). Then Uν∞ is weakly λ-displacement
convex for (X, d, ν).

Proof By Lemma 5.1.7, it is enough to show that for any µ0, µ1 ∈ P2(X) with continuous
densities with respect to ν∞, there is some Wassertian geodesic joining them along which
inequality (5.3) holds for Uν∞ . Again, we assume that Uν∞(µ0) < ∞ and Uν∞(µ1) < ∞,
as otherwise any Wassertian geodesic works.

Since µ0, µ1 ∈ P ac
2 (X, d, ν∞), we may write µ0 = ρ0ν∞ and µ1 = ρ1ν∞. From Defini-

tion 1.3.1, we obtain the existence of εi-isometries fi : Xi → X such that limi→∞ εi = 0
and limi→∞(fi)?νi = ν∞. We will now approximately-lift the measures µ0 and µ1 to Xi.
That is, we use fi to pullback the densities to Xi, then multiply by νi and then normalize
to get probability measures. For this we first need to do the following observation. Since
ρ0 is continuous,

lim
i→∞

∫
X

ρ0d(fi)?νi =

∫
X

ρ0dν∞ =

∫
X

dµ0 = 1,

thus
∫
X
ρ0d(fi)?νi > 0 for i sufficiently large. Similarly,

∫
X
ρ1d(fi)?νi > 0 for i sufficiently

large. Then, for such i, put

µi,0 =
(f ?i ρ0)νi∫

X
ρ0d(fi)?νi

and

µi,1 =
(f ?i ρ1)νi∫

X
ρ1d(fi)?νi

.
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We have

(fi)?µi,0 =
ρ0(fi)?νi∫
X
ρ0d(fi)?νi

(5.16)

and

(fi)?µi,1 =
ρ1(fi)?νi∫
X
ρ1d(fi)?νi

.

By hypothesis, Uνi is weakly λ-displacement convex for (Xi, di, νi) and all i. It follows
that there exist geodesics ci : [0, 1]→ P2(Xi) with ci(0) = µi,0 and ci(1) = µi,1 so that for
all t ∈ [0, 1], we have

Uνi(ci(t)) ≤ tUνi(µi,1) + (1− t)Uνi(µi,0)− 1

2
λt(1− t)W2(µi,0, µi,1)2. (5.17)

We now want to take a convergent subsequence of these Wassertian geodesics in an
appropriate sense to get a Wassertian geodesic in P (X). From Lemma 1.2.1 and Corollary
5.2.2, after passing to a subsequence the maps (fi)?◦ci : [0, 1]→ P2(X) converge uniformly
to a continuous map c : [0, 1] → P2(X). Indeed, Corollary 5.2.2 tells us that {P2(Xi)}
converges in the Gromov-Hausdorff topology to P2(X), and in fact it does so with the
ε̃i-isometries (fi)? : P2(Xi)→ P2(X), where

ε̃i = 4εi +
√

3εi(2diam(X2) + 3εi)
i→∞−−−→ 0.

Then, in the notation of Lemma 1.2.1 we have Yi = P2(Xi), Y = P2(X), gi = (fi)? and
αi = ci (the Xi and X that appear in the lemma are all equal to [0, 1], and the fi are taken
to be the identity). Then, it only remains to prove that the sequence of maps {ci}∞i=1 are
asymptotically equicontinuous. But this follows from the fact that the diameters of the
P2(Xi) are uniformly bounded and, since the ci are geodesics,

W2(ci(t), ci(t
′)) = |t− t′|W2(µi,0, µi,1) . (5.18)

for any t, t′ ∈ [0, 1].
Given F ∈ C(X), since ρ0 is also continuous, we have that

lim
i→∞

∫
X

Fd(fi)?µi,0 = lim
i→∞

∫
X

Fρ0
d(fi)?νi∫

X
ρ0d(fi)?νi

=

∫
X

Fρ0dν∞. (5.19)

where the first equality follows from (5.16). Consequently, limi→∞(fi)?µi,0 = ρ0ν∞ = µ0.
Similarly, limi→∞(fi)?µi,1 = µ1. It follows from Corollary 5.2.2 that

lim
i→∞

W2(µi,0, µi,1) = W2(µ0, µ1). (5.20)

Making i tend to∞ in (5.18) we get that W2(c(t), c(t′)) = |t− t′|W2(µ0, µ1). Therefore, c
is a Wassertian geodesic. The hard part is to pass to the limit in (5.17) as i→∞. For the
right-hand side the job is easy but for the left we will make use the lower semicontinuity
of (µ, ν)→ Uν(µ).

