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Elements of a Test of Hypothesis

Example 8.1: Chips Ahoy. Source: DASL

In 1998, as an advertising campaign, the Nabisco Company
announced a “1000 Chips Challenge”, claiming that every
18-ounce bag of their Chips Ahoy! cookies contained at least 1000
chocolate chips. Dedicated statistics students at the Air Force
Academy randomly selected bags of cookies and counted the
chocolate chips. The data report their counts.

1219 1214 1087 1200
1419 1121 1325 1345
1244 1258 1356 1132
1191 1270 1295 1135

Data and description at:
https://dasl.datadescription.com/datafile/chips-ahoy
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Example 8.1 (Chips Ahoy)

X = number of chocolate chips in an 18-oz bag of Chips Ahoy!

µ = E (X ) =
expected
average

number of chocolate chips in a bag

We want to test which of the following two hypotheses is true:

• µ < 1000 (the claim of the company is not true)

• µ ≥ 1000 (the claim of the company is true)

A statistical hypothesis is a statement about the numerical value
of a population parameter.

There are just two (mutually exclusive) hypotheses in a statistical
hypothesis test. Typically one hypothesis will establish a range of
possible values for the parameter ([1000,∞) and the other
hypothesis will contain the rest of the possible values ([0,1000))
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One of the hypotheses is called null hypothesis and denoted by H0.

The null hypothesis H0 represents the statement that will be
assumed to be true unless the data provide convincing evidence
that it is false.

The other hypothesis is the alternative (or research) hypothesis
and it is denoted by H1 (or also by Ha).

The alternative hypothesis H1 represents the statement that will be
accepted only if the data provide convincing evidence of its truth.
This usually represents the values of a population parameter for
which the researcher wants to gather evidence to support.

Example 8.1 (Chips Ahoy)
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Intuitively...

To decide that there is enough evidence supporting the alternative
hypothesis we construct a test statistic, which measures the
“discrepancy” between the sample information and the null
hypothesis. When the test statistic is “significantly large”, we
reject the null hypothesis.

Example 8.1 (Chips Ahoy)

Rigorously...

The test statistic is used to construct an automatised decision rule,
such that the decision of accepting H0 or rejecting H0 is assigned
to every possible value of a sample x1, . . . , xn of X .

Such an decision rule is given by the rejection region R. The
rejection region is usually given in terms of the test statistic.
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To obtain an explicit mathematical expression for the rejection
region R, we first study the criteria and conditions that R has to
fulfil.

Possible errors in a hypothesis test:

Type I error: Reject H0 when, in fact, H0 is true.

Type II error: Accept H0 when H0 is false.

How the region R is constructed:

1. Bound the maximum probability of Type I error.

• Fix a significance level α ∈ (0, 1). Typically, by default,
α = 0.05.
• Define the size of a hypothesis test as the maximum probability
of Type I error: maxP(Error of Type I) = maxP(R|H0 true).
• Look for R such that maxP(Error of Type I) ≤ α.

2. Minimize the maximum probability of Type II error.
Of all the possible rejection regions satisfying 1, we try to choose
one with low probability of Type II error.
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Example 8.1 (Chips Ahoy)

H0 : µ ≥ 1000 (the claim of the company is true)
H1 : µ < 1000 (the claim of the company is not true)

P(Error of Type I) = Pµ(R) for µ ≥ 1000

maxP(Error of Type I) = max
µ≥1000

Pµ(R) ≤ α

P(Error of Type II) = Pµ(Rc) = β(µ) for µ < 1000

Instructor: Amparo Báıllo Basic Statistics and Probability. Chapter 8 7



We bound by α the probability of rejecting H0 when it is true.
⇓

We are “conservative” with the null hypothesis H0:
we only reject it when there is a lot of sample evidence against it.

⇓
In the alternative hypothesis H1 we state the result for which
we need or want a lot of sample evidence before accepting it.

If the condition in the mathematical expression of the rejection re-
gion R holds, then we say that there is enough statistical or sample
evidence to reject the null hypothesis H0. We conclude that the
alternative hypothesis is true.

The hypothesis-testing process will lead to this conclusion incorrectly
(Type I error) only 100α% of the time when H0 is true.

If the condition of the rejection region R is not fulfilled, we do not
reject H0. We do not conclude that the null hypothesis is true. We
just say that there is not enough evidence to reject H0.

Instructor: Amparo Báıllo Basic Statistics and Probability. Chapter 8 8



The methodology for testing hypotheses varies depending on the
target population parameter. In this chapter, we develop methods
for testing a population mean, a population proportion, and
(optionally) a population variance.
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Hypothesis Tests in Normal Populations

Tests on the expectation µ of a normal population

Let x1, . . . , xn be a sample from X ∼ N(µ, σ) with σ unknown.

Possible tests on µ (t-tests):

Two-tailed test
H0 : µ = µ0

H1 : µ 6= µ0
R =

{
(x1, . . . , xn) : |t| ≥ tn−1;α/2

}
One-tailed test
(upper-tailed)

H0 : µ ≤ µ0

H1 : µ > µ0
R = {(x1, . . . , xn) : t ≥ tn−1;α}

One-tailed test
(lower-tailed)

H0 : µ ≥ µ0

H1 : µ < µ0
R = {(x1, . . . , xn) : t ≤ tn−1;1−α}

where t =
x̄ − µ0

s/
√
n

is the test statistic.
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Example 8.1 (Chips Ahoy)
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Example 8.2: (Road Paint)

Paint used to paint lines on roads must reflect enough light to be
clearly visible at night. Let µ denote the mean reflectometer
reading for a new type of paint under consideration. A test of
H0 : µ ≤ 20 versus H1 : µ > 20 based on a sample of 15
observations gave t = 3.2. What conclusion is appropriate at each
of the following significance levels?

