A counterexample to the fake degree conjecture

Andrei Jaikin-Zapirain *

Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid

Let J be a finite dimensional nilpotent algebra over a finite field \mathbb{F} . Then the set G=1+J forms a finite group. The groups constructed in this way will be called algebra groups. In [1] it is proved that the character degrees of G are powers of q, where q is the order of \mathbb{F} .

The group G acts by conjugation on J. This induces an action of G on the dual space J^* . It has been noted that there exists a relation between the characters of G and the orbits of J^* . For example, if $J^p = 0$, there exists an explicit expression that gives a bijective correspondence between the characters of G and the orbits of J^* ([2]). In particular, when $J^p = 0$, we obtain that the character degrees of G, counting multiplicities, are the square roots of the sizes of the orbits of J^* . It was conjectured that the same holds also in the general case:

Conjecture 1. (Fake degree conjecture) In every algebra group G = 1 + J the character degrees coincide, counting multiplicities, with the square roots of the cardinals of the orbits of J^* .

Note that the immediate corollary of this conjecture is that the orders of $[J,J]_L$ and [1+J,1+J] have to be equal (in this work we write $[a,b]=a^{-1}b^{-1}ab$ for group commutators and $[a,b]_L=ab-ba$ for Lie brackets). The purpose of this note is to show that there exists a finitely dimensional nilpotent \mathbb{F}_2 -algebra J, such that the order of [1+J,1+J] is greater than the order of $[J,J]_L$, so in the given form Conjecture 1 is not true.

We fix our attention on graded algebras. If $J = \bigoplus_{i \in \mathbb{N}} J_i$ is a graded \mathbb{F} -algebra and $0 \neq a \in J_n$ is a homogeneous element, then we put deg a = n.

Lemma 1. Let $J = \bigoplus_{i \in \mathbb{N}} J_i$ be a finitely dimensional nilpotent graded algebra over a finite field \mathbb{F} and suppose that $J_k = \{0\}$ for every k > n. If $a \in J_n \cap [J, J]_L$, then $1 + a \in [1 + J, 1 + J]$.

Proof. Since J is graded and the element a is homogeneous, there are homogeneous elements $a_i, b_i \in J$ such that

$$a = \sum_{i} [a_i, b_i]_L$$

 $^{^*2000}$. Mathematics Subject Classification Primary 20D15. This work has been partially supported by the MCYT Grants BFM2001-0201, BFM2001-0180, FEDER and the Ramón y Cajal Program.

and $\deg a_i + \deg b_i = \deg a = n$. Then

$$1 + a = \prod_{i} [1 + a_i, 1 + b_i] \in [1 + J, 1 + J].$$

П

Corollary 1. If $J = \bigoplus_{i=1}^{n} J_i$ is a finitely dimensional nilpotent graded algebra over a finite field \mathbb{F} , then the order of [1+J,1+J] is at least the order of $[J,J]_L$.

Proof. We will prove the corollary by induction on order of J. Let q be the order of \mathbb{F} and $0 \neq a \in J_n$. We define $\bar{J} = J/\mathbb{F}a$. Then we have two possibilities: $a \in [J, J]_L$ and $a \notin [J, J]_L$.

If $a \in [J, J]_L$, then, by the previous lemma, $1 + a \in [1 + J, 1 + J]$. Applying the inductive hypothesis, we have

$$|[1+J,1+J]| = |[1+\bar{J},1+\bar{J}]|q \ge |[\bar{J},\bar{J}]_L|q = |[J,J]_L|.$$

If $a \notin [J, J]_L$, then again by induction,

$$|[1+J,1+J]| \ge |[1+\bar{J},1+\bar{J}]| \ge |[\bar{J},\bar{J}]_L| = |[J,J]_L|.$$

Let F be a free nilpotent associative \mathbb{F}_2 -algebra of nilpotency index 5 ($F^5 = 0$) on 4 generators x_1, x_2, x_3, x_4 . We have the next relation in F:

Lemma 2. For every $x, y \in F$ the following equality holds:

$$[1+x,1+y] = 1 + [x,y]_L + [xy,x]_L + [y,yx]_L + [y^2x,y]_L + [x,x^2y]_L + xy[x,y]_L.$$
 Proof. This an easy exercise. \Box

Define

$$t(x,y) = [xy, x]_L + [y, yx]_L + [y^2x, y]_L + [x, x^2y]_L$$

Then $t(x,y) \in F^3 \cap [F,F]_L$ for any $x,y \in F$ and, by Lemma 2,

$$[1+x, 1+y] = 1 + [x, y]_L + t(x, y) + xy[x, y]_L.$$

We need the following lemma:

Lemma 3. If $b \in F^3 \cap [F, F]_L$, then $1 + b \in [1 + F, 1 + F]$.