Now,

Uνi(µi,0) =

∫
Xi

U

(
f ?i ρ0∫

X
ρ0d(fi)?νi

)
dνi =

∫
X

U

(
ρ0∫

X
ρ0d(fi)?νi

)
d(fi)?νi . (5.21)

Página 48 Curso 2014-2015. Ricci curvature via optimal transport



Universidad Autónoma de Madrid Marcos Solera Diana

Since

lim
i→∞

U

(
ρ0∫

X
ρ0d(fi)?νi

)
= U(ρ0) (5.22)

uniformly on X, it follows that

lim
i→∞

∫
X

U

(
ρ0∫

X
ρ0d(fi)?νi

)
d(fi)?νi = lim

i→∞

∫
X

U(ρ0)d(fi)?νi =

∫
X

U(ρ0)dν∞. (5.23)

Thus limi→∞ Uνi(µi,0) = Uν∞(µ0). Similarly, limi→∞ Uνi(µi,1) = Uν∞(µ1).
It follows from ([16] Theorem B.33(ii) in Appendix B) 3 that

U(fi)?νi((fi)?ci(t)) ≤ Uνi(ci(t)).

Then, for any t ∈ [0, 1], we can combine this with the lower semicontinuity of (µ, ν) →
Uν(µ) ([16] Theorem B.33(i) in Appendix B) to obtain

Uν∞(c(t)) ≤ lim inf
i→∞

U(fi)?νi((fi)?ci(t)) ≤ lim inf
i→∞

Uνi(ci(t)). (5.24)

Combining this with (5.20) and the preceding results, we can take i → ∞ in (5.17) and
find

Uν∞(c(t)) ≤ tUν∞(µ1) + (1− t)Uν∞(µ0)− 1

2
λt(1− t)W2(µ0, µ1)2 . (5.25)

This concludes the proof. �

Definition 5.2.4 Let F be a family of continuous convex functions U on [0,∞) with
U(0) = 0. Given a function λ : F → R ∪ {−∞}, we say that a compact measured
length space (X, d, ν) is weakly λ-displacement convex for the family F if for any µ0,
µ1 ∈ P2(X, ν), one can find a Wassertian geodesic {µt}t∈[0,1] from µ0 to µ1 so that for
each U ∈ F , Uν satisfies

Uν(µt) ≤ tUν(µ1) + (1− t)Uν(µ0)− 1

2
λ(U)t(1− t)W2(µ0, µ1)2 (5.26)

for all t ∈ [0, 1].

There is also an obvious definition of weakly λ-a.c. displacement convex for the family
F , in which one just requires the condition to hold when µ0, µ1 ∈ P ac

2 (X, ν). Note that
in the previous definition, the same Wasserstein geodesic {µt}t∈[0,1] is supposed to work
for all of the functions U ∈ F . Hence if (X, d, ν) is weakly λ-displacement convex for the
family F then it is weakly λ(U)-displacement convex for each U ∈ F , but the converse
is not a priori true.

The proof of Theorem 5.2.3 establishes the following result.

