Worksheet 6. Vector spaces and linear maps.

1) Consider the vector space \mathbb{R}^{3}.
i) Is it possible to write the vectors $(1,2,3),(1,1,1)$ as linear combinations of the vectors in $S=$ $\{(1,0,1),(0,2,2)\} ?$
ii) Compute x and y, if possible, so that $(1,2, x, y)$ is a linear combination of the vectors $(1,2,0,2)$ and (1, 1, 2, 3).
2) Decide whether the following families of vectors in \mathbb{R}^{3} are linearly independent or not.
i) $\{(1,2,1),(1,0,1),(2,3,2)\}$.
ii) $\{(1,0,0),(2,1,1),(0,1,1),(1,-1,-1)\}$.
3) Is the vector $(1,0,1,0)$ a linear combination of the system $\{(1,1,0,1),(1,0,1,1),(1,0,0,-1)\} \subseteq \mathbb{R}^{4}$
4) Are the following sets vector subspaces of \mathbb{R}^{4} ?
i) $A=\left\{\left(3 x_{2}, x_{2}, x_{4}+x_{2}, x_{4}\right) \mid x_{2}, x_{4} \in \mathbb{R}\right\}$.
ii) $B=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1} \cdot x_{2}=0\right\}$.
iii) $C=\left\{\left(x_{1}, x_{2}, x_{1}, x_{2}\right) \mid x_{1}=1\right\}$.
iv) $D=\left\{\left(x_{1}, x_{1}, x_{1}, x_{1}\right) \mid x_{1} \in \mathbb{R}\right\}$.
v) $E=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1}=t, x_{2}=t, x_{3}=2 t, x_{4}=5 t, t \in \mathbb{R}\right\}$.
5) Let \mathbb{S} be the subspace of \mathbb{R}^{3} generated by $\{(1,2,1),(1,0,1),(2,3,2)\}$. Write \mathbb{S} as the set of solutions of some homogeneous system of linear equations.
6) Compute the coordinates of the vectors $(1,2,3)$ and $(1,1,0)$ in the basis $\mathbb{B}=\{(1,-1,2),(0,1,1),(1,0,4)\}$ of \mathbb{R}^{3}.
7) Compute the dimension of the following vector subspaces of \mathbb{R}^{4} by finding, in each case, a basis.
a) $\mathbb{W}_{1}:\left\{\begin{array}{l}x_{1}-x_{2}+x_{3}-x_{4}=0 \\ x_{1}-x_{2}=0 \\ x_{3}-x_{4}=0 \\ x_{1}-x_{4}=0\end{array}\right.$
b) $\mathbb{W}_{2}:\left\{\begin{array}{l}x_{1}-x_{2}+x_{3}-x_{4}=0 \\ x_{1}-x_{2}-2 x_{3}-x_{4}=0\end{array}\right.$
8) Find a basis of the following vector subspaces:
a) $\mathbb{S} \subseteq \mathbb{R}^{4}$ generated by $\{(1,-1,0,0),(2,0,-1,-1),(1,0,0,-1),(1,-1,1,-1)\}$.
b) $\mathbb{S} \subseteq \mathbb{R}^{3}$ generated by $\{(1,-1,0),(1,0,-1),(2,-1,-1),(-1,-1,2)\}$.
9) Let U be the subspace of \mathbb{R}^{4} generated by $(1,1,-1,2)$ and $(-1,2,3,3)$. Let V be the subspace of \mathbb{R}^{4} generated by $(1,7,3,12)$ and $(-4,5,1,1)$. Let $W=U+V$.
a) Find a basis of W.
b) Write W as the solution of a system of linear equations. Is this system unique? What is the minimum number of equations that your need to describe W ?
c) Show that $(2,-3,5,7) \notin W$.
d) Show that $w=(27,0,27,57) \in W$. Compute $u \in U$ and $v \in V$ so that $w=u+v$.
10) Let \mathbb{W}_{1} and \mathbb{W}_{2} be the subspaces of \mathbb{R}^{4} from exercise 7 .
(a) Compute a basis of $\mathbb{W}_{1} \cap \mathbb{W}_{2}$ and a bais of $\mathbb{W}_{1}+\mathbb{W}_{2}$. Verify that Grassmann's Identity holds.
(b) Find a system of linear equations that describes $\mathbb{W}_{1} \cap \mathbb{W}_{2}$ and another whose solution is $\mathbb{W}_{1}+\mathbb{W}_{2}$. Make sure that in each case, the number of equations is the minimum needed for such descriptions.
11) Let $a \in \mathbb{R}$. Let U and V be vector subspaces of \mathbb{R}^{4} :

