Considera los datos del fichero infartos.RData, sobre enfermedades coronarias en Sudáfrica. Se obtuvieron en una encuesta llevada a cabo en el marco del Coronary Risk-Factor Study (CORIS) en tres zonas rurales de Western Cape (Sudáfrica). ${ }^{1}$ El objetivo del estudio era establecer la intensidad de factores de riesgo para enfermedades coronarias en esa región de alta incidencia.
Los individuos eran varones de raza blanca con edades entre 15 y 64 años. La etiqueta clase consignaba la presencia (clase $=1$) o ausencia (clase=0) de infarto de miocardio en el momento de la encuesta. Las características medidas fueron:

Nombre variable	Descripción
sbp	Tensión sanguínea sistólica
tobacco	Consumo de tabaco
ldl	Colesterol
adiposity	Medida de adiposidad
typea	Comportamiento "tipo A"
obesity	Medida de la obesidad
alcohol	Consumo de alcohol
age	Edad

Calcula la función lineal discriminante de Fisher para clasificar entre sano (clase=0) o enfermo (clase=1) a un individuo en función de las 8 variables regresoras contenidas el fichero. Compara los coeficientes de las variables con los correspondientes a la regla de clasificación basada en regresión logística. ¿Son muy diferentes?

Solución:

load("infartos.RData")
\# Las caracteristicas se cargan en la tabla datos y la respuesta en el vector clase
\# Diagrama de dispersion multiple
pdf("InfartosDispMult.pdf", width=10, height=7)
pairs (datos, cex $=1$, pch = 21, bg=c("red", "blue") [unclass(factor(clase))],
cex.labels $=2$, font.labels $=2$,oma $=c(2,2,2,18)$)
par ($x p d=T R U E$)
legend("topright", inset=c (0,0), c("Sano", "Enfermo"), pch = 21,
pt.bg=c("red","blue"), cex=1, text.font=1, title="Clase", bty="n")
dev.off()

[^0]

En el diagrama de dispersión multiple observamos que es un problema de clasificación "complicado", en el sentido de que las dos poblaciones no están claramente separadas. Esto se reflejará debajo en la tasa de error de clasificación del procedimiento de Fisher aproximada mediante validación cruzada: sale cerca de un 30%.

```
# Regla lineal de Fisher
```

```
library(MASS)
ClasFisher = lda(datos,clase)
summary(ClasFisher)
```

ClasFisher\$scaling \# Direccion de proyeccion
LD1
sbp 6.496208e-03
tobacco 8.203075e-02
ldl 1.920521e-01
adiposity $1.136053 e-02$
typea $3.414582 \mathrm{e}-02$
obesity $-5.522155 \mathrm{e}-02$
alcohol 1.349809e-05
age $\quad 4.260489 \mathrm{e}-02$
ClasFisher\$means \# Medias por clases
sbp tobacco ldl adiposity typea obesity alcohol age
0135.46032 .6347354 .34423823 .9691152 .3675525 .7374515 .9313638 .85430
1143.73755 .5248755 .48793828 .1202554 .4937526 .6229419 .1452550 .29375
ClasFisherCV = lda(datos, clase,CV=TRUE) \# Con CV=T, obtenemos leave-one-out
$\mathrm{n}=$ nrow (datos) \# Tama ${ }^{\sim}\{\mathrm{n}\}$ o muestral
sum(clase != ClasFisherCV\$class)/n \# TEVC (Tasa de error calculada con leave-one-
out)
[1] 0.2922078
\# Regresion logistica
reglog $=$ glm(clase \sim datos\$sbp + datos\$tobacco + datos\$ldl + datos\$adiposity +
datos\$typea + datos\$obesity + datos\$alcohol + datos\$age,family="binomial")
summary (reglog)
Call:
glm(formula = clase \sim datos\$sbp + datos\$tobacco + datos\$ldl +
datos\$adiposity + datos\$typea + datos\$obesity + datos\$alcohol +
datos\$age, family = "binomial")
Deviance Residuals:
Min 1Q Median 3Q Max
$-2.0519-0.8392-0.4681 \quad 0.9825 \quad 2.4535$
Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -6.066864 1.271443-4.772 1.83e-06 ***
datos\$sbp $0.005641 \quad 0.005611 \quad 1.0050 .314721$
datos\$tobacco $0.0727160 .026326 \quad 2.7620 .005742$ **
datos\$ldl $0.1924920 .059429 \quad 3.239 \quad 0.001199$ **
datos\$adiposity 0.0170660 .0284330 .6000 .548355
datos\$typea 0.040467 0.012078 3.3500 .000807 ***
datos\$obesity $-0.057931 \quad 0.042980-1.3480 .177703$
datos\$alcohol $0.001446 \quad 0.004403 \quad 0.328 \quad 0.742627$
datos\$age $0.050650 \quad 0.011766 \quad 4.305 \quad 1.67 e-05$ ***

```
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 596.11 on 461 degrees of freedom
Residual deviance: 488.89 on 453 degrees of freedom
AIC: 506.89

Number of Fisher Scoring iterations: 4

A continuación representamos gráficamente los coeficientes de la regla lineal de Fisher y los de la regla de clasificación obtenida con regresión logística. Veremos que son muy parecidos.

```
pdf("InfartosPesosFeatures.pdf",width=10,height=6)
plot(seq(1, 8),ClasFisher$scaling,pch=24,cex=2,axes=F,col="black",bg="grey",
    xlab="Caracteristica",ylab="Peso de caracteristica")
lines(seq(1,8),ClasFisher$scaling,col="grey")
points(seq(1,8),reglog$coefficients[2:9],pch=25, cex=2, col="black",bg="blue")
lines(seq(1, 8),reglog$coefficients[2:9],col="blue",lty=2)
axis(1,at=seq(1, 8),labels=names(datos))
axis(2)
legend("topright",inset=c(0,0),c("Fisher","Logit"),pch = c(24,25),
    pt.bg=c("grey","blue"), cex=1, text.font=1, title="Clasificador",bty="n")
```

dev.off()

[^0]: ${ }^{1}$ Rousseauw, J., du Plessis, J., Benade, A., Jordaan, P., Kotze, J., Jooste, P., Ferreira, J. (1983). Coronary risk factor screening in three rural communities, South African Medical Journal 64, 430-436.