3Theorem B.33. Let X be a compact Hausdorff space. Let U : [0,∞)→ R be a continuous convex
function with U(0) = 0. Then Uν(µ) is non-increasing under pushforward. That is, if Y is a compact
Hausdorff space and f : X → Y is a Borel map then

Uf?ν(f?µ) ≤ Uν(µ).
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Theorem 5.2.5 Let {(Xi, di, νi)}∞i=1 be a sequence of compact measured length spaces
with limi→∞(Xi, di, νi) = (X, d, ν∞) in the Gromov-Hausdorff topology. Let F be a family
of continuous convex functions U on [0,∞) with U(0) = 0. Given a function λ : F →
R ∪ {−∞}, suppose that each (Xi, di, νi) is weakly λ-displacement convex for the family
F . Then (X, d, ν∞) is weakly λ-displacement convex for the family F .

Further, the proof of Proposition 5.1.6 establishes the following result.

Proposition 5.2.6 Let F be a family of continuous convex functions U on [0,∞)
with U(0) = 0. Given a function λ : F → R ∪ {−∞}, (X, d, ν) is weakly λ-displacement
convex for the family F if and only if it is weakly λ-a.c. displacement convex for the
family F .

5.3 Weak CD(0, N) and CD(K,∞) conditions

The definition of the notion of a measured length space (X, d, ν) having non-negative
N -Ricci curvature, or ∞-Ricci curvature bounded below by K ∈ R, will be in terms of
certain classes DCN of convex functions. Right after making the definition we will show
that these properties pass to totally convex subsets of X. Then we will prove the property
that we are most concerned about. That is, the Ricci curvature definitions are preserved
by measured Gromov-Hausdorff limits.

After this we will give the generalisation of some of the results that hold on Rieman-
nian manifolds. For example, that non-negative N -Ricci curvature for N <∞ implies a
Bishop-Gromov type inequality.

5.3.1 Displacement convex classes

We define the class of convex functions that we were speaking about. This was introduced
by McCann in [19].

Definition 5.3.1 For a continuous convex function U : [0,∞) → R with U(0) = 0,
define the non-negative function

p(r) = rU ′+(r)− U(r), (5.27)

with p(0) = 0. This definition can be motivated by physics. Namely, suppose that U
defines an internal energy for a continuous medium then p can be thought of as pressure.
By analogy, if U is C2-regular on (0,∞) then we define the ‘iterated pressure’

p2(r) = rp′(r)− p(r).

Definition 5.3.2 For N ∈ [1,∞), we define DCN to be the set of all continuous
convex functions U on [0,∞), with U(0) = 0, such that the function

φ(λ) = λNU(λ−N) (5.28)

is convex on (0,∞).
We define DC∞ to be the set of all continuous convex functions U on [0,∞), with

U(0) = 0, such that the function

φ(λ) = eλU(e−λ) (5.29)

is convex on (−∞,∞).
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The convexity of U implies that φ is non-increasing in λ because U(x)
x

is non-decreasing
in x. Below are some useful facts about the classes DCN .

Lemma 5.3.3 If N ≤ N ′ then DCN ′ ⊂ DCN . Consequently, the smallest class of all
is DC∞, while DC1 is the largest.

Proof If N ′ < ∞, let φN and φN ′ denote the corresponding functions. Then φN(λ) =
φN ′

(
λN/N

′)
. But x→ xN/N

′
is concave on [0,∞) and the composition of a non-increasing

convex function and a concave function is convex so the results follows.
If N ′ =∞ and N <∞ then φN = φ∞(N log λ), and the same argument is valid. �

Lemma 5.3.4 For N ∈ [1,∞], if U is a continuous convex function on [0,∞) that is
C2-regular on (0,∞) with U(0) = 0, then the following statements are equivalent

1. U ∈ DCN

2. The function r → p(r)/r1− 1
N is non-decreasing on (0,∞).

3. p2 ≥ − p
N

.

Proof (i)↔(ii) Suppose first that N ∈ [1,∞), and write r(λ) = λ−N . Then

φ′(λ) = −Np(r)/r1− 1
N . (5.30)

But φ is convex if and only if φ′ is non-decreasing, and, since the map λ → λ−N is
non-increasing, this is true if and only if the function r 7→ p(r)/r1− 1

N is non-decreasing.

