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Jets and arcs on algebraic
varieties



Geometric picture: convergent arcs on complex manifolds

Let X be a complex manifold with dim X = N. A convergent arc is a
holomorphic map α : U→ X, where U ⊂ C is a small complex disk.

Choose local coordinates t for U and x1, . . . , xN for X. Then α is given
by

α(t) = (x1(t), . . . , xN(t)) ∈ C{t}N.

For n ⩾ 0 the n-jet of α is obtained by truncation of α(t) at order n:

xi(t) =
∞∑
j=0

xi,jtj 7−→ jetn(xi(t)) =
∑
j⩽n

xi,jtj.
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Jets and arcs on algebraic varieties

Let K be a field of any characteristic. Let X be an algebraic variety
over K and n ∈ N.

Definition:

• An arc on X is a morphism α : Spec K[[t]]→ X.
• An n-jet on X is a morphism αn : Spec K[t]/(tn+1)→ X

Notation: Spec K[[t]] = {0,η} and Spec K[t]/(tn+1) = {0}, where 0 is the
unique closed point and η the generic point of K[[t]].

3



Truncation of arcs

Recall: the rings K[t]/(tn+1) form an inverse system and
K[[t]] = lim←−n K[t]/(t

n+1).

For n ∈ N and α : Spec K[[t]]→ X consider the n-th truncation of α

Spec K[t]/(tn+1) // Spec K[[t]] α // X ,

where the first map is induced by natural projection
K[[t]]→ K[t]/(tn+1).

Question: When does an n-jet arise as a truncation of an arc?
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Li ting of jets and singularities

Lemma
Let X be a variety over K and p ∈ X(K). Then X is smooth at p iff
every jet αn with αn(0) = p can be li ted to an arc α on X.

Recall: X is formally smooth over K if for

X

��

// Spec C/J

��
Spec K // Spec C

,

with J ⊂ C nilpotent, there exists a diagonal arrow X→ Spec C.

For the other direction reduce to the hypersurface case and use X
smooth at p iff tangent cone equals tangent space at p.
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Connection to the convergent case: Greenberg–Artin approxima-
tion

Theorem (Greenberg 1966, M. Artin 1969)
Let f1, . . . , fr ∈ C[x1, . . . , xN] and assume there exists solution
x1(t), . . . , xN(t) ∈ C[[t]] of

fi(x1(t), . . . , xN(t)) = 0, 1 ⩽ i ⩽ N. (⋆)

Then, for every c ∈ N, there exists a solution x ′1(t), . . . , x ′N(t) ∈ C{t} of
(⋆) such that

x ′i (t) − xi(t) ∈ (tc).

Remark: In fact, x ′i (t) can be chosen to be algebraic power series.
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Example: Arcs on affine space

Let AN = Spec K[x1, . . . , xN]. An arc α on AN corresponds to a map

α∗ : K[x1, . . . , xN]→ K[[t]]

Thus α is given by xi(t) := α∗(xi) ∈ K[[t]] for 1 ⩽ i ⩽ N. Conversely,
each choice of xi(t) gives map K[x1, . . . , xN]→ K[[t]].

Write
xi(t) =

∑
j∈N

xi,jtj.

⇝ Arcs on AN are in bijection to points of

A∞ := Spec K[xi,j | 1 ⩽ i ⩽ N, j ∈ N].
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Example continued: Arcs on a hypersurface

Let X ⊂ AN be given by f ∈ K[x1, . . . , xN]. An arc on X is a solution
x(t) ∈ K[[t]]N of

f(x(t)) = f(x1(t), . . . , xN(t)) = 0. (⋆)

Write xi(t) =
∑∞

j=0 xi,jtj and expand in t:

f(x(t)) =
∑
ℓ⩾0

Fnti, Fn ∈ K[xi,j | 1 ⩽ i ⩽ N, 0 ⩽ j ⩽ n].

Thus (⋆) is equivalent to Fn = 0 for all n ⩾ 0 and arcs on X are in
bijection with points on

X∞ := Spec K[xi,j]/(Fn | n ∈ N) ⊂ A∞.
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Example continued: Arc space of the cusp

Let f = x2 + y3 ∈ K[x, y] and α1(t) =
∑

i⩾0 xiti, α2(t) =
∑

i⩾0 yiti.

