## Basic Statistics and Probability

## Chapter 9: Inferences Based on Two Samples: Confidence Intervals and Tests of Hypotheses

- Identifying the Target Parameter
- Comparing Two Population Means: Independent Sampling
- Comparing Two Population Means: Paired Difference Experiments
- Comparing Two Population Proportions: Independent Sampling
- Determining the Sample Size


## Identifying the Target Parameter

Many experiments involve a comparison of two populations.

## Example 9.1: Brain Size

Do children diagnosed with attention deficit/hyperactivity disorder (ADHD) have smaller brains than children without this condition?

This was the topic of a research study described in the paper "Developmental Trajectories of Brain Volume Abnormalities in Children and Adolescents with Attention Deficit/Hyperactivity Disorder" (Journal of the American Medical Association 2002).

Brain scans were completed for 152 children with ADHD and 139 children of similar age without ADHD. Summary values for total cerebral volume (in milliliters) are:

|  | $n$ | mean | s |
| :--- | :---: | :---: | :---: |
| Children with ADHD | 152 | 1059.4 | 117.5 |
| Children without ADHD | 139 | 1104.5 | 111.3 |

## Example 1.4: Fish Diet. Source: DASL

Medical researchers followed 6272 Swedish men for 30 years to see if there was any association between the amount of fish in their diet and prostate cancer. The original study actually used pairs of twins, which enabled the researchers to discern that the risk of cancer for those who never ate fish actually was substantially greater.

Data and description at:
https://dasl.datadescription.com/datafile/fish-diet/
Do these data provide sample evidence to conclude that prostate cancer incidence depends on fish consumption?

We observe the same type of random variable (e.g., cerebral volume) in two different populations (children with and without ADHD). We denote the variable by $X$ in the Population 1 and by $Y$ in Population 2.

In each of the two populations, the probability distribution of the random variable depends on an unknown parameter (for example, the population mean $\mu$ or variance $\sigma^{2}$ or a proportion $p$ ).

We want to compare the same parameter of interest in the two populations:

$$
\begin{array}{cccc}
\frac{\text { Population 1 }}{} & & \text { Population 2 } \\
\hline \mu_{1}=E(X) & \leftrightarrow & \mu_{2}=E(Y) \\
\sigma_{1}^{2}=V(X) & \leftrightarrow & \sigma_{2}^{2}=V(Y) \\
p_{1} & \leftrightarrow & p_{2}
\end{array}
$$

To this end, we use the information provided by a sample $x_{1}, \ldots, x_{n_{1}}$ from $X$ and a sample $y_{1}, \ldots, y_{n_{2}}$ from $Y$.

## Determining the Target Parameter

| Parameter | Key Words or Phrases | Type of Data |
| :--- | :--- | :--- |
| $\mu_{1}-\mu_{2}$ | Mean difference; difference in averages | Quantitative |
| $p_{1}-p_{2}$ | Difference between proportions, percentages, <br> fractions, or rates; compare proportions | Qualitative |
| $\left(\sigma_{1}\right)^{2} /\left(\sigma_{2}\right)^{2}$ | Ratio of variances; difference in variability <br> or spread; compare variation | Quantitative |

Throughout this chapter, we will use the following notation:

- For general r.v.'s $X$ and $Y$,

$$
\bar{x}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} x_{i} \quad \text { and } \quad \bar{y}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} y_{i}
$$

are the sample means of $X$ and $Y$ respectively, and

$$
s_{1}^{2}=\frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}}\left(x_{i}-\bar{x}\right)^{2} \quad \text { and } \quad s_{2}^{2}=\frac{1}{n_{2}-1} \sum_{i=1}^{n_{2}}\left(y_{i}-\bar{y}\right)^{2}
$$

are the sample variances of $X$ and $Y$ respectively.

- For $X \sim \operatorname{Bernoulli}\left(p_{1}\right)$ and $Y \sim \operatorname{Bernoulli}\left(p_{2}\right)$,

$$
\hat{p}_{1}=\bar{x} \quad \text { and } \quad \hat{p}_{2}=\bar{y}
$$

are the sample proportions of "successes" in Populations 1 and 2 respectively.