(i)↔(iii) By computation,

φ′′(λ) = N2r
2
N
−1

(
p2(r) +

p(r)

N

)
. (5.31)

Then φ is convex if and only if φ′′ ≥ 0, which is the case if and only if p2 + p
N

is non-
negative.

In the case N =∞ we have

r(λ) = e−λ, φ′(λ) = −p(r)
r
, φ′′(λ) =

p2(r)

r

and the same arguments give us the result. �

A property of the behaviour of functions in DC∞ is given in the following lemma.

Lemma 5.3.5 Given U ∈ DC∞, either U is linear or there exist a, b > 0 such that
U(r) ≥ ar log r − br.

Proof We may recover the function U from φ by the formula

U(x) = xφ(log(1/x)).

But φ is convex and non-increasing so either φ is constant or there are constants a, b > 0
such that φ(λ) ≥ −aλ− b for all λ ∈ R. In the first case, U is linear. In the second case,
U(x) ≥ −ax log(1/x)− bx. �
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5.3.2 Ricci curvature via weak displacement convexity

We have already defined the notion of a compact measured length space (X, d, ν) being
weakly λ-displacement convex for a family of convex functions F . The following definition
is formulated in those terms.

Definition 5.3.6 Given N ∈ [1,∞], we say that a compact measured length space
(X, d, ν) has non-negative N -Ricci curvature (or that it satisfies the weak CD(0, N)
condition) if it is weakly displacement convex for the family DCN .

By Lemma 5.3.3, if N ≤ N ′ and X has non-negative N -Ricci curvature then it has
non-negative N ′-Ricci curvature. In the case N =∞, we can define a more precise notion.

Definition 5.3.7 Given K ∈ R, define λ : DC∞ → R ∪ {−∞} by

λ(U) = inf
r>0

K
p(r)

r
=


K limr→0+

p(r)
r

if K > 0,

0 if K = 0,

K limr→∞
p(r)
r

if K < 0,

(5.32)

where p is given by (5.27). We say that a compact measured length space (X, d, ν) has∞-
Ricci curvature bounded below by K (or that it satisfies the weak CD(K,∞) condition)
if it is weakly λ-displacement convex for the family DC∞.

If K ≤ K ′ and (X, d, ν) has ∞-Ricci curvature bounded below by K ′ then it has
∞-Ricci curvature bounded below by K.

The next proposition shows that our definitions localize on totally convex subsets.

Proposition 5.3.8 Suppose that a closed set A ⊂ X is totally convex. Given ν ∈
P2(X) with ν(A) > 0, put ν ′ = 1

ν(A)
ν �A∈ P2(A).

1. If (X, d, ν) has non-negative N-Ricci curvature then (A, d, ν ′) has non-negative N-
Ricci curvature.

2. If (X, d, ν) has ∞-Ricci curvature bounded below by K then (A, d, ν ′) has ∞-Ricci
curvature bounded below by K.

Proof Let µ0, µ1 ∈ P2(A). The notion of optimal coupling is the same whether one
considers them as measures on A or on X. Furthermore, we know that since A is totally
convex, a path [0, 1] → X with endpoints in X ′ is a geodesic in X ′ if and only if it is a
geodesic in X. Then by proposition 4.1.9, P2(A) is a totally convex subset of P2(X), i.e.
a path (µt)0≤t≤1 with µ0, µ1 ∈ P2(A) is a geodesic in P2(A) if and only if it is a geodesic
in P2(X). Given µ ∈ P2(A) ⊂ P2(X), let µ = ρν + µs be its Lebesgue decomposition
with respect to ν. Then µ = ρ′ν ′ + µs is the Lebesgue decomposition with respect to ν ′,
where ρ′ = ν(A)ρ �A.

1. Take N <∞. We must prove that (A, d, ν ′) is weakly displacement convex for the
family DCN . Given a continuous convex function U : [0,∞)→ R with U(0) = 0, define

Ũ(r) =
U(ν(A)r)

ν(A)
.