α = 0.05 α = 0.01 α = 0.001
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How to do a t-test with R:

Example 8.1 (Chips Ahoy)

NumChips = scan("chips-ahoy.txt",skip=1)

Read 16 items

t.test(x=NumChips,mu=1000,alternative="less")

One Sample t-test

data: NumChips

t = 10.105, df = 15, p-value = 1

alternative hypothesis: true mean is less than 1000

95 percent confidence interval:

-Inf 1279.508

sample estimates:

mean of x

1238.188

How strange! R does not give a solution to the test. Or it does?
Let’s introduce the p-value concept (page 20).
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Tests in Non-Normal Populations

Large-sample tests for the expectation of any distribution

Let x1, . . . , xn be a sample of size n ≥ 20 from a r.v. X with
E (X ) = µ.

Using the Central Limit Theorem we have the following z-tests:

H0 : µ = µ0

H1 : µ 6= µ0
R =

{
(x1, . . . , xn) : |z | > zα/2

}
H0 : µ ≤ µ0

H1 : µ > µ0
R = {(x1, . . . , xn) : z > zα}

H0 : µ ≥ µ0

H1 : µ < µ0
R = {(x1, . . . , xn) : z < −zα}

where z =
x̄ − µ0

s/
√
n

is the test statistic.
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Example 8.3: Test the hypothesis that a population has a mean
blood glucose level of 100. Suppose we select a random sample of
30 individuals from this population (x̄ = 98.1, s2 = 126).
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Large-sample tests on a proportion p

Let x1, . . . , xn be a sample of size n ≥ 20 from a r.v.
X∼Bernoulli(p).

Using the Central Limit Theorem we have the following z-tests:

H0 : p = p0

H1 : p 6= p0
R =

{
|z | > zα/2

}
H0 : p ≤ p0

H1 : p > p0
R = {z > zα}

H0 : p ≥ p0

H1 : p < p0
R = {z < z1−α}

where z =
x̄ − p0√
p0(1−p0)

n

is the test statistic.
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Example 8.4: : Most Like It Hot

“Most Like it Hot” is the title of a press release issued by the Pew
Research Center (March 18, 2009, www.pewsocialtrends.org).
The press release states that “by an overwhelming margin,
Americans want to live in a sunny place.” This statement is based
on data from a nationally representative sample of 2260 adult
Americans. Of those surveyed, 1288 indicated that they would
prefer to live in a hot climate rather than a cold climate. Do the
sample data provide convincing evidence that a majority of all
adult Americans prefer a hot climate over a cold climate?
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Example 8.4: Most Like It Hot

prop.test(1288,2260,p=0.5,alternative="greater",correct=FALSE)

1-sample proportions test without continuity correction

data: 1288 out of 2260, null probability 0.5

X-squared = 44.1841, df = 1, p-value = 1.495e-11

alternative hypothesis: true p is greater than 0.5

95 percent confidence interval:

0.552708 1.000000

sample estimates:

p

0.5699115

The continuity correction adds an extra term to the test statistic to
correct the error attained when approximating a discrete distribution by a
continuous one. The correction adjusts the probability of Type I error
(which “inflates” when employing the normal approximation with smaller
sample sizes). For instance, in the case of the test H0 : p = p0, the
rejection region is R = {|z | > zα/2} where the test statistic is

without correction with correction

z = x̄−p0√
p0(1−p0)

n

z =
|x̄−p0|− 1

2n√
p0(1−p0)

n
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The p-Value

If the significance level α of a test decreases, then we are more
conservative with H0.

Given a hypothesis test and a specific sample, the p-value of the
test is the lowest of the α values for which the null hypothesis H0

is rejected.

The observed significance level, or p-value, also coincides with the
probability (assuming H0 is true) of observing a value of the test
statistic that is at least as contradictory to the null hypothesis, and
supportive of the alternative hypothesis, as the actual one
computed from the sample data.

The lower is the p-value the more evidence in favour of H1.

Statistical computer software (R, SPSS, Excel, Matlab,. . . ) does
not carry out a test for a specified value of α, but gives us just the
p-value.
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Example 8.5:
A laboratory quality assurance study was carried out to look for
signs of systematic bias in a lab’s method for measuring total
organic carbon (TOC), a measure of water quality. Certified
standard solutions having 50 mg/L TOC were randomly inserted
into the lab’s normal work stream. The lab analysts were unaware
of the presence of these standard solutions.

Here are the measurement readings for n = 16 of the standard
solutions inserted into the lab’s work stream:

50.3 51.2 50.5 50.2 49.9 50.2 50.3 50.5
49.3 50.0 50.4 50.1 51.0 49.8 50.7 50.6

If there was no systematic bias, a 50 mg/L standard solution
would, on average, give a 50 mg/L measurement reading. Test for
the existence of bias when α = 0.1, α = 0.05 and α = 0.01.
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Some Remarks

Remark 1:

In the McClave and Sincich manual and other books the following
notation is used for one-tailed tests:

H0 : µ = µ0

H1 : µ > µ0

H0 : µ = µ0

H1 : µ < µ0

instead of the one used in these notes (and many other books)

H0 : µ ≤ µ0

H1 : µ > µ0

H0 : µ ≥ µ0

H1 : µ < µ0

Remark 2:

What can be done to carry out a test on µ if the population
histogram departs greatly from normal and the sample size is
“small” (n < 20)? Use one of the nonparametric statistical
methods of Chapter 14.
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