Worksheet 1. Sets and functions.

1. Give an alternative description of the following sets:
a) $\left\{x \in \mathbb{R} \mid x^{2}-5 x+6=0\right\}$
b) $\left\{x \in \mathbb{Z} \mid x^{2}-5 x+6=0\right\}$
c) $\{x \in \mathbb{R} \mid x<3\}$
d) $\{x \in \mathbb{N} \mid x<3\}$
e) $\{x \in \mathbb{N} \mid \exists y \in \mathbb{N}$ such that $y+1<x\}$
f) $\left\{x \in \mathbb{R} \mid x^{2}+2=0\right\}$
g) $\left\{x \in \mathbb{R} \mid \exists y \in \mathbb{R}\right.$ such that $\left.x=y^{2}\right\}$
h) $\left\{x \in \mathbb{N} \mid \exists y \in \mathbb{N}\right.$ such that $y<5$ y $\left.x=y^{2}\right\}$.

Here $\mathbb{N}=\{0,1,2,3, \ldots\}$.
2. Let $S=\{a, b, c, d\}, T=\{1,2,3\}$ and $U=\{b, 2\}$. Decide which of the following expressions are correct and which ones are not.
(1) $\{a\} \in S$
(2) $a \in S$
(3) $\{a, c\} \subseteq S$
(4) $\varnothing \in S$
(5) $\quad\{a\} \subseteq \mathcal{P}(S)$
(6) $\quad\{\{a\},\{a, b\}\} \in \mathcal{P}(S)$
(7) $\{a, c, 2,3\} \subseteq S \cup T$
(8) $U \subseteq S \cup T$
(9) $\quad b \in S \cap U$
(10) $\{b\} \subseteq S \cap U$
(11) $\{1,3\} \in T$
(12) $\{1,3\} \subseteq T$
(13) $\{1,3\} \in \mathcal{P}(T)$
(14) $\{\varnothing\} \in \mathcal{P}(S)$
(15) $\varnothing \in \mathcal{P}(S)$
(16) $\varnothing \subseteq \mathcal{P}(S)$
(17) $\{\varnothing\} \subseteq \mathcal{P}(S)$
3. Let $S=\{1,2,3,4,5\}, T=\{3,4,5,7,8,9\}, U=\{1,2,3,4,9\}$ and $V=\{2,4,6,8\}$ be subsets of \mathbb{N}. Describe the following sets:
(a) $S \cap U$
(b) $(S \cap T) \cup U$
(c) $(S \cup U) \cap V$
(d) $(S \cup V) \backslash U$
(e) $(U \cup V \cup T) \backslash S$
(f) $(S \cup V) \backslash(T \cap U)$.
4. Show that the following equalities hold:
(a) $(A \cup B)^{c}=A^{c} \cap B^{c}$
(b) $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$
(c) $(A \cup B) \cap A=A$
(d) $(A \cap B) \cup A=A$
5. Compute the power set of the empty set; i.e., describe $\mathcal{P}(\varnothing)$.
6. Prove or disprove the following assertions: (1) $\mathcal{P}(A \cup B)=\mathcal{P}(A) \cup \mathcal{P}(B)$
(2) $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$
7. Suppose that S are V are as in exercise 3. Describe the elements in $S \times V$. Observe that this is a subset of $\mathbb{N} \times \mathbb{N}$.
8. Let $S=\{a, b\}, T=\{a\}, V=\{1,2\}$ and $U=\{1\}$. Compare the following sets:
(a) $(S \times V) \backslash(T \times U)$
(b) $(S \backslash T) \times(V \backslash U)$.
9. Let A, B and C be three sets. Decide whether the following statements are true of false.
(i) $A \backslash(B \cup C)=(A \backslash B) \cup(A \backslash C)$
(ii) $\quad \operatorname{card}(A \cup B)=\operatorname{card}(A \backslash B)+\operatorname{card}(B \backslash A)+\operatorname{card}(A \cap B)$
(iii) $A \times(B \triangle C)=(A \times B) \triangle(A \times C)$
(iv) $\mathcal{P}(A \backslash B)=\mathcal{P}(A) \backslash \mathcal{P}(B)$
(v) $\quad A \subseteq B \Longleftrightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$
(vi) $A \backslash B=A \backslash C \Longrightarrow B=C$.

