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Review: Differentials on the space
of arcs



Jets and arcs

Let K be a field of arbitrary characteristic and X a variety over K.

An n-jet on X is a morphism Spec K[t]/(tn+1)→ X. The n-th jet space
Xn of X is the K-scheme parametrizing jets on X, i.e.

HomK(Spec K, Xn) ≃ HomK(Spec K[t]/(tn+1), X).

An arc on X is a morphism Spec K[[t]]→ X. The arc space X∞ of X is
defined as X∞ = lim←−n Xn and satisfies

HomK(Spec K, X∞) ≃ HomK(Spec K[[t]], X).
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Higher derivations and arcs

Let R, S be K-algebras. A higher derivation D : R→ S of order
n ∈ N ∪ {∞} over K is given by Di : R→ S, i ⩽ n, satisfying

1. D0 : R→ S is a K-algebra map, and
2. the higher Leibniz rules, that is,

Di(r1r2) =
∑
j+l=i

Dj(r1)Dl(r2).

The universal object for higher derivations is the Hasse–Schmidt
algebra Rn := HSnK(R). If X = SpecR, then Xn = SpecRn for n ∈ N∪ {∞}.
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Arc spaces and singularities

Since the work of Nash, jet and arc spaces are known to be deeply
connected to the structure of singularities of algebraic varieties.

E.g. Nash problem: components of π−1(Sing X) in correspondence
with exceptional components of resolution of singularities.

Relatively little is known about the singularities of X∞ itself and how
they relate to the singularities of X.
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Differentials on the space of arcs

Theorem (de Fernex, Docampo)
Let X = Spec(R) be an affine variety over K and n ∈ N ∪ {∞}. Then

ΩXn/K ≃ ΩX/K ⊗R Qn,

for some R-module Qn which in addition is a free Rn-module.

Remark: Qn has an interpretation in terms of higher derivations of
modules.
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Singularities of the space of arcs



Formally smooth arcs

Recall that X∞ is infinite-dimensional if dim X > 0, therefore the
definition of regular points does not make sense anymore.

Theorem (Bourqui, Sebag)
Let α ∈ X∞ \ (Sing X)∞. Then:

1. Let X0 ⊂ X be the unique formal branch at α(0) containing α(η).
Then

ÔX∞,α ≃ Ô(X0)∞,α.

2. OX∞,α formally smooth over K iff the formal branch containing
α(η) is smooth.
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The Drinfeld–Grinberg–Kazhdan theorem

Theorem (Grinberg, Kazhdan 2000; Drinfeld 2002)
Let X be a variety over a field K and α ∈ X∞ \ (Sing X)∞. Then there
exists a (nonreduced) scheme Y of finite type over K and a point y
such that

ÔX∞,α ≃ ÔY,y ⊗̂K K[[zi | i ∈ N]].

⇝ Singularity at α decomposes into a finite-dimensional part ÔY,y

and into an infinite-dimensional smooth part.

Definition: The formal scheme Ŷy := Spf ÔY,y is called a formal model
of α.

Remark: Proof is constructive (c.f. Bourqui, Sebag), but difficult to
understand the resulting formal model.
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Describing the formal neighborhood by deformations

Idea: Use functorial description of (̂X∞)α := Spf ÔX∞,α.

Let (A,m) be a test ring, that is, a K-algebra such that A/m = K and
mn = 0 for some n.

Fact: (̂X∞)α is determined by A-deformations of α, that is,
morphisms α̃ : SpecA[[t]]→ X such that α̃ ≡ α modulo m. In
diagrammatic notation:

SpecA[[t]] α̃ // X

Spec K[[t]]

OO

α

;;wwwwwwwwww
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Drinfeld’s example

Let X = V(yz− x2) and α(t) = (0, 0, t). Let (A,m) be a test ring and α̃

an A-deformation of α. That is,

α̃(t) = (x(t), y(t), z(t) + t), x(t), y(t), z(t) ∈ m[[t]].

