Computer Science

Worksheet 6. Vector spaces and linear maps.

1) Consider the vector space \mathbb{R}^3 .

i) Is it possible to write the vectors (1, 2, 3), (1, 1, 1) as linear combinations of the vectors in $S = \{(1, 0, 1), (0, 2, 2)\}$?

ii) Compute x and y, if possible, so that (1, 2, x, y) is a linear combination of the vectors (1, 2, 0, 2) and (1, 1, 2, 3).

- 2) Decide whether the following families of vectors in R³ are linearly independent or not.
 i) {(1,2,1), (1,0,1), (2,3,2)}.
 ii) {(1,0,0), (2,1,1), (0,1,1), (1,-1,-1)}.
- 3) Is the vector (1, 0, 1, 0) a linear combination of the system $\{(1, 1, 0, 1), (1, 0, 1, 1), (1, 0, 0, -1)\} \subseteq \mathbb{R}^4$
- 4) Are the following sets vector subspaces of \mathbb{R}^4 ?

i)
$$A = \{(3x_2, x_2, x_4 + x_2, x_4) \mid x_2, x_4 \in \mathbb{R}\}.$$

ii) $B = \{(x_1, x_2, x_3, x_4) \mid x_1 \cdot x_2 = 0\}.$
iii) $C = \{(x_1, x_2, x_1, x_2) \mid x_1 = 1\}.$
iv) $D = \{(x_1, x_1, x_1, x_1) \mid x_1 \in \mathbb{R}\}.$
v) $E = \{(x_1, x_2, x_3, x_4) \mid x_1 = t, x_2 = t, x_3 = 2t, x_4 = 5t, t \in \mathbb{R}\}.$

- 5) Let S be the subspace of \mathbb{R}^3 generated by $\{(1,2,1), (1,0,1), (2,3,2)\}$. Write S as the set of solutions of some homogeneous system of linear equations.
- 6) Compute the coordinates of the vectors (1, 2, 3) and (1, 1, 0) in the basis $\mathbb{B} = \{(1, -1, 2), (0, 1, 1), (1, 0, 4)\}$ of \mathbb{R}^3 .
- 7) Compute the dimension of the following vector subspaces of \mathbb{R}^4 by finding, in each case, a basis.

a)
$$\mathbb{W}_1 : \begin{cases} x_1 - x_2 + x_3 - x_4 = 0\\ x_1 - x_2 = 0\\ x_3 - x_4 = 0\\ x_1 - x_4 = 0 \end{cases}$$

b) $\mathbb{W}_2 : \begin{cases} x_1 - x_2 + x_3 - x_4 = 0\\ x_1 - x_2 - 2x_3 - x_4 = 0 \end{cases}$

8) Find a basis of the following vector subspaces:

a)
$$\mathbb{S} \subseteq \mathbb{R}^4$$
 generated by $\{(1, -1, 0, 0), (2, 0, -1, -1), (1, 0, 0, -1), (1, -1, 1, -1)\}$

- b) $\mathbb{S} \subseteq \mathbb{R}^3$ generated by $\{(1, -1, 0), (1, 0, -1), (2, -1, -1), (-1, -1, 2)\}.$
- 9) Let U be the subspace of \mathbb{R}^4 generated by (1, 1, -1, 2) and (-1, 2, 3, 3). Let V be the subspace of \mathbb{R}^4 generated by (1, 7, 3, 12) and (-4, 5, 1, 1). Let W = U + V.
 - **a)** Find a basis of W.

b) Write W as the solution of a system of linear equations. Is this system unique? What is the minimum number of equations that your need to describe W?

- c) Show that $(2, -3, 5, 7) \notin W$.
- d) Show that $w = (27, 0, 27, 57) \in W$. Compute $u \in U$ and $v \in V$ so that w = u + v.

