Bosq, D., Blanke, D. Inference and Prediction in Large Dimensions. Wiley.

Lemma 6.1 (Bochner lemma) If $H \in L^1(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$ is such that $\int H = 1$ and

$$\parallel x \parallel^d |H(x)| \underset{\parallel x \parallel \to \infty}{\longrightarrow} 0,$$

if $g \in L^1(\mathbb{R}^d)$, then for $H_{\varepsilon}(\cdot) := \varepsilon^{-d}H(\cdot/\varepsilon)$, one has $g * H_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} g$ at every continuity point of g.

PROOF:

The condition $H \in L^{\infty}(\mathbb{R}^d)$ ensures that $g * H_{\varepsilon}$ is defined everywhere and we set $\Delta(x) = (g * H_{\varepsilon})(x) - g(x)$. Since $\int H = \int H_{\varepsilon} = 1$, one may write $\Delta(x) = \int [g(x-y) - g(x)] H_{\varepsilon}(y) dy$. First note that if g is a bounded function (not necessarily in $L^1(\mathbb{R}^d)$!), the Bochner lemma easily follows from the dominated convergence theorem. In the general case, if g is continuous at x, then given $\eta > 0$, we choose $\delta(=\delta_x) > 0$ such that for $\|y\| < \delta$, one has $|g(x-y) - g(x)| < \eta$. Next,

$$\begin{split} |\Delta(x)| &\leq \eta \int_{\|y\| < \delta} |H_{\varepsilon}(y)| \mathrm{d}y + \int_{\|y\| \ge \delta} |g(x - y) - g(x)| |H_{\varepsilon}(y)| \mathrm{d}y \\ &\leq \eta \parallel H \parallel_1 + \int_{\|y\| \ge \delta} |g(x - y)| |H_{\varepsilon}(y)| \mathrm{d}y + |g(x)| \int_{\|y\| \ge \delta} |H_{\varepsilon}(y)| \mathrm{d}y. \end{split}$$

Now since $H \in L^1$ and $\delta/\varepsilon \to \infty$ as $\varepsilon \to 0$, we have

$$\int_{\|y\| \ge \delta} |H_{\varepsilon}(y)| \mathrm{d}y = \int_{\|t\| > \delta/\varepsilon} |H(t)| \mathrm{d}t \underset{\varepsilon \to 0}{\longrightarrow} 0.$$

Moreover $g \in L^1(\mathbb{R}^d)$ and $||t||^d |H(t)| \to 0$ as $||t|| \to \infty$ yield:

$$\int_{\|y\| \ge \delta} |g(x-y)| |H_{\varepsilon}(y)| dy \le \delta^{-d} \sup_{\|t\| \ge \frac{\delta}{\varepsilon}} \|t\|^{d} |H(t)| \int_{\|y\| > \delta} |g(x-y)| dy \to 0,$$

as $\varepsilon \to 0$ concluding the proof.

Coming back to density estimation, we begin with a necessary and sufficient condition for the L^2 -consistency of the estimator (6.2).

Theorem 6.1

The following assertions are equivalent:

- (i) $h_n \to 0$, $nh_n^d \to \infty$.
- (ii) $\forall x \in \mathbb{R}^d$, for every density f continuous at x, $\mathrm{E}(f_n(x) f(x))^2 \xrightarrow[n \to \infty]{} 0$.

Proof: (Outline)

$$(1)$$
 $(i) \Rightarrow (ii)$

One may always write: $\mathrm{E}(f_n(x)-f(x))^2=\mathrm{Var}\,f_n(x)+(\mathrm{E}\,f_n(x)-f(x))^2$. Now the Bochner lemma and $h_n\to 0$ imply that $\mathrm{E}\,f_n(x)\to f(x)$ and $nh_n^d\mathrm{Var}\,f_n(x)\to f(x)\parallel K\parallel_2^2$ as $n\to\infty$ at every continuity point of f. This relation, together with $nh_n^d\to\infty$, yields $\mathrm{Var}\,f_n(x)\to 0$.