Then
Ũ ′(∞) = lim

r→∞
Ũ ′+(r) = lim

r→∞
U ′+(ν(A)r) = lim

r→∞
U ′+(r) = U ′(∞),

Página 52 Curso 2014-2015. Ricci curvature via optimal transport



Universidad Autónoma de Madrid Marcos Solera Diana

and U ∈ DCN if and only if Ũ ∈ DCN . Indeed, denote by φU and φŨ the functions
corresponding to U and Ũ , respectively. Then, given λ1, λ2 ∈ (0,∞), we consider λ̃1 =

ν(A)−
1
N λ1 and λ̃2 = ν(A)−

1
N λ2. The convexity of φU between λ̃1 and λ̃2 then yields the

convexity of φŨ between λ1 and λ2. Now,

Uν′(µ) =

∫
A

U(ρ′)dν ′ + U ′(∞)µs(A)

=
1

ν(A)

∫
A

U(ν(A)ρ)dν + U ′(∞)µs(A)

=

∫
X

Ũ(ρ)dν + Ũ ′(∞)µs(X) = Ũν(µ).

Since P2(A, ν ′) ⊂ P2(X, ν) and (X, ν) is weakly displacement convex for DCN , we con-
clude that (A, d, ν ′) is weakly displacement convex for DCN .

2. Let p̃ denote the pressure of Ũ , then

p̃(r)

r
= Ũ ′+(r)− Ũ(r)

r
= U ′+(ν(A)r)− U(ν(A)r)

ν(A)r
=
p(ν(A)r)

ν(A)r
.

Then with the notation of Definition 5.3.7, λ(Ũ) = λ(U). The second statement follows.
�

5.3.3 Basic properties

The next result is of great importance, it states the preservation of N -Ricci curvature
bounds under Gromov-Hausdorff limits.

Theorem 5.3.9 Let {(Xi, di, νi)}∞i=1 be a sequence of compact measured length spaces
with limi→∞(Xi, di, νi) = (X, d, ν) in the Gromov-Hausdorff topology.

1. If each (Xi, di, νi) has non-negative N-Ricci curvature then (X, d, ν) has non-negative
N-Ricci curvature.

2. If each (Xi, di, νi) has ∞-Ricci curvature bounded below by K, for some K ∈ R,
then (X, d, ν) has ∞-Ricci curvature bounded below by K.

Proof If N <∞ then the theorem follows from Theorem with the family F = DCN and
λ = 0. If N = ∞ then it follows from Theorem with the family F = DC∞ and λ given
by Definition 5.3.7. �

We then obtain an analogue of the Bishop-Gromov theorem.

Proposition 5.3.10 ([16], Proposition 5.27) Suppose that (X, d, ν) has non-negative
N-Ricci curvature, with N ∈ [1,∞). Then for all x ∈ supp(ν) and all 0 < r1 ≤ r2,

ν(Br2(x)) ≤
(
r2

r1

)N
ν(Br1(x)).

5.4 Weak CD(K,N) condition

We add this section for completeness, giving the general definition of the weak CD(K,N)
notion, i.e. N -Ricci curvature bounded below by K.
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5.4.1 Distortion coefficients

Definition 5.4.1 If A and B are two measurable sets in a Riemannian manifold M ,
and t ∈ [0, 1], a t-barycenter of A and B is a point which can be written as γ(t), where
γ is a minimizing, constant speed geodesic γ : [0, 1] → M with γ(0) ∈ A and γ(1) ∈ B.
The set of t-barycenters between A and B is denoted by [A,B]t.

Definition 5.4.2 Let M be a Riemannian manifold, equipped with a reference mea-
sure e−ψvol with ψ ∈ C(M), and let x and y be any two points in M . Then the distortion
coefficient βt(x, y) between x and y at a time t ∈ (0, 1) is defined as follows:

1. If x and y are joined by a unique geodesic γ, then

βt(x, t) = lim
r↓0

ν [[x,Br(y)]t]

ν[Btr(y)]
= lim

r↓0

ν [[x,Br(y)]t]

tnν[Br(y)]
.