- **10)** Let \mathbb{W}_1 and \mathbb{W}_2 be the subspaces of \mathbb{R}^4 from exercise 7.
 - (a) Compute a basis of $\mathbb{W}_1 \cap \mathbb{W}_2$ and a basis of $\mathbb{W}_1 + \mathbb{W}_2$. Verify that Grassmann's Identity holds.
 - (b) Find a system of linear equations that describes $W_1 \cap W_2$ and another whose solution is $W_1 + W_2$. Make sure that in each case, the number of equations is the minimum needed for such descriptions.
- 11) Let $a \in \mathbb{R}$. Let U and V be vector subspaces of \mathbb{R}^4 :

$$U: \begin{array}{ccc} x_1 + 2x_2 - x_3 + 2x_4 &= 0\\ 2x_1 + x_2 + x_3 - x_4 &= 0 \end{array} \right\} \qquad V: \begin{array}{ccc} 3x_1 + x_2 + 2x_4 &= 0\\ -x_1 + x_3 + ax_4 &= 0 \end{array} \right\}$$

a) Find the values of a for which $U \cap V \neq \{0\}$. For those values of a, compute a basis of $U \cap V$ and a system of equations describing $U \cap V$ with the minimum number of equations.

b) For a = -4, find $u \in U$ and $v \in V$ such that (3, 1, -2, 2) = u + v.

12) Decide which of the following functions are linear maps. For those that are linear maps, write the corresponding matrix.:

a) $f_1: \mathbb{R}^3 \to \mathbb{R}^3$ given by $f_1(v) = \lambda_0 v$ with $\lambda_0 \in \mathbb{R}$ constant. b) $f_2: \mathbb{R}^3 \to \mathbb{R}^3$ given by $f_2(v) = v_0 - v$ with $v_0 \in \mathbb{R}^3$ constant. c) $f_3: \mathbb{R}^3 \to \mathbb{R}^3$ given by $f_3(x_1, x_2, x_3) = (x_1, 1, x_3)$. d) $f_4: \mathbb{R}^3 \to \mathbb{R}^3$ given by $f_4(x_1, x_2, x_3) = (x_1^2 - x_2^2, 0, 0)$. e) $f_5: \mathbb{R}^3 \to \mathbb{R}^3$ given by $f_5(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_1 + x_2, x_3)$. f) $f_6: \mathbb{R}^3 \to \mathbb{R}^2$ given by r $f_6(x_1, x_2, x_3) = (x_1 - x_2, x_1 + x_3)$.

13) Ler f: V → W be a linear map. Write the matrix of f if:
a) V = ℝ², W = ℝ, f(1,0) = 2, f(0,1) = 1.
b) V = ℝ², W = ℝ², f(1,0) = (2,0), f(0,1) = (1,1).

- 14) For each case, decide whether there is a linear map satisfying the required conditions: a) $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, T(1, -1, 1) = (1, 0) and T(1, 1, 1) = (0, 1). b) $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $T(\alpha_i) = \beta_i$ (i = 1, 2, 3) with $\alpha_1 = (1, -1), \ \alpha_2 = (2, -1), \ \alpha_3 = (-3, 2), \ \beta_1 = (1, 0), \ \beta_2 = (0, 1)$ and $\beta_3 = (1, 2)$.
- **15)** Consider the linear maps $f: \mathbb{R}^3 \to \mathbb{R}^3$ given by $f(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_1 + x_2, x_3)$ and $g: \mathbb{R}^3 \to \mathbb{R}^2$ given by $g(x_1, x_2, x_3) = (x_1 x_2, x_1 + x_3)$.
 - a) Let V be the subspace $\langle (1, -1, 0), (1, 1, 1) \rangle$. Compute f(V) and g(V). Compute $f^{-1}(0, 0, 0)$ and $f^{-1}(2, 2, 1)$.
 - b) Compute $f^{-1}(W)$, where $W = \{(x_1, x_2, x_3) : x_1 = 3\lambda, x_2 = 2\lambda, x_3 = \lambda, \lambda \in \mathbb{R}\}.$
- 16) The following matrices determine linear maps from \mathbb{R}^n to \mathbb{R}^m for different values of n, m > 0. For each one of them, compute a basis of the kernel, equations of the image and check that the identity for the dimensions: $(n = \dim (\text{kernel}) + \dim(\text{Image}))$ holds.

$$i) \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}; \quad ii) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix}; \quad iii) \begin{pmatrix} 1 & 3 \\ 1 & 4 \end{pmatrix}; \quad iv) \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix}; \quad v) \begin{pmatrix} 0 & 1 \\ 0 & 2 \\ 0 & -1 \end{pmatrix};$$
$$vi) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}; \quad vii) \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}; \quad viii) \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}; \quad ix) \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}; \quad x) \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ 1 & 3 & 2 \end{pmatrix}.$$