Weierstrass preparation: z(t) + t = (t− a)u(t); a ∈ m, u(t) ∈ 1+m[[t]].
Substituting:

y(t)(t− a) − x2(t)u−1(t) = 0.

Given a and u(t), x(t), then there exists y(t) solving this equation if
and only if a is a root of x(t)2 = 0. Writing v(t) := x(t− a) this
translates to v(0)2 = 0.
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Drinfeld’s example continued

Thus an A-deformation (x(t), y(t), z(t) + t) is the same as
u(t) ∈ 1+m[[t]], v(t) ∈ m[[t]] satisfying v(0)2 = v20 = 0. Hence

ÔX∞,α ≃ K[[v0]]/(v20) ⊗̂K K[[ui, vi | i ⩾ 1]].

⇝ A formal model for α(t) = (0, 0, t) on X = V(yz− x2) is given by

Ŷy = Spf K[[v0]]/(v20).

Remark: Same argument works for yz− f(x1, . . . , xn) and gives as a
formal model K[[v1, . . . , vn]]/f(v1, . . . , vn).
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Further questions

Theorem (Grinberg, Kazhdan 2000; Drinfeld 2002)
Let α ∈ X∞ \ (Sing X)∞. Then:

ÔX∞,α ≃ ÔY,y ⊗̂K K[[zi | i ∈ N]].

Questions:

1. What happens for α ∈ (Sing X)∞?
2. Can the statement be extended beyond the formal completions

to a more global one?
3. How does the formal model of α relate to the singularity at

α(0) ∈ X?

11



Formal neighborhood of degenerate arcs

Question 1: What happens for α ∈ (Sing X)∞?

Partial results by Bourqui, Sebag and C., Hauser for constant arcs.

Theorem 1 (C., Hauser)
Let x ∈ X and αx ∈ X∞ the constant arc centered in x. Assume
char(K) = 0. Then there exists a decomposition of the form

ÔX∞,α ≃ ÔY,y ⊗̂K K[[z]]

if and only if there exists such a decomposition for ÔX,x.

Corollary 1
If x ∈ Sing X, then there does not exist a Drinfeld–Grinberg–Kazhdan
decomposition for αx.

Remark: Statement can be derived from the formula for the sheaf of
differentials.
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Globalization of Drinfeld–Grinberg–Kazhdan theorem

Question 2: Can the statement be extended beyond the formal
completions to a more global one?

Attempts made by Bouthier, Ngo, Sakellaridis,... to extend the
Drinfeld–Grinberg–Kazhdan theorem.

Problem: Proof of Drinfeld crucially makes use of Weierstrass
preparation, which holds only over complete local rings. In the
language of arc spaces: the morphism

Qd × (Gm)∞ → (A1)∞, (q(t),u(t)) 7→ q(t)u(t),

where Qd is the space of monic polynomials of degree d and (Gm)∞
is the space of invertible series, is only an isomorphism at the
completion at points (td,u(t)).
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The minimal formal model of an arc

Question 3: How does the formal model of α relate to the singularity
at α(0) ∈ X?

Definition: A minimal formal model of α ∈ X is a formal model Ŷy
which is indecomposable, i.e. there does not exist an isomorphism

ÔY,y ≃ ÔZ,z ⊗̂K K[[u]].

Fact: For any α ∈ X∞ \ (Sing X)∞ there exists a minimal formal model
and it is unique up to isomorphism.

Bourqui, Sebag described explicitly the minimal formal model of
certain plane curves. For example, for X = V(y2 − xn+1) and
α(t) = (t2, tn+1) the formal model is given by

Ŷy = Spf K[[u]]/(un/2−1).
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Embedding codimension



Embedding codimension of algebraic varieties

Problem: Given a variety X over K, measure the “size” of a singularity
x ∈ X.

Idea: Recall that, for a local ring (A,m), embdimA := dimK m/m2.
Consider the difference

embcodimOX,x := embdimOX,x − dimOX,x,

which is called embedding codimension or regularity defect (c.f.
Lech).

Fact: embcodimOX,x = 0 iff x ∈ X is regular.

