Universidad Auténoma de Madrid Algebra
Computer Science

Worksheet 1. Sets and functions.

1. Give an alternative description of the following sets:

a) {r €R | 22 — 5x +6 = 0} b) {r €Z|2*—5x+6=0}
c){reR|z<3} d) {xeN|z <3}
e){reN|JyeNsuchthat y+1 <2} f){zeR|z?+2=0}

g) {x € R | 3y € R such that = = y?} h) {x € N | Jy € N such that y < 5y = = 3}.

Here N=1{0,1,2,3,...}.

2. Let S ={a,b,c,d}, T ={1,2,3} and U = {b,2}. Decide which of the following expressions are correct
and which ones are not.

(1) {a}es (2) a€sS (3) {a,c} CS

4) @eS 5) {a} €P(S) (6) {{a},{a,b}} € P(5)
(1) {a,¢,2,3} CSUT (8) UCSUT (9) beSNU

(10) {p}CSNU 11) {1,3}eT (12) {1,3}CT

(13) {1,3} e P(T) (14) {2} eP(S) (15) @ e P(S)

(16) @ < P(S) (17) {2} < P(9)

3. Let S ={1,2,3,4,5}, T = {3,4,5,7,8,9}, U = {1,2,3,4,9} and V = {2,4,6,8} be subsets of N.
Describe the following sets:

() SNU (b)) (SNTYUU  (¢) (SUTU)NV  (d) (SUV)\U () (UUVUT)\ S
() (SUV)\ (T ND).

4. Show that the following equalities hold:
(a) (AUB)¢ = A°n B¢ (b) (AuB)NC=(AnC)u(BNC(C)
(c) (AUB)NA=A (d) (ANB)UA=A

5. Compute the power set of the empty set; i.e., describe P(2).

6. Prove or disprove the following assertions: (1) P(AUB) = P(A)UP(B) (2) P(ANB) = P(A)NP(B)

7. Suppose that S are V are as in exercise 3. Describe the elements in S x V. Observe that this is a
subset of N x N.

8. Let S ={a,b}, T'={a}, V ={1,2} and U = {1}. Compare the following sets:
(a) (SxV)N(T'xU) (b)) (S\T) x (V\U).

9. Let A, B and C' be three sets. Decide whether the following statements are true of false.

(i) A\(BUC)=(A\B)U(A\C) (i) card(AUB) = card(A\B) + card(B\A) + card(ANB)
(iii) Ax (BAC)=(Ax BYA(AxC)  (iv) P(A\B)=P(A)\ P(B)
(v) AC B <= P(A) C P(B) (vi) A\B=A\C= B=C.

For part (i7) assume that A and B are finite sets.
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Prove that the following expressions define functions. Which of them are injective? Which ones are
surjective? And bijective?

(i) f: N=>N f(m)=m+2 (i1) g: N> Ng(n) =n(n+1)
(iii) fr R—=R f(z) =vVa2+1 (iv) f: Q= Q f(x) = 2% +4x
(v) g: N—=Qg(n)=n/(n+1) (vi)g: Z— N g(n) =n?
Consider the following functions:
i) f:R—R, flz)=2>+1
i) f:Z—Z, f(n)=2n+4
i) f:Q-—Q, flx)=2z+4
For each of them, describe: Im(f) and f~1(0).

Let a € R be non-zero. Prove that the function f : R\ {a} — R\ {a}, given by the expression

axr . ... . o
flx) = is bijective and compute its inverse.
x—a
Decide whether the functions f, g : Z — Z given below are injective, surjective or bijective:

n+1 if nis even, n/2 if n is even,
f(n)Z{ 9( ):{

2n  if n is odd; n+1 if nis odd.

Let f: R — R be the function:
3 six <0,

f(x):{ x—27 six > 0.
Is f injective or surjective? Compute f o f.
For each part (a)-(d) find a function f: N — N which is:
a) Injective but not surjective.
b) Surjective but not injective.
c) Bijective.
d) Not injective and not surjective.

Let f: U — U be a function and let A, B C U. Decide whether the following statements are true or
false:

i) f(A)Nf(B)=f(AnB). i) fHA)Nf1(B)=f1(ANB).
iii) F1(F(4)) = A iv) 1A% = (F1(4))"
Let f: R+ R be the function f(z) = 2® — 3z. Compute f((0,2)), f([~1,3)) and f~1((0,0)).

Assume that f: A — B and g: B — C are bijective. Show that g o f is also bijective and that

(gof) t=flog™h

How many injective functions can be defined from the set {a, b, c} into itself?

Assume A is a finite set with card(A) = n. How many injective functions can we define from A into
A?