For part (ii) assume that A and B are finite sets.
10. Prove that the following expressions define functions. Which of them are injective? Which ones are surjective? And bijective?
(i) $f: \mathbb{N} \rightarrow \mathbb{N} f(m)=m+2$
(ii) $g: \mathbb{N} \rightarrow \mathbb{N} g(n)=n(n+1)$
(iii) $f: \mathbb{R} \rightarrow \mathbb{R} f(x)=\sqrt{x^{2}+1}$
(iv) $f: \mathbb{Q} \rightarrow \mathbb{Q} f(x)=x^{2}+4 x$
(v) $g: \mathbb{N} \rightarrow \mathbb{Q} g(n)=n /(n+1)$
(vi) $g: \mathbb{Z} \rightarrow \mathbb{N} g(n)=n^{2}$.
11. Consider the following functions:

$$
\begin{array}{rrr}
\text { i) } & f: \mathbb{R} \longrightarrow \mathbb{R}, & f(x)=x^{3}+1 \\
\text { ii) } & f: \mathbb{Z} \longrightarrow \mathbb{Z}, & f(n)=2 n+4 \\
\text { iii) } & f: \mathbb{Q} \longrightarrow \mathbb{Q}, & f(x)=2 x+4
\end{array}
$$

For each of them, describe: $\operatorname{Im}(f)$ and $f^{-1}(0)$.
12. Let $a \in \mathbb{R}$ be non-zero. Prove that the function $f: \mathbb{R} \backslash\{a\} \longrightarrow \mathbb{R} \backslash\{a\}$, given by the expression $f(x)=\frac{a x}{x-a}$ is bijective and compute its inverse.
13. Decide whether the functions $f, g: \mathbb{Z} \longrightarrow \mathbb{Z}$ given below are injective, surjective or bijective:

$$
f(n)=\left\{\begin{array}{cl}
n+1 & \text { if } n \text { is even, } \\
2 n & \text { if } n \text { is odd; }
\end{array} \quad g(n)=\left\{\begin{array}{cl}
n / 2 & \text { if } n \text { is even } \\
n+1 & \text { if } n \text { is odd }
\end{array}\right.\right.
$$

14. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function:

$$
f(x)= \begin{cases}x^{3} & \text { si } x<0, \\ x-27 & \text { si } x \geq 0\end{cases}
$$

Is f injective or surjective? Compute $f \circ f$.
15. For each part (a)-(d) find a function $f: \mathbb{N} \rightarrow \mathbb{N}$ which is:
a) Injective but not surjective.
b) Surjective but not injective.
c) Bijective.
d) Not injective and not surjective.
16. Let $f: \mathcal{U} \longrightarrow \mathcal{U}$ be a function and let $A, B \subseteq \mathcal{U}$. Decide whether the following statements are true or false:
i) $f(A) \cap f(B)=f(A \cap B)$.
ii) $f^{-1}(A) \cap f^{-1}(B)=f^{-1}(A \cap B)$.
iii) $f^{-1}(f(A))=A$.
iv) $f^{-1}\left(A^{c}\right)=\left(f^{-1}(A)\right)^{c}$.
17. Let $f: \mathbb{R} \mapsto \mathbb{R}$ be the function $f(x)=x^{3}-3 x$. Compute $f((0,2)), f([-1,3))$ and $f^{-1}((0, \infty))$.
18. Assume that $f: A \longrightarrow B$ and $g: B \longrightarrow C$ are bijective. Show that $g \circ f$ is also bijective and that

$$
(g \circ f)^{-1}=f^{-1} \circ g^{-1}
$$

19. How many injective functions can be defined from the set $\{a, b, c\}$ into itself?
20. Assume A is a finite set with $\operatorname{card}(A)=n$. How many injective functions can we define from A into A?