2. If x and y are joined by several minimizing geodesics, then

βt(x, y) = inf
γ

lim sup
s→1−

βt(x, γs),

where the infimum is over all minimizing geodesics joining γ(0) = x to γ(1) = y.

The values of βt(x, y) for t = 0 and t = 1 are defined by

β1(x, y) ≡ 1; β0 := lim inf
t→0+

βt(x, y).

The meaning of these distortion coefficients can be understood from the following
example found in [26]. Suppose that you find yourself at a point x, and that you are
trying to estimate the volume of an object located at y. Your problem is that the light
rays that allow your view of the object are travelling along geodesics, which may not
be straight lines. However, in your estimations you are imagining that the light rays
are travelling in straight lines, thus you might be overestimating or underestimating its
volume. If x and y are joined by a unique geodesic , then the coefficient β0(x, y) tells by
how much you are overestimating. Therefore, it is less than 1 in negative curvature, and
greater than 1 in positive curvature. If there are several geodesics joining x and y then
the coefficient is the same, except that you look in the direction where the device looks
smallest.

In general, βt(x, y) compares the volume occupied by the light rays emanating from
the light source, when they arrive close to γ(t), to the volume that they would occupy
in a flat space. In the picture, the distortion coefficient would be approximated by the
ratio of the volume filled with lines, to the volume whose contour is in dashed line.
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The model spaces 2.10.2 give us the reference distortion coefficients.

Definition 5.4.3 Given K ∈ R, N ∈ [1,∞] and t ∈ [0, 1], and two points x, y in

some metric space (X, d), define β
(K,N)
t (x, y) as follows,

1. If 0 < t ≤ 1 and 1 < N <∞ then

β
(K,N)
t (x, y) =



+∞ if K > 0 and α > pi,(
sin(tα)
t sinα

)N−1

if K > 0 and α ∈ [0, π],

1 if K = 0,(
sinh(tα)
t sinhα

)N−1

if K < 0,

where

α =

√
|K|
N − 1

d(x, y).

2. In the two limit cases N → 1 and N →∞, modify the above expressions as follows:

β
(K,1)
t (x, y) =

{
+∞ if K > 0,

1 if K ≤ 0,

B
(K,∞)
t (x, y) = e

K
6

(1−t2)d(x,y)2 .

3. For t = 0 define β
(K,N)
0 (x, y) = 1.

The following theorem states the relation between Ricci curvature bounds in terms of
distortion coefficients.

Theorem 5.4.4 ([26], Theorem 14.21) Let M be a Riemannian manifold of dimen-
sion n, equipped with its volume measure. Then the following two statements are equiva-
lent:

1. Ric ≥ K;

2. β ≥ β(K,n).
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5.4.2 Definition

The definition will be in terms of the distorted Uν functional. We first remark that a
transference plan π can be disintegrated with respect to its first marginal µ0 or its second
marginal µ1:

dπ(x0, x1) = dπ(x1|x0)dµ0(x0) = dπ(x0|x1)dµ1(x1).

Definition 5.4.5 Let (X, d, ν) be a compact measured length space. Let U be a
convex function with U(0) = 0, let x → π(dy|x) be a family of conditional probabilities
on X, indexed by x ∈ X, and let β be a measurable function X × X → (0,+∞]. The
distorted Uν functional with distortion coefficient β is defined as follows: For any measure
µ = ρν on X,

Uβ
π,ν(µ) =

∫
X×X

U

(
ρ(x)

β(x, y)

)
β(x, y)π(dy|x)ν(dx).

Definition 5.4.6 Let K ∈ R and N ∈ [1,∞]. A compact measured length-space
(X, d, ν) is said to satisfy the weak CD(K,N) condition (or have N -Ricci curvature
bounded below by K) if the following is satisfied: Whenever µ0 and µ1 ∈ P (X) with
suppµ0, suppµ1 ⊂ suppν, there exist a geodesic {µt}0≤t≤1 joining µ0 to µ1 and an asso-
ciated optimal coupling π of (µ0, µ1) such that, for all U ∈ DCN and for all t ∈ [0, 1],

Uν(µt) ≤ (1− t)Uβ
(K,N)
1−t

π,ν (µ0) + tU
β
(K,N)
t

π̃,ν (µ1).