Then f(α1(t),α2(t)) = 0 is equivalent to the system

F0 = x20 + y30 = 0
F1 = 2x0x1 + 3y20y1 = 0
F2 = x21 + 2x0x2 + 3y0y21 + 3y20y2 = 0
F3 = 2x1x2 + 2x0x3 + y31 + 3y0y1y2 + 3y20y3 = 0
F4 = x22 + 2x1x3 + 2x0x4 + 3y21y2 + 3y0y22 + 3y0y1y3 + 3y20y4 = 0

. . .
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The space of n-jets: formal definition

Definition: The n-th jet space Xn of X is the K-scheme representing
the n-th jet functor

Y 7→ HomK(Y×K Spec K[t]/(tn+1), X).

In particular, for Y = Spec K,

HomK(Spec K, Xn) ≃ HomK(Spec K[t]/(tn+1), X).

For m ⩾ n we have truncation maps πm,n : Xm → Xn induced by
K[t]/(tm+1)→ K[t]/(tn+1).

Clearly X0 = X and πn := πn,0 : Xn → X is given by αn 7→ αn(0).
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Example: 1-jets are tangent vectors

Assume that X = SpecR. Then 1-jets α1 correspond to maps
α∗
1 : R→ K[t]/(t2). For r ∈ R write

α∗
1 (r) = φ(r) + d(r)t.

Then d ∈ DerK(R, K), where K is R-algebra via φ : R→ K. The
derivation d corresponds to a tangent vector at the point
α1(0) = kerφ. Conversely, every such d gives a 1-jet on X.

⇝ X1 = Spec(SymR ΩR/K) is the total Zariski cotangent space.
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The space of arcs: formal definition

The morphisms πm,n : Xm → Xn form a projective system for m > n.

Definition: The arc space of X is X∞ := lim←−n Xn.

Remarks:

1. A priori not clear that X∞ exists as a scheme (will see later).
2. We have

HomK(Spec K, X∞) ≃ HomK(Spec K[[t]], X).

3. If dim X > 0, then X∞ non-Noetherian of infinite Krull dimension.
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Functorial properties of the arc space

By definition of Xn the arc space X∞ represents the functor

Y 7→ HomK(Y×̂K Spec K[[t]], X),

where Y×̂K Spec K[[t]] is the formal completion of Y× A1 along Y× 0.

If X = Spec(R), then by definition X∞ represents

S ∈ AlgK 7→ HomK(Spec S[[t]], X∞).

For non-affine X this still holds, but proof is hard (uses derived
algebraic geometry, c.f. Bhatt).
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Jets and arcs via higher
derivations



Higher derivations of rings

Let R, S be K-algebras and n ∈ N ∪ {∞}. A higher derivation D : R→ S
of order n is given by K-linear maps Di : R→ S for i ⩽ n such that

1. D0 : R→ S is a K-algebra map.
2. The higher Leibniz rules hold; that is,

Di(r1r2) =
∑
j+l=i

Dj(r1)Dl(r2).

Remark: For each higher derivation D its order 1-component D1 is a
usual derivation.
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An example

Example: If char(K) = 0 and R = S = K[x], for i ∈ N set

Di :=
1
i!

di

dxi .

Note: for f(x) ∈ K[x] we have that Di(f(x)) is the coefficient of ti in the
Taylor expansion of f(x+ t). Thus D is defined for char(K) = p > 0. In
fact, Dp(xp) = 1, whereas d

dxx
p = pxp−1 = 0.

Fact: Every D : R→ S of order n ∈ N ∪ {∞} corresponds to
αD : R→ S[t]/(tn) resp. R→ S[[t]] via

αD(r) =
∑
i⩽n

Di(r)ti.

⇝ for S = K the map αD is just an n-jet resp. arc on X = Spec(R).
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The Hasse–SChmidt algebra

Definition: The n-th Hasse–Schmidt algebra HSnK(R) of R is defined as
the quotient of

R[r(i) | r ∈ R, 0 ⩽ i ⩽ n]

by the ideal generated by

r(i) + s(i) − (r+ s)(i), r, s ∈ R,
c(i), c ∈ K,

(rs)(i) −
∑
j+l=i

r(j)s(l), r, s ∈ R.

Remark: we have an inclusion R→ HSnK(R) given by r 7→ r(0).
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Hasse–Schmidt algebras pt. II

Fact: For any K-algebra S

HomK(HSnK(R), S) ≃ HomK(R, S[t]/(tn+1)).

for n ∈ N, and

HomK(HS∞K (R), S) ≃ HomK(R, S[[t]]).

Thus, if X = Spec(R), then Xn = Spec(HSnK(R)) for n ∈ N ∪ {∞}.

Definition: The universal higher derivation γ : R→ HSnK(R)[t]/(tn+1) is
the map corresponding to idHSnK(R).

Fact: For φ : R→ R ′ there exists maps HSnK(R)→ HSnK(R ′) given by
r(i) 7→ (φ(r))(i) for n ∈ N ∪ {∞}.
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The global case

Let X be a variety over K, not necessarily affine.

