Worksheet 2. Equivalence relations.

1) Let $3 \mathbb{Z}=\{3 k \mid k \in \mathbb{Z}\}$. On \mathbb{Z} we define the relation $m \mathcal{R} n \Longleftrightarrow m-n \in 3 \mathbb{Z}$. Show that this is an equivalence relation. Describe the equivalence classes and the quotient set.
2) Let $A=\{1,2,3,5,8,13,21,34\}$ and consider the relation $a \mathcal{R} b \Longleftrightarrow 3$ divides $b^{2}-a^{2}$. Show that this is an equivalence relation and describe the equivalence classes.
3) For a fixed positive integer n, set $n \mathbb{Z}:=\{n k \mid k \in \mathbb{Z}\}$. Define $x \mathcal{R} y \Longleftrightarrow x-y \in n \mathbb{Z}$. Show that this is an equivalence relation. Describe the equivalence classes and the quotient set.
4) On $\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$ consider the relation given by: $(m, n) \mathcal{R}\left(m^{\prime}, n^{\prime}\right) \Longleftrightarrow m \cdot n^{\prime}=m^{\prime} \cdot n$. Show that this is an equivalence relation. Can you describe the equivalence classes and the quotient set?
5) On $\mathbb{Z} \times \mathbb{Z}$ consider the relation given by: $(m, n) \mathcal{R}\left(m^{\prime}, n^{\prime}\right) \Longleftrightarrow m \cdot n^{\prime}=m^{\prime} \cdot n$. Is this an equivalence relation?
6) Consider the following relation on $\mathbb{R}: x \mathcal{R} y \Longleftrightarrow x-y \in \mathbb{Z}$. Show that this is an equivalence relation and describe the quotient set.
7) Consider the following relation on $\mathbb{R}: x \mathcal{R} y \Longleftrightarrow\lfloor x\rfloor=\lfloor y\rfloor$, where $\lfloor z\rfloor=\max \{m \in \mathbb{Z}: m \leq z\}$ (is the integral part of z). Show that \mathcal{R} is an equivalence relation and describe the quotient set.
8) Let M be the set of lines on the plane \mathbb{R}^{2}. Consider the relation on M given by:

$$
r_{1} \mathcal{R} r_{2} \text { if and only if } r_{1}=r_{2} \text { ó } r_{1} \text { is parallel to } r_{2} \text {. }
$$

Show that this is an equivalence relation. What is the equivalence class of the line $2 x+3 y-1=0$? Describe the quotient set by finding a set of numbers X and a bijection $g: \mathbb{R}^{2} / \mathcal{R} \rightarrow X$.
9) Let $f: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto f(x)=x^{2}$. Consider the following relation on $\mathbb{R}: x \mathcal{R} y \Longleftrightarrow f(x)=f(y)$. Show that \mathcal{R} is an equivalence relation. Describe the quotient set.
10) Let X and Y be two sets and let $f: X \rightarrow Y$ be a function. Consider the following relation on X :

$$
x \mathcal{R} y \Longleftrightarrow f(x)=f(y) .
$$

Show that \mathcal{R} defines an equivalence relation on X. Describe the quotient set. If f is bijective, what is this quotient set?
11) Let A be a set and let B be a non-empty subset of A. Consider the following relations on the set $\mathcal{P}(A)$:
(i) $X \mathcal{R}_{1} Y \Longleftrightarrow X \cap B=Y \cap B$.
(ii) $X \mathcal{R}_{2} Y \Longleftrightarrow X \cup B=Y \cup B$.
(iii) $X \mathcal{R}_{3} Y \Longleftrightarrow X \backslash B=Y \backslash B$.

Decide whether these relations are equivalence relations or not; for those that are equivalence relations, describe the corresponding quotient sets.