Remark 5.4.7 Some considerations must be taken into account to prove that U
β
(K,N)
t

π,ν

is well defined. This follows from ([26], Application 17.29 and Convention 17.30).

Motivation for this definition is given in ([26], Theorem 17.37), which in our case
states that in the Riemannian case this is equivalent to the CD(K,N) condition.

We have the following compactness theorem.

Theorem 5.4.8 ([26], Theorem 29.32) Let K ∈ R, N < ∞, D < ∞ and 0 <
m ≤ M < ∞. Let CDD(K,N,D,m,M) be the space of compact measured length spaces
(X, d, ν) satisfying the weak CD(K,N) condition, together with diam(X, d) ≤ D, m ≤
ν[X] ≤ M , and suppν = X. Then CDD(K,N,D,m,M) is compact in the measured
Gromov-Hausdorff topology.

In ([26], Theorem 29.24) it is proved that this weak CD(K,N) condition is also stable
under measured Gromov-Hausdorff limits. In ([26], Theorems 30.7 and 30.11) Brunn-
Minkowski and Bishop-Gromov type inequalities are given for weak CD(K,N) spaces.
There is also the following Bonnet-Myers diameter bound for weak CD(K,N) spaces:

Proposition 5.4.9 ([26], Theorem 29.11) If (X, d, ν) is a weak CD(K,N) space
with K > 0 and N <∞, then

diam(suppν) ≤ π

√
N − 1

K
.
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5.5 Smooth metric-measure spaces

In the Riemannian case the definition of ‘non-negative N -Ricci curvature’ coincides with
the usual notion. By smooth measured length space we will mean a smooth n-dimensional
Riemannian manifold M along with a smooth probability measure ν = e−ψdvolM . Recall
the definition of the generalised Ricci tensor from Section 2.10.

Theorem 5.5.1 ([16], Theorems 7.3 and 7.42) Given N ∈ [1,∞], the smooth mea-
sured length space (M, g, ν) has non-negative N-Ricci curvature if and only if RicN ≥ 0.

In the special case when ψ is constant, and so ν = dvolM
vol(M)

, the theorem proves that we
recover the usual notion of non-negative Ricci curvature from our length space definition
as soon as N ≥ n.

Another problem we had was to characterize the limit points that appear from the
Gromov precompactness theorem. In general the limit points can be very singular. How-
ever, if we only consider limit points which happen to be smooth measured length spaces,
it becomes easier.

Corollary 5.5.2 ([16], Corollary 7.45) If (B, gB, e
−ψdvolB) is a measured Gromov-

Hausdorff limit of Riemannian manifolds with non-negative Ricci curvature and dimen-
sion at most N then RicN(B) ≥ 0.

Although a full characterisation has not been found, there is a partial converse.

Proposition 5.5.3 ([16], Corollary 7.45)

1. Suppose that N is an integer. If (B, gB, e
−ψdvolB) has RicN(B) ≥ 0 with N ≥

dim(B) + 2 then (B, gB, e
−ψdvolB) is a measured Gromov-Hausdorff limit of Rie-

mannian manifolds with non-negative Ricci curvature and dimension N .

2. Suppose that N =∞. If (B, gB, e
−ψdvolB) has Ric∞(B) ≥ 0 then (B, gB, e

−ψdvolB)
is a measured Gromov-Hausdorff limit of Riemannian manifolds Mi with Ric(Mi) ≥
−1

i
gMi

.

5.5.1 Examples

The following is an example of a measured length space which is not a manifold having
non-negative n-Ricci curvature.