$$
\left.\left.U: \begin{array}{l}
x_{1}+2 x_{2}-x_{3}+2 x_{4}=0 \\
2 x_{1}+x_{2}+x_{3}-x_{4}=0
\end{array}\right\} \quad V: \begin{array}{l}
3 x_{1}+x_{2}+2 x_{4}=0 \\
-x_{1}+x_{3}+a x_{4}=0
\end{array}\right\}
$$

a) Find the values of a for which $U \cap V \neq\{0\}$. For those values of a, compute a basis of $U \cap V$ and a system of equations describing $U \cap V$ with the minimum number of equations.
b) For $a=-4$, find $u \in U$ and $v \in V$ such that $(3,1,-2,2)=u+v$.
12) Decide which of the following functions are linear maps. For those that are linear maps, write the corresponding matrix.:
a) $f_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $f_{1}(v)=\lambda_{0} v$ with $\lambda_{0} \in \mathbb{R}$ constant.
b) $f_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $f_{2}(v)=v_{0}-v$ with $v_{0} \in \mathbb{R}^{3}$ constant.
c) $f_{3}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $f_{3}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, 1, x_{3}\right)$.
d) $f_{4}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $f_{4}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{2}-x_{2}^{2}, 0,0\right)$.
e) $f_{5}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $f_{5}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}, x_{1}+x_{2}, x_{3}\right)$.
f) $f_{6}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by r $f_{6}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}, x_{1}+x_{3}\right)$.
13) Ler $f: V \rightarrow W$ be a linear map. Write the matrix of f if:
a) $V=\mathbb{R}^{2}, W=\mathbb{R}, f(1,0)=2, f(0,1)=1$.
b) $V=\mathbb{R}^{2}, W=\mathbb{R}^{2}, f(1,0)=(2,0), f(0,1)=(1,1)$.
14) For each case, decide whether there is a linear map satisfying the required conditions:
a) $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}, \quad T(1,-1,1)=(1,0)$ and $T(1,1,1)=(0,1)$.
b) $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, \quad T\left(\alpha_{i}\right)=\beta_{i}(i=1,2,3)$ with
$\alpha_{1}=(1,-1), \alpha_{2}=(2,-1), \alpha_{3}=(-3,2), \beta_{1}=(1,0), \beta_{2}=(0,1)$ and $\beta_{3}=(1,2)$.
15) Consider the linear maps $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}, x_{1}+x_{2}, x_{3}\right)$ and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by $g\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}, x_{1}+x_{3}\right)$.
a) Let V be the subspace $\langle(1,-1,0),(1,1,1)\rangle$. Compute $f(V)$ and $g(V)$. Compute $f^{-1}(0,0,0)$ and $f^{-1}(2,2,1)$.
b) Compute $f^{-1}(W)$, where $W=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}=3 \lambda, x_{2}=2 \lambda, x_{3}=\lambda, \lambda \in \mathbb{R}\right\}$.
16) The following matrices determine linear maps from \mathbb{R}^{n} to \mathbb{R}^{m} for different values of $n, m>0$. For each one of them, compute a basis of the kernel, equations of the image and check that the identity for the dimensions: $(n=\operatorname{dim}($ kernel $)+\operatorname{dim}($ Image $))$ holds.

$$
\begin{aligned}
& \text { i) } \left.\left.\left.\left(\begin{array}{rr}
1 & 2 \\
-1 & -2
\end{array}\right) ; \quad i i\right)\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right) ; \quad \text { iii }\left(\begin{array}{cc}
1 & 3 \\
1 & 4
\end{array}\right) ; \quad i v\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 2
\end{array}\right) ; \quad v\right)\left(\begin{array}{rr}
0 & 1 \\
0 & 2 \\
0 & -1
\end{array}\right) ; \\
& \left.\left.v i)\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) ; \quad \text { vii }\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right) ; \quad \text { viii) }\left(\begin{array}{cc}
2 & 0 \\
0 & 3
\end{array}\right) ; \quad i x\right)\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) ; \quad x\right)\left(\begin{array}{rrr}
1 & 2 & -1 \\
0 & 1 & 3 \\
1 & 3 & 2
\end{array}\right) .
\end{aligned}
$$

