Computer Science

Worksheet 1. Sets and functions.

- 1. Give an alternative description of the following sets:
 - $\begin{array}{ll} a) \ \{x \in \mathbb{R} \mid x^2 5x + 6 = 0\} \\ c) \ \{x \in \mathbb{R} \mid x < 3\} \\ e) \ \{x \in \mathbb{N} \mid \exists y \in \mathbb{N} \text{ such that } y + 1 < x\} \\ g) \ \{x \in \mathbb{R} \mid \exists y \in \mathbb{R} \text{ such that } x = y^2\} \end{array} \qquad b) \ \{x \in \mathbb{R} \mid x^2 5x + 6 = 0\} \\ d) \ \{x \in \mathbb{N} \mid x < 3\} \\ f) \ \{x \in \mathbb{R} \mid x^2 + 2 = 0\} \\ h) \ \{x \in \mathbb{N} \mid \exists y \in \mathbb{N} \text{ such that } x = y^2\} \end{cases}$

Here $\mathbb{N} = \{0, 1, 2, 3, \dots\}.$

2. Let $S = \{a, b, c, d\}$, $T = \{1, 2, 3\}$ and $U = \{b, 2\}$. Decide which of the following expressions are correct and which ones are not.

(1)	$\{a\} \in S$	(2)	$a \in S$	(3)	$\{a,c\} \subseteq S$
(4)	$\varnothing \in S$	(5)	$\{a\} \subseteq \mathcal{P}(S)$	(6)	$\{\{a\},\{a,b\}\}\in \mathcal{P}(S)$
(7)	$\{a,c,2,3\}\subseteq S\cup T$	(8)	$U\subseteq S\cup T$	(9)	$b\in S\cap U$
(10)	$\{b\}\subseteq S\cap U$	(11)	$\{1,3\}\in T$	(12)	$\{1,3\}\subseteq T$
(13)	$\{1,3\} \in \mathcal{P}(T)$	(14)	$\{\varnothing\}\in \mathcal{P}(S)$	(15)	$\varnothing \in \mathcal{P}(S)$
(16)	$\varnothing \subseteq \mathcal{P}(S)$	(17)	$\{\varnothing\}\subseteq \mathcal{P}(S)$		

3. Let $S = \{1, 2, 3, 4, 5\}, T = \{3, 4, 5, 7, 8, 9\}, U = \{1, 2, 3, 4, 9\}$ and $V = \{2, 4, 6, 8\}$ be subsets of N. Describe the following sets:

(a) $S \cap U$ (b) $(S \cap T) \cup U$ (c) $(S \cup U) \cap V$ (d) $(S \cup V) \setminus U$ (e) $(U \cup V \cup T) \setminus S$ (f) $(S \cup V) \setminus (T \cap U)$.

- 4. Show that the following equalities hold:
 - (a) $(A \cup B)^c = A^c \cap B^c$ (b) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ (c) $(A \cup B) \cap A = A$ (d) $(A \cap B) \cup A = A$
- 5. Compute the power set of the empty set; i.e., describe $\mathcal{P}(\emptyset)$.
- 6. Prove or disprove the following assertions: (1) $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$ (2) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$
- 7. Suppose that S are V are as in exercise 3. Describe the elements in $S \times V$. Observe that this is a subset of $\mathbb{N} \times \mathbb{N}$.
- 8. Let $S = \{a, b\}$, $T = \{a\}$, $V = \{1, 2\}$ and $U = \{1\}$. Compare the following sets: (a) $(S \times V) \setminus (T \times U)$ (b) $(S \setminus T) \times (V \setminus U)$.
- 9. Let A, B and C be three sets. Decide whether the following statements are true of false.
 - $(i) \quad A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C) \qquad (ii) \quad card(A \cup B) = card(A \setminus B) + card(B \setminus A) + card(A \cap B)$
 - $(iii) \quad A \times (B \triangle C) = (A \times B) \triangle (A \times C) \qquad (iv) \quad \mathcal{P}(A \setminus B) = \mathcal{P}(A) \setminus \mathcal{P}(B)$
 - $(v) \quad A \subseteq B \iff \mathcal{P}(A) \subseteq \mathcal{P}(B) \qquad \qquad (vi) \quad A \setminus B = A \setminus C \Longrightarrow B = C.$

For part (ii) assume that A and B are finite sets.