Fact (Vojta): For n ∈ N ∪ {∞} there exists a sheaf of OX-algebras
HSnX/K such that for each affine open U = Spec(R) we have

Γ(U,HSnX/K) ≃ HSnK(R).

Then: Xn = SpecX(HS
n
X/K) is the relative Spec of HSnX/K.

Remark: For f : X→ Y we get morphisms fn : Xn → Yn.

Warning: The universal arc γ : X∞×̂K Spec K[[t]]→ X is a morphism
between proper formal schemes.
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The geometry of arc spaces



A brief historical detour

The investigation of arc spaces in the context of algebraic geometry
originated in the work of Nash in the 1960s, c.f. “‘Arc structure of
singularities”.

The main idea is that the geometry of Xn and X∞ is deeply related to
singularities of X.

Independently, jet and arc spaces appeared implicitly in the works of
Kolchin and Ribenboim on differential algebra.
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Jet spaces of a smooth variety

Lemma
Let f : X→ Y be étale. Then Xn = X×Y Yn for n ∈ N.

Proof: Follows immediately from f : X→ Y formally étale.

Lemma
If X is smooth and dim X = d, then there exists covering by opens
U ⊂ X such that πn : Xn → X restricts to π−1

n (U) = U× Adn → U.

Proof: Since X smooth, there exists covering by opens U ⊂ X and
étale morphisms U→ Ad. Then apply previous lemma and the fact
that (Ad)n = Ad × Adn for n ∈ N.
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Kolchin’s Irreducibility theorem

Corollary
If X is smooth over K, then X∞ irreducible.

Proof: Follows from Xn irreducible and Xm → Xn surjective.

Theorem (Kolchin)
Let X be a variety over a field K of characteristic 0. Then X∞ is
irreducible.

Theorem (Mustata)
Let X be a variety over C. Then Xn is irreducible for all n ⩾ 1 iff X has
at most rational singularities.
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Li ting arcs along resolutions

Lemma
Let f : Y→ X be a proper birational morphism such that f is an
isomorphism over Z ⊂ X closed. Then f∞ gives rise to a bijection

Y∞ \ (f−1(Z))∞ → X∞ \ Z∞.

Proof: For α ∈ X∞ \ Z∞ we have α(η) ∈ X \ Z ≃ Y \ f−1(Z). Thus we get

Spec K((t))
α(η) //

��

Y

f
��

Spec K[[t]]
α

// X.

Now apply valuative criterion of properness.
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Sketch of proof of Kolchin’s theorem

We sketch the proof of Kolchin’s theorem by induction on dim X.

Assume X is irreducible with Z := Sing X and let f : Y→ X be a
resolution of singularities. Sufficient to prove: f∞ : Y∞ → X∞ is
dominant. From before

Y∞ \ (f−1(Z))∞ ≃ X∞ \ Z∞.

Write Z =
∪
Zi with Zi irreducible; by induction (Zi)∞ irreducible. By

generic smoothness, there exists Ui ⊂ Zi dense open such that
f |f−1(Ui): f−1(Ui)→ Ui smooth. Then (Ui)∞ ⊂ f∞(Y∞) and thus
(Zi)∞ ⊂ f∞(Y∞).
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Counterexample in positive characteristics

Warning: Kolchin’s theorem fails for char(K) > 0.

Example: Consider X = V(xp − ypz) ⊂ A3 over K with char(K) = p. A
resolution of singularities is given by the normalization
f : Y := A2 → X, (u, v) 7→ (uv, v,up). Restricting f to Z := Sing(X) ≃ A1

we get
f |f−1(Z): A1 → A1, u 7→ up.

A generic arc on Z at 0 is of the form α(t) = (0, 0, z(t)), with
ordt z(t) = 1. Such an α cannot be li ted via f and it can be shown
that α /∈ f∞(Y∞) \ (f−1(Z))∞.
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The Nash problem and beyond

Using similar arguments one can construct the Nash map. For
surfaces X over C:

{Irred. cpts. of π−1∞ (Sing X)} ≃ {Exc. div. of Y→ X},

where Y→ X is a minimal resolution. In his 1968 preprint Nash
conjectured this is a bijection; it was fully proven only in 2012 by de
Bobadilla and Pe Pereira.

This is only one example of the link between singularities of X and
topological properties of X∞.

Question: What about the singularities of X∞ itself?

25



Differentials on the space of arcs



Smooth points in the arc space

Recall that X∞ is infinite-dimensional if dim X > 0, therefore the
definitions of regular points does not make sense anymore.

Question: What are the smooth points in the arc space?