Fact: embcodimOX,x = 1 iff X is locally at x an intersection of
hypersurfaces.
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Embedding codimension of algebraic varieties cont.

Recall: for a variety X with embdimOX,x = d there exists a surjective
map K[[x1, . . . , xd]]→ ÔX,x, a formal embedding. In fact, we have more:

Theorem
Assume K infinite and x ∈ X singular. If embdimOX,x = d, then there
exists U ⊂ X open neighborhood of x such that U ↪→ Ad.

Remark: embcodimOX,x measures the codimension of X with respect
to a minimal embedding.

Theorem (Lech 1964)
Let (A,m) be an excellent Noetherian local ring. For any prime p of
A we have embcodimAp ⩽ embcodimA. In particular, the function

x ∈ X 7→ embcodimOX,x ∈ N0

is upper semicontinuous.
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Formal embedding codimension of non-Noetherian rings

Problem: If (A,m) is not Noetherian, then in general embdimA = ∞
and dimA = ∞. So the difference embdimA− dimA is not defined.

Idea: Assume A contains a field K such that A/m = K. Choose
minimal system of generators ai, i ∈ I, for m. This gives a surjection

τ : K[[xi | i ∈ I]]→ Â, xi 7→ ai.

Definition: The formal embedding codimension of A is defined as

f. embcodimA := ht(ker τ).

Remark: This is independent of choice of generators ai.
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Formal embedding codimension continued

Definition: f. embcodimA := ht(ker τ), where τ : K[[xi | i ∈ I]]→ Â.

Fact: If A Noetherian, then

f. embcodimA = ht(ker(K[[x1, . . . , xd]]→ Â)),

where d = embdimA. Since dim Â = dimA, we have
f. embcodimA = embcodimA− dimA.

Fact: We have f. embcodimA = 0 iff A is formally smooth over K. In
this case, Â ≃ K[[xi | i ∈ I]].
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Towards a different viewpoint of embedding codimension

There are two issues with the definition of formal embedding
codimension:

1. Difficult in case A is of mixed characteristic.
2. The ring K[[xi | i ∈ I]] has a lot of pathologies if |I| = ∞.

Observations: For A Noetherian we have dimA = dim Â = dimgrA,
where grA is the associated graded of A.

If Â = K[[xi | i ∈ I]], then grA = K[xi | i ∈ I], which is a much easier ring
to study than the former.
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Embedding codimension of non-Noetherian rings

Definition: Let (A,m) be a local ring with K = A/m. Consider the
natural surjection

γ : SymK(m/m2)→
⊕
n

mn/mn+1 = grA.

Then the embedding codimension of A is defined as

embcodimA := ht(kerγ).

Fact: If A Noetherian, then embcodimA = embdimA− dimA.

Theorem (EGA IV)
A local K-algebra A is formally smooth over K iff embcodimA = 0.
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A consequence of the Drinfeld–Grinberg–Kazhdan theorem

Theorem 2 (C., de Fernex, Docampo)
Let α ∈ X∞ \ (Sing X)∞ and let

ÔX∞,α ≃ ÔY,y ⊗̂K K[[ti | i ∈ N]].

Then embcodimOX∞,α = embcodimOY,y and similarly for
f. embcodim. In particular, embcodimOX∞,α < ∞.

Remark: Proof for embcodim is a trivial consequence of the theorem
of Drinfeld, Grinberg and Kazhdan theorem.

For f. embcodim the proof is much harder and requires extensions of
classical results of commutative algebra such as flatness of
completion.
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Comparing the two notions of embedding codimension

Theorem 3 (C., de Fernex, Docampo)
For any local equicharacteristic ring (A,m) we have

embcodimA ⩽ f. embcodimA.

Remark: Proof uses degeneration to the extended Rees algebra.

Remark: We do not know of an example where this inequality is
strict. As we will see, for any arc α ∈ X∞ we have equality for
A = OX∞,α.