- 10. Prove that the following expressions define functions. Which of them are injective? Which ones are surjective? And bijective?
 - $\begin{array}{ll} (i) \ f \colon \mathbb{N} \to \mathbb{N} \ f(m) = m+2 & (ii) \ g \colon \mathbb{N} \to \mathbb{N} \ g(n) = n(n+1) \\ (iii) \ f \colon \mathbb{R} \to \mathbb{R} \ f(x) = \sqrt{x^2+1} & (iv) \ f \colon \mathbb{Q} \to \mathbb{Q} \ f(x) = x^2+4x \\ (v) \ g \colon \mathbb{N} \to \mathbb{Q} \ g(n) = n/(n+1) & (vi) \ g \colon \mathbb{Z} \to \mathbb{N} \ g(n) = n^2. \end{array}$
- 11. Consider the following functions:

i)
$$f : \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = x^3 + 1$$

ii) $f : \mathbb{Z} \longrightarrow \mathbb{Z}, \quad f(n) = 2n + 4$
iii) $f : \mathbb{Q} \longrightarrow \mathbb{Q}, \quad f(x) = 2x + 4.$

For each of them, describe: Im(f) and $f^{-1}(0)$.

- 12. Let $a \in \mathbb{R}$ be non-zero. Prove that the function $f : \mathbb{R} \setminus \{a\} \longrightarrow \mathbb{R} \setminus \{a\}$, given by the expression $f(x) = \frac{ax}{x-a}$ is bijective and compute its inverse.
- 13. Decide whether the functions $f, g: \mathbb{Z} \longrightarrow \mathbb{Z}$ given below are injective, surjective or bijective:

$$f(n) = \begin{cases} n+1 & \text{if } n \text{ is even,} \\ 2n & \text{if } n \text{ is odd;} \end{cases} \quad g(n) = \begin{cases} n/2 & \text{if } n \text{ is even,} \\ n+1 & \text{if } n \text{ is odd.} \end{cases}$$

14. Let $f : \mathbb{R} \to \mathbb{R}$ be the function:

$$f(x) = \begin{cases} x^3 & \text{si } x < 0, \\ x - 27 & \text{si } x \ge 0. \end{cases}$$

- Is f injective or surjective? Compute $f \circ f$.
- 15. For each part (a)-(d) find a function $f: \mathbb{N} \to \mathbb{N}$ which is:
 - a) Injective but not surjective.
 - b) Surjective but not injective.
 - c) Bijective.
 - d) Not injective and not surjective.
- 16. Let $f: \mathcal{U} \longrightarrow \mathcal{U}$ be a function and let $A, B \subseteq \mathcal{U}$. Decide whether the following statements are true or false: $i = f(A \cap B) = f(A \cap B) = f(A \cap B)$

i)
$$f(A) \cap f(B) = f(A \cap B)$$
.
ii) $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B)$
iii) $f^{-1}(f(A)) = A$.
iv) $f^{-1}(A^c) = (f^{-1}(A))^c$.

17. Let $f : \mathbb{R} \to \mathbb{R}$ be the function $f(x) = x^3 - 3x$. Compute f((0,2)), f([-1,3)) and $f^{-1}((0,\infty))$.

18. Assume that $f: A \longrightarrow B$ and $g: B \longrightarrow C$ are bijective. Show that $g \circ f$ is also bijective and that

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

- 19. How many injective functions can be defined from the set $\{a, b, c\}$ into itself?
- 20. Assume A is a finite set with card(A) = n. How many injective functions can we define from A into A?