Example 5.5.4 Let M be a smooth compact n-dimensional Riemannian manifold
with non-negative Ricci curvature, and let G be a compact Lie group acting isometrically
on M . Then let X = M/G and let q : M → X be the quotient map. Equip X with the
quotient distance d(x, y) = inf{dM(x′, y′) : q(x′) = x, q(y′) = y}, and with the measure
ν = q?volM . The resulting space (X, d, ν) has non-negative n-Ricci curvature, and is not
a manifold in general.

Example 5.5.5 ([26], Example 29.17) Let X = Π∞i=1Ti, where Ti = R/(εiZ) is
equipped with the usual distance di and the normalized Lebesgue measure λi, and
εi = 2diam(Ti) is some positive number. If

∑
ε2
i < +∞ then the product distance

d =
√∑

d2
i turns X into a compact metric space. Taking the product measure ν = Πλi

on X turns (X, d, ν) into a CD(0,∞) space.
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5.6 Analytic consequences

Having Ricci curvature bounded below on Riemannian manifolds allows for several ana-
lytic implications, such as eigenvalue inequalities, Sobolev inequalities and local Poincaré
inequalities. In [16] some of these inequalities are proved in the generalized setting of
weak CD(K,N) spaces. The existence of these Poincaré inequalities is vital since it al-
lows for the theory of differential equations to be developed on weak CD(K,N) spaces.
It is worth mentioning that the Finnish school led by Pekka Koskela and J.Heinonen
took a different approach to metric spaces with ‘controlled geometry’, and considered
metric spaces which support Poincare inequalities and doubling measures as their start-
ing point, instead of trying to reproduce Ricci lower bounds in more general spaces. It is
very interesting to understand the relation between both approaches.

An example of this is the log Sobolev inequality. If a smooth measured length
space (M, g, e−ψdvolM) has Ric∞ ≥ Kg, with K > 0, then for all f ∈ C∞(M) with∫
M
f 2e−ψdvolM = 1, it is proved in [2] that∫

M

f 2 log(f 2)e−ψdvolM ≤
2

K

∫
M

|∇f |2e−ψdvolM .

Then the usual log Sobolev inequality on Rn comes from taking

dν = (4π)−
n
2 e−|x|

2

dnx,

giving ∫
Rn

f 2 log(f 2)e−|x|
2

dnx ≤
∫
Rn

|∇f |2e−|x|2dnx

whenever (4π)−
n
2

∫
Rn f

2e−|x|
2
dnx = 1.

On measured length spaces we have the following log Sobolev inequality.

Theorem 5.6.1 ([16], Corollary 6.12). Suppose that a compact measured length
space (X, d, ν) satisfies the CD(K,∞) condition with K > 0. Suppose that f ∈ Lip(X)
satisfies

∫
X
f 2dν = 1. Then∫

X

f 2 log(f 2)dν ≤ 2

K

∫
X

|∇f |2dν. (5.33)

We can then obtain a Poincaré inequality by taking h ∈ Lip(X) with
∫
X
hdν = 0 and

put f 2 = 1 + εh. Taking ε small and expanding the two sides of (5.33) in ε gives:

Corollary 5.6.2 Suppose that a compact measured length space (X, d, ν) satisfies the
CD(K,∞) condition for K > 0. Then for all h ∈ Lip(X) with

∫
X
hdν = 0, we have∫

X

h2dν ≤ 1

K

∫
X

|∇h|2dν.

The log Sobolev inequality does not depend on the dimension. However, if one has N -
Ricci curvature bounded below by K > 0 with N finite then one gets a Sobolev inequality,
which does depend on N .

Proposition 5.6.3 ([18]) Given N ∈ (2,∞) and K > 0, suppose that (X, d, ν) has
N-Ricci curvature bounded below by K. Then for any non-negative Lipschitz function

f ∈ Lip(X) with
∫
X
f

2N
N−2dν = 1, one has

1−
(∫

X

fdν

) 2
N+2

≤ 6

KN

(
N − 1

N − 2

)2 ∫
X

|∇f |2dν.
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