Candidate: α ∈ X∞ with OX∞,α formally smooth over K.

Theorem (Bourqui, Sebag)
Let α ∈ X∞ \ (Sing X)∞. Then OX∞,α formally smooth over K iff the
unique formal branch containing α(η) is smooth.

Remark: Will see later that α ∈ (Sing X)∞ is not formally smooth.
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Differentials on the space of arcs - Notation

Goal: Study the sheaf of differentials ΩX∞/K of X∞.

Notation: For a K-algebra R and n ∈ N ∪ {∞}:

• R[[t]]n := R[t]/(tn+1) if n ∈ N and R[[t]]∞ := R[[t]].
• Rn := HSnK(R) the n-th Hasse–Schmidt algebra of R.
• γn : R→ Rn[[t]]n the map corresponding to the universal higher
derivation D := (Di)i.

• For r ∈ R set r(i) := Di(r) and identify r with r(0). Then γn is given
by

r 7→
∑
i⩾0

r(i)ti.
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Differentials on the space of arcs - affine case

Theorem (de Fernex, Docampo)
Let ΩR/K the module of Kähler differentials. For n ∈ N ∪ {∞}

ΩRn/K ≃ ΩR/K ⊗R Qn,

where

1. Qn := (Rn[[t]]n)∨ = HomRn(Rn[[t]]n,Rn) if n ∈ N, and
2. Q∞ := lim−→n(R∞[[t]]n)∨.

Remark: Qn is an R-module via γn : R→ Rn[[t]]n.

Remark: Qn is free of rank (n+ 1) over Rn, whereas Q∞ is free of
infinite rank over R∞. Note that Q∞ ̸≃ (R∞[[t]])∨.
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A formula for the Jacobian ideal of X∞

Let R = K[x1, . . . , xN]/(f1, . . . , fr). Then the formula for the Kähler
differentials implies

∂f(p)i

∂x(q)j

= Dp−q

(
∂fi
∂xj

)
.

In particular: ∂f(p)i
∂x(p)j

= ∂fi
∂xj , where we again identify xi with x(0)i .

Example: f = x2 + y3 and f(2) = x21 + 2x0x1 + 3y0y21 + 3y20y2. Then

∂f(2)
∂y1

= D1(3y2) = 6y0y1.
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Differentials on the space of arcs - affine case pt. II

Theorem (de Fernex, Docampo)
Let ΩR/K the module of Kähler differentials. For n ∈ N ∪ {∞}

ΩRn/K ≃ ΩR/K ⊗R Qn,

Remark: This formula implies in particular a weaker version of the
Birational Transformation Rule of Denef and Loeser. More
applications next time.

Observation: Le t side parametrizes tangents on infinitesimal data of
order n on R, while right side should be some “order n” operation on
tangents on R.
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Higher derivations of modules à la Ribenboim

Let R, S be two K-algebras and D : R→ S a higher derivation of order
n ∈ N ∪ {∞}. Let M ∈ ModR, N ∈ ModS.

A higher derivation ∆ : M→ N of order n is a collection of K-linear
maps ∆i : M→ N for i ⩽ n satisfying

∆i(r ·m) =
∑
j+l=i

Dj(r)∆l(m), r ∈ R,m ∈ M.

Fact (Ribenboim): There exists an Rn-module HSnR/K(M) parametrizing
higher derivations, called the Hasse–Schmidt module.

Theorem 1 (de Fernex, Docampo; C., Narváez)
For n ∈ N ∪ {∞} we have HSnR/K(M) ≃ M⊗R Qn.
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A comparison result

Theorem 2 (C., Narváez Macarro)
For a K-algebra R and an R-module M we have:

SymRn HS
n
R/K(M) ≃ HSnK(SymR M).

In particular, for the “‘mysterious” module Qn we have

Qn = deg. 1 elements of HSnK(SymR R)

Proof of ΩRn/K ≃ ΩR/K ⊗R Qn now follows from the easy fact that:

HSnK(HSmK (R)) ≃ HSmK (HSnK(R)),

for m,n ∈ N ∪ {∞}.

32



Globalizing the constructions

Theorem 3 (de Fernex, Docampo; C., Narváez Macarro)
For n ∈ N ∪ {∞} the assignment M 7→ HSnR/K(M) glues to give a
functor

QCoh(X)→ QCoh(Xn).

In particular, for n ∈ N this restricts to give a functor

Vect(X)→ Vect(Xn).

Remark: Original construction by de Fernex and Docampo uses
pullback to the universal arc, which for n = ∞ gives a sheaf over a
formal scheme.

Question: Which bundles over Xn arise in the above way?
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