## Comparing Two Population Means: Independent Sampling

We assume that the two populations, $X$ and $Y$, are independent (intuitively, whether one of the variables takes some value or other does not have any influence on the values taken by the other variable).
We want to compare the population means of $X$ and $Y$ :

$$
\mu_{1}=E(X) \quad \text { and } \quad \mu_{2}=E(Y)
$$

via a confidence interval for their difference:

$$
\mathrm{Cl}_{1-\alpha}\left(\mu_{1}-\mu_{2}\right)
$$

or via hypothesis testing

$$
\begin{array}{lll}
H_{0}: \mu_{1}-\mu_{2}=D_{0} & H_{0}: \mu_{1}-\mu_{2} \geq D_{0} & H_{0}: \mu_{1}-\mu_{2} \leq D_{0} \\
H_{1}: \mu_{1}-\mu_{2} \neq D_{0} & H_{1}: \mu_{1}-\mu_{2}<D_{0} & H_{1}: \mu_{1}-\mu_{2}>D_{0}
\end{array}
$$

## LARGE SAMPLES

We assume that both sample sizes are large ( $n_{1} \geq 20$ and $n_{2} \geq 20$ ).
There are no assumptions on the probability distributions of $X$ and $Y$.

By the Central Limit Theorem (CLT), the sampling distribution of $\bar{x}-\bar{y}$ is approximately normal.

Then, a confidence interval for $\mu_{1}-\mu_{2}$ with approximate confidence level $1-\alpha$ is

$$
\mathrm{Cl}_{1-\alpha}\left(\mu_{1}-\mu_{2}\right)=\left(\bar{x}-\bar{y} \mp z_{\alpha / 2} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}\right)
$$

## Example 9.1: Brain Size

Let $D_{0}$ be a fixed numerical value (typically, $D_{0}=0$ ).

Hypothesis test Rejection region for significance level $\alpha$

$$
\begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=D_{0} \\
& H_{1}: \mu_{1}-\mu_{2} \neq D_{0} \\
& H_{0}: \mu_{1}-\mu_{2} \geq D_{0} \\
& H_{1}: \mu_{1}-\mu_{2}<D_{0}
\end{aligned}
$$

$$
R=\left\{|z|>z_{\alpha / 2}\right\}
$$

$$
R=\left\{z<-z_{\alpha}\right\}
$$

$$
H_{0}: \mu_{1}-\mu_{2} \leq D_{0}
$$

$$
H_{1}: \mu_{1}-\mu_{2}>D_{0}
$$

$$
R=\left\{z>z_{\alpha}\right\}
$$

where the test statistic is

$$
z=\frac{(\bar{x}-\bar{y})-D_{0}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

## Example 9.1: Brain Size

Do the data provide evidence that the mean brain volume of children with ADHD is smaller than the mean brain volume for children without ADHD? Use a .05 level of significance.

## SMALL SAMPLES

Here at least one of the sample sizes is small ( $n_{1}<20$ or $n_{2}<20$ ).
Consequently, the CLT cannot be applied. We have to assume that $X$ and $Y$ are normally distributed and have the same variance $\left(\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{2}\right)$.


We use the information in both samples to estimate the common variance $\sigma^{2}$ of $X$ and $Y$ via the pooled sample variance $s_{p}^{2}$, a weighted average of the sample variances $s_{1}^{2}$ and $s_{2}^{2}$,

$$
s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}=\frac{\sum_{i=1}^{n_{1}}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{n_{2}}\left(y_{i}-\bar{y}\right)^{2}}{n_{1}+n_{2}-2} .
$$

## Example 9.2: White Coat Effect on Blood Pressure

The tendency for blood pressure to be higher when measured in a doctor's office than when measured in a less stressful environment is called "white coat effect".

In a study, patients with high blood pressure were randomly assigned to one of two groups. Those in the first group (talking group) were asked questions about their medical history and about the sources of stress in their lives in the minutes before their blood pressure was measured. Those in the second group (counting group) were asked to count aloud from 1 to 100 four times before their blood pressure was measured. The following are the data values for diastolic blood pressure (in mm Hg ):

| Talking | 104 | 110 | 107 | 112 | 108 | 103 | 108 | 118 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $n_{1}=8$ | $\bar{x}=108.75$ | $s_{1}^{2}=4.74$ |  |  |  |  |  |
| Counting | 110 | 96 | 103 | 98 | 100 | 109 | 97 | 105 |
|  | $n_{2}=8$ | $\bar{y}=102.25$ | $s_{2}^{2}=5.39$ |  |  |  |  |  |

A confidence interval for $\mu_{1}-\mu_{2}$ with confidence level $1-\alpha$ is

$$
\mathrm{Cl}_{1-\alpha}\left(\mu_{1}-\mu_{2}\right)=\left(\bar{x}-\bar{y} \mp t_{n_{1}+n_{2}-2 ; \alpha / 2} \sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}\right)
$$