22



Embedding codimension of the
space of arcs



The main result

Theorem 4 (C., de Fernex, Docampo)
Let K be a perfect field and X a variety over K. Let α ∈ X∞. Then the
following are equivalent:

1. α ∈ X∞ \ (Sing X)∞.
2. embcodimOX∞,α < ∞.
3. embcodimOX∞,α ⩽ ordα JacX.

Here JacX denotes the Jacobian ideal of X.

Remark: The proof does not make use of the theorem of Drinfeld,
Grinberg, Kazhdan; nor of Weierstrass preparation.
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Drinfeld’s example revisited

Let X = V(yz− x2) and α(t) = (0, 0, t). We have seen that a formal
model for α is given by

Ŷy = Spf(K[v]/(v2)).

Clearly embcodimOY,y = 1. On the other hand,

JacX = (2x, y, z)

and thus ordα JacX = 1. We see that in this case

embcodimOY,y = ordα JacX .

Hence the bound provided by the previous theorem is sharp.
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Strategy of the proof

Aim: Illustrate the idea of the proof of embcodimOX∞,α ⩽ ordα JacX
in several steps:

1. Start with a property on jet spaces and study its asymptotics.
2. Construct a morphism of the underlying variety f : X→ Y whose

induced map f∞ : X∞ → Y∞ “constructs” this property.
3. Show that one may pass to the limit via

X∞ f∞ //

πX
n
��

Y∞
πY

n
��

Xn fn
// Yn.
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Ingredient I: Asymptotics of jet spaces

Theorem (de Fernex, Docampo)
Let α ∈ X∞ \ (Sing X)∞ and αn = πn(α) ∈ Xn. Then, for n≫ 0,

embdimOXn,αn ⩽ (n+ 1)dim X+ ordα JacX,

Remark: This is a consequence of the formula for the sheaf of
differentials of X∞.

Observation: If n≫ 0 and α ∈ X∞ \ (Sing X)∞, then

dimOXn,αn ⩾ (n+ 1)dim X.
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Ingredient II: A geometric construction

Situtation: Let X be a variety with dim X = n and X ⊂ Ad. Consider a
general linear projection Ad → An and the induced map
f : X→ An =: Y. Write fn : Xn → Yn for n ∈ N ∪ {∞}.

Theorem 5 (C., de Fernex, Docampo)
Let α ∈ X∞ \ (Sing X)∞ and assume that K is perfect. Write
β = f∞(α). Then the induced map on Zariski cotangent spaces

(Tαf∞)∗ : mβ/m
2
β → mα/m

2
α

is an isomorphism.

Remark: Proof of this theorem uses the formula for the sheaf of
differentials. Compare to Bourqui, Sebag and Ein, Mustata.
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Ingredient II continued

Since Y = An, we have

gr(OY∞,β) ≃ SymK mβ/m
2
β

Then the map
(Tαf∞)∗ : mβ/m

2
β → mα/m

2
α

being an isomorphism implies that:

Corollary
embcodim(OX∞,α) = ht(ker gr(f∞)), where

gr(f∞) : gr(OY∞,β)→ gr(OX∞,α).
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Ingredient III: Passing to the limit

Consider the diagram

gr(OY∞,β)
gr(f∞) // gr(OX∞,α)

gr(OYn,βn) gr(fn)
//

gr(πX
n)

OO

gr(OXn,αn).

gr(πY
n)

OO

Fact: ht(ker gr(f∞)) = lim supn ht(ker gr(fn)).

Fact: ht(ker gr(fn)) ⩽ embcodimOXn,αn .

This concludes the proof of the theorem.

Remark: Here the proof relies on the fact that K[xi | i ∈ I] is the
colimit of all its finite-variate polynomial rings.
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Outlook

The explicit bound was already shown to imply results on
Mather–Jacobi discrepancies, which are invariants used in
higher-dimensional birational geometry.

In addition, the approach presented here may be applied to study
similar properties of singularities of jet and arc spaces. In particular,
one hope is to obtain a full description of the singular structure of
the arc space, see:

• A. Bouthier: “Cohomologie étale des espaces d’arcs”.
• D. Bourqui, J. Sebag: “Finite formal model of toric singularities”.
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