Proof. Let $b = b_1 + b_2$, where $\deg(b_1) = 3$ and $\deg(b_2) = 4$. Then $1 + b = (1 + b_1)(1 + b_2)$. There are homogeneous elements $c_i, d_i \in F$ such that $b_1 = \sum_i [c_i, d_i]_L$ and $\deg c_i + \deg d_i = 3$. Thus,

$$\prod_{i} [1 + c_i, 1 + d_i] = (1 + b_1)(1 + \sum_{i} t(c_i, d_i)).$$

Since b_2 , and $\sum_i t(c_i, d_i) \in F^4 \cap [F, F]_L$, using Lemma 1, we obtain that

$$1 + b_2$$
 and $\prod_i [1 + c_i, 1 + d_i] \in [F, F].$

Hence $1 + b_1 \in [F, F]$ and so $1 + b \in [1 + F, 1 + F]$.

Let I be the ideal of F generated by $[x_1, x_2]_L + [x_3, x_4]_L$ and J = F/I. Since J is generated by a homogeneous element, J is a graded \mathbb{F}_2 -algebra. If $z \in F$, then we write the element z + I from J as \bar{z} .

Lemma 4. If $a = x_1x_2[x_1, x_2]_L + x_3x_4[x_3, x_4]_L$, then $1 + \bar{a} \in [1 + J, 1 + J]$.

Proof. We have:

$$[1+x_1, 1+x_2][1+x_3, 1+x_4] = (1+[x_1, x_2]_L + t(x_1, x_2) + x_1x_2[x_1, x_2]_L)$$

$$(1+[x_3, x_4]_L + t(x_3, x_4) + x_3x_4[x_3, x_4]_L)$$

$$= 1+a+t(x_1, x_2) + t(x_3, x_4) + [x_1, x_2]_L[x_3, x_4]_L$$

$$= (1+a)(1+b)(1+[x_1, x_2]_L^2)(1+c),$$

where

$$b = t(x_1, x_2) + t(x_3, x_4) \in F^3 \cap [F, F]_L$$

and

$$c = [x_1, x_2]_L([x_1, x_2]_L + [x_3, x_4]_L) \in I.$$

Thus, in order to prove that $1 + \bar{a} \in [1 + J, 1 + J]$, we have to show that 1 + band $1 + [x_1, x_2]_L^2 \in [1 + F, 1 + F].$

By Lemma 3, $1+b \in [1+F,1+F]$, and since

$$[x_1, x_2]_L^2 = [x_1 + x_2, x_2(x_1 + x_2)^2] + [x_1, x_2x_1^2]_L + [x_1x_2^2, x_2]_L \in [F, F]_L \cap F^4,$$

we obtain, by Lemma 1 that $1+[x_1,x_2]_L^2\in[1+F,1+F]$. Hence $1+\bar{a}\in$ [1+J, 1+J].

Next, we are aiming to show that \bar{a} does not belong to $[J, J]_L$. First, we define a linear map σ by:

We consider F^4 as an $\mathbb{F}_2[\sigma]$ -module.

Lemma 5. The following equalities hold:

1.
$$(1-\sigma)F^4 = F^4 \cap [F,F]_L$$

2.
$$(1-\sigma)^3(F^4\cap [F,F]_L)=0$$
.

Proof. 1. From the definition of σ it follows immediately that $(1-\sigma)F^4 \subseteq F^4 \cap$ $[F,F]_L$. Now, let $b \in F^4 \cap [F,F]_L$. Then b is a linear combination of the elements $[x_i, x_j x_k x_l]_L = (1 - \sigma)(x_i x_j x_k x_l)$ and $[x_i x_j, x_k x_l]_L = (1 - \sigma^2)(x_i x_j x_k x_l)$. Hence $F^4 \cap [F, F]_L \subseteq (1 - \sigma)F^4$. 2. Since $(1 - \sigma)^4 F^4 = 0$, we obtain $(1 - \sigma)^3 (F^4 \cap [F, F]_L) = 0$.