Example 9.2: White Coat Effect on Blood Pressure

Let $D_{0}$ be a fixed numerical value (typically, $D_{0}=0$ ).
Hypothesis test Rejection region for significance level $\alpha$

$$
\begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=D_{0} \\
& H_{1}: \mu_{1}-\mu_{2} \neq D_{0} \\
& \\
& H_{0}: \mu_{1}-\mu_{2} \geq D_{0} \\
& H_{1}: \mu_{1}-\mu_{2}<D_{0} \\
& H_{0}: \mu_{1}-\mu_{2} \leq D_{0} \\
& H_{1}: \mu_{1}-\mu_{2}>D_{0}
\end{aligned}
$$

$$
R=\left\{|t|>t_{n_{1}+n_{2}-2 ; \alpha / 2}\right\}
$$

$$
R=\left\{t<-t_{n_{1}+n_{2}-2 ; \alpha}\right\}
$$

$$
R=\left\{t>t_{n_{1}+n_{2}-2 ; \alpha}\right\}
$$

where the test statistic is

$$
t=\frac{(\bar{x}-\bar{y})-D_{0}}{\sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} .
$$

## Example 9.2: White Coat Effect on Blood Pressure

Is there enough sample evidence to conclude that counting reduces the white coat effect?

## Comparing Two Population Means: Paired Difference Experiments

We observe the same random variable on the same individual before $(X)$ and after an intervening "treatment" $(Y)$, or on two individuals which are somehow related (e.g., twins). Then $X$ and $Y$ are paired, a specific type of dependency between variables.

## Example 9.3: Benefits of Ultrasound

Ultrasound is often used in the treatment of soft tissue injuries. An experiment investigated the effect of an ultrasound and stretch therapy on knee extension, by measuring range of motion both before and after treatment in physical therapy patients.

|  | Range of Motion |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Subject | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Pre-treatment | 31 | 53 | 45 | 57 | 50 | 43 | 32 |
| Post-treatment | 32 | 59 | 46 | 64 | 49 | 45 | 40 |

Data are from "Location of Ultrasound Does Not Enhance Range of Motion Benefits of Ultrasound and Stretch Treatment" (Univ. of Virginia Thesis, T. Tashiro, 2003)

We want to compare $E(X)=\mu_{1}$ and $E(Y)=\mu_{2}$, using the information from a sample $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ of $(X, Y)$.

With paired data the procedure is to define $D=X-Y$ and assume that $D \sim N\left(\mu_{d}=\mu_{1}-\mu_{2}, \sigma_{d}\right)$. Then $d_{1}=x_{1}-y_{1}, \ldots, d_{n}=x_{n}-y_{n}$ is a sample from $D$.
We express the confidence intervals and hypothesis tests on $\mu_{1}-\mu_{2}$ in terms of $\mu$ and then apply the methods of Ch. 7 and 8 for the mean of a Gaussian population:

$$
\begin{aligned}
& \quad \mathrm{Cl}_{1-\alpha}\left(\mu_{1}-\mu_{2}\right)=\mathrm{Cl}_{1-\alpha}\left(\mu_{d}\right) \\
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{1}: \mu_{1} \neq \mu_{2}
\end{aligned} \Leftrightarrow \begin{array}{ll}
H_{0}: & \mu_{d}=0 \\
H_{1}: & \mu_{d} \neq 0
\end{array}, \begin{array}{ll}
H_{0}: & \mu_{d} \leq 0 \\
H_{1}: & \mu_{d}>0 \\
H_{0}: & \mu_{1} \leq \mu_{2} \\
H_{1}: & \mu_{1}>\mu_{2}
\end{array} \Leftrightarrow \begin{array}{ll}
H_{0}: & \mu_{d} \geq 0 \\
H_{1}: & \mu_{d}<0
\end{array}
$$

## Example 9.3: Benefits of Ultrasound

Is there evidence that the ultrasound and stretch treatment increases range of motion?

|  | Range of Motion |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Subject | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |
| Pre-treatment $(X)$ | $x_{1}=31$ | $x_{2}=53$ | $x_{3}=45$ | $x_{4}=57$ | $x_{5}=50$ | $x_{6}=43$ | $x_{7}=32$ |  |
| Post-treatment $(Y)$ | $y_{1}=32$ | $y_{2}=59$ | $y_{3}=46$ | $y_{4}=64$ | $y_{5}=49$ | $y_{6}=45$ | $y_{7}=40$ |  |
| $D=X-Y$ | $d_{1}=-1$ | $d_{2}=-6$ | $d_{3}=-1$ | $d_{4}=-7$ | $d_{5}=1$ | $d_{6}=-2$ | $d_{7}=-8$ |  |

$$
\begin{gathered}
\bar{d}=\text { Sample mean of differences }=\frac{1}{7} \sum_{i=1}^{7} d_{i}=-3.4286 \\
s_{d}=\text { Sample s.d. of differences }=\sqrt{\frac{1}{6} \sum_{i=1}^{7}\left(d_{i}-\bar{d}\right)^{2}}=3.5051
\end{gathered}
$$

## Comparing Two Population Proportions: Independent Sampling

Suppose $X \sim \operatorname{Bernoulli}\left(p_{1}\right)$ and $Y \sim \operatorname{Bernoulli}\left(p_{2}\right)$ are two independent r.v. We want to compare $p_{1}$ and $p_{2}$ based on a sample $x_{1}, \ldots, x_{n_{1}}$ from $X$ and a sample $y_{1}, \ldots, y_{n_{2}}$ from $Y$.

Example 1.4: Fish Diet. Source: DASL
The data are summarized as follows:
Fish Consumption

|  |  | Large | Moderate | Small | Never |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Cancer | Yes | 42 | 209 | 201 | 14 |
|  | No | 507 | 2769 | 2420 | 110 |
| Total |  | 549 | 2978 | 2621 | 124 |

To check that those who never eat fish have a higher incidence of prostrate cancer, we might consider comparing
$p_{1}=$ proportion of prostate cancer in group "Never"
$p_{2}=$ proportion of prostate cancer in group "Large"

If sample sizes are large ( $n_{1} \geq 20$ and $n_{2} \geq 20$ ), then by the CLT, the sampling distribution of $\hat{p}_{1}-\hat{p}_{2}$ is approximately normal.

Then, a large-sample ( $1-\alpha$ ) confidence interval for the diffrence of the two proportions is

$$
\mathrm{Cl}_{1-\alpha}\left(p_{1}-p_{2}\right)=\left(\hat{p}_{1}-\hat{p}_{2} \mp z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}\right) .
$$

## Example 1.4: Fish Diet

$$
\begin{aligned}
& H_{0}: p_{1}-p_{2}=0 \\
& H_{1}: p_{1}-p_{2} \neq 0
\end{aligned}
$$

$$
R=\left\{|z|>z_{\alpha / 2}\right\}
$$

$$
H_{0}: p_{1}-p_{2} \geq 0
$$

$$
H_{1}: p_{1}-p_{2}<0
$$

$$
R=\left\{z<-z_{\alpha}\right\}
$$

$$
H_{0}: p_{1}-p_{2} \leq 0
$$

$$
H_{1}: p_{1}-p_{2}>0
$$

$$
R=\left\{z>z_{\alpha}\right\}
$$

where the test statistic is

$$
z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} .
$$

and

$$
\hat{p}=\frac{n_{1} \hat{p}_{1}+n_{2} \hat{p}_{2}}{n_{1}+n_{2}}=\frac{\sum_{i=1}^{n_{1}} x_{i}+\sum_{i=1}^{n_{2}} y_{i}}{n_{1}+n_{2}} .
$$

## Example 1.4: Fish Diet

At a 5\% significance level, is there sample evidence that the proportion of men who develop prostrate cancer is higher in the group who never eats fish than in the group with large fish consumption?

## Determining the Sample Size

You can find the appropriate sample size to estimate the difference between a pair of parameters with a specified sampling error (SE) and degree of reliability $1-\alpha$, by equating the half-width of the confidence interval for the parameters difference to the SE.

We assume that $n_{1}=n_{2}=n$.
To estimate $\mu_{1}-\mu_{2}$ to within a sampling error SE and with confidence level $1-\alpha$, take

$$
n=\frac{\left(z_{\alpha / 2}\right)^{2}\left(s_{1}^{2}+s_{2}^{2}\right)}{(\mathrm{SE})^{2}}
$$

where $s_{1}^{2}$ and $s_{2}^{2}$ are sample variances from prior pilot samples of $X$ and $Y$.

To estimate $p_{1}-p_{2}$ to within a sampling error SE and with confidence level $1-\alpha$, take

$$
n=\frac{\left(z_{\alpha / 2}\right)^{2}\left(\hat{p}_{1}\left(1-\hat{p}_{1}\right)+\hat{p}_{2}\left(1-\hat{p}_{2}\right)\right)}{(\mathrm{SE})^{2}}
$$

where $\hat{p}_{1}$ and $\hat{p}_{2}$ are estimates of $p_{1}$ and $p_{2}$ respectively from prior pilot samples of $X$ and $Y$.