2. Since
$$(1-\sigma)^4 F^4 = 0$$
, we obtain $(1-\sigma)^3 (F^4 \cap [F,F]_L) = 0$.

Let $F_{(i_1,i_2,i_3,i_4)}$ be the subspace of F generated by the monomials in which each x_k appears i_k times. Then we have the next decomposition:

$$F^4 = \bigoplus_{i_1 + i_2 + i_3 + i_4 = 4} F_{(i_1, i_2, i_3, i_4)}.$$

Let $\pi_{(i_1,i_2,i_3,i_4)}$ be the projection of F^4 onto $F_{(i_1,i_2,i_3,i_4)}$. Set $K = \{x_1, x_2, x_3, x_4\}$.

Lemma 6. The element a does not belong to $[F, F]_L + I$.

Proof. We will prove the lemma by way of contradiction. Suppose that $a \in [F, F]_L + I$, i.e., there exists $c \in F^4 \cap [F, F]_L$ such that

$$a + \sum_{(k_1, k_2) \in K^2} \alpha_{k_1, k_2} k_1 k_2 ([x_1, x_2]_L + [x_3, x_4]_L) + c = 0.$$

Multiplying the equality by $(1 - \sigma)^3$, we obtain

$$d = (1 - \sigma)^3 \left(a + \sum_{(k_1, k_2) \in K^2} \alpha_{k_1, k_2} k_1 k_2 ([x_1, x_2]_L + [x_3, x_4]_L) \right) = 0.$$
 (1)

Since

$$\pi_{(2,2,0,0)}(d) = (1-\sigma)^3((1+\alpha_{x_1,x_2})x_1x_2[x_1,x_2]_L + \alpha_{x_2,x_1}x_2x_1[x_1,x_2]_L)$$
$$= (1+\alpha_{x_1,x_2}+\alpha_{x_2,x_1})(x_1^2x_2^2 + x_1x_2^2x_1 + x_2^2x_1^2 + x_2x_1^2x_2),$$

we conclude that $\alpha_{x_1,x_2} + \alpha_{x_2,x_1} = 1$. The same argument gives $\alpha_{x_3,x_4} + \alpha_{x_4,x_3} = 1$. Suppose first that $\alpha_{x_1,x_2} = \alpha_{x_3,x_4} = 1$ and $\alpha_{x_2,x_1} = \alpha_{x_4,x_3} = 0$. Then we have

$$\pi_{(1,1,1,1)}(d) = (1-\sigma)^3 (x_3 x_4 [x_1, x_2]_L + x_1 x_2 [x_3, x_4]_L)$$

$$= (1-\sigma)^3 (x_3 x_4 (x_1 x_2 - x_2 x_1) + x_1 x_2 (x_3 x_4 - x_4 x_3))$$

$$= (1-\sigma)^3 (x_3 x_4 x_2 x_1 + x_1 x_2 x_4 x_3) \neq 0.$$

But this contradicts (1). The remaining cases can be proved in the same way. \Box

Theorem 1. The order of [1 + J, 1 + J] is greater than the order of $[J, J]_L$.

Proof. Let a be as above. Define $\bar{J} = J/\mathbb{F}_2\bar{a}$. We have that

$$|[\bar{J}, \bar{J}]_L| = |[J, J]_L|,$$

because, by the previous lemma, $\bar{a} \notin [J, J]_L$. By Corollary 1,

$$|[\bar{J}, \bar{J}]_L| < |[1 + \bar{J}, 1 + \bar{J}]|.$$

On the other hand, since $1 + \bar{a} \in [1 + J, 1 + J]$, the order of $[1 + \bar{J}, 1 + \bar{J}]$ is less than the order of [1 + J, 1 + J]. Hence the order of [1 + J, 1 + J] is greater than the order of $[J, J]_L$.

References

- [1] I.M. ISAACS, Character of groups associated with finite algebras, $J.\ Algebra,$ 177 (1987), 708-730.
- [2] J. Sangroniz, Clases de conjugación y caracteres en grupos finitos, Ph.D. Thesis, Universidad del País Vasco, Bilbao, 2001.