## **Basic Statistics and Probability**

# Chapter 7:

# Inferences Based on a Single Sample: Estimation with Confidence Intervals

- Confidence Interval
- Confidence Interval for a Population Mean
- Confidence Interval for the Mean of a Normal Population
- Confidence Interval for a Population Proportion
- Determining the Sample Size

# **Confidence Interval**

- In Ch. 6 we saw that a point estimator of a target population parameter θ is a specific quantity θ̂ estimating θ and calculated from the sample X<sub>1</sub>,..., X<sub>n</sub>.
- A point estimate will "always" carry an error. We seek to measure the uncertainty inherent to the point estimator.
- An interval estimator or confidence interval for the target population parameter θ is a whole interval of values estimating θ and calculated from the sample X<sub>1</sub>,..., X<sub>n</sub>.
- Interval estimation gives an interval containing the parameter  $\theta$  with a predetermined high confidence level.
- The confidence level  $1 \alpha$  is a measure of our degree of certainty that  $\theta$  will be in the interval.
- We will talk about, say, 90%, 95%, 99% confidence intervals (intervals with a confidence level of 90%, 95%, 99% or confidence coefficient of 0.9, 0.95, 0.99).

### Interpretation of the confidence level

Suppose we observe 100 samples of size *n* from a r.v. *X* whose distribution depends on a parameter  $\theta$ . Then we construct the corresponding 100 confidence intervals for  $\theta$  with confidence level  $1 - \alpha$ ,  $Cl_{1-\alpha}(\theta)$ .



Instructor: Amparo Baíllo

**Basic Statistics and Probability. Chapter 7** 

## **Confidence Interval for a Population Mean**

Let X be a random variable with mean  $\mu$  and standard deviation  $\sigma$ . For a sample of X with sample mean  $\bar{X}$ , by the CLT we know that, for a large sample size *n*, the approximate distribution of the *z*-statistic

$$Z = rac{ar{X} - \mu}{\sigma/\sqrt{n}} \stackrel{ ext{if } \sigma ext{ unknown}}{\simeq} rac{ar{X} - \mu}{s/\sqrt{n}}$$

is N(0, 1).

Then, for large *n* ( $n \ge 20$ ), a confidence interval for  $\mu$  at the confidence level  $1 - \alpha$  is

$$\mathsf{Cl}_{1-lpha}(\mu) = \left(\bar{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}\right)$$

 $z_{\alpha}$  is that value leaving to its right an area equal to  $\alpha$  in the N(0,1) density:



Check on your own that:

$$z_{0.05} = 1.645$$
  $z_{0.01} = 2.33$   $z_{0.005} = 2.575$ 

Instructor: Amparo Baíllo Basic Statistics and Probability. Chapter 7

**Exercise in McClave & Sincich: Latex allergy in health care workers.** Health care workers who use latex gloves with glove powder may develop a latex allergy. Symptoms of a latex allergy include conjunctivitis, hand eczema, nasal congestion, a skin rash, and shortness of breath. Each in a sample of 46 hospital employees who were diagnosed with latex allergy reported on their exposure to latex gloves (*Current Allergy & Clinical Immunology*, Mar. 2004). Summary statistics for the number of latex gloves used per week are  $\bar{x} = 19.3$  and s = 11.9.

**a.** Give a point estimate for the average number of latex gloves used per week by all health care workers with a latex allergy.

**b.** Form a 95% confidence interval for the average number of latex gloves used per week by all health care workers with a latex allergy.

# Confidence Interval for the Mean of a Normal Population

If we know that the variable X follows a normal distribution with mean  $\mu$  (unknown) and standard deviation  $\sigma$  (unknown), then it is possible to compute confidence intervals for the population mean  $\mu$  for any sample size *n* (even small ones).

To this end, we introduce a new probability distribution, called Student's t.

The t distribution is a continuous one, with a density which is symmetric with respecto to 0, but with tails heavier than those of the standard normal.

The *t* distribution depends on a parameter called the degrees of freedom (d.f.). A *t* distribution with, say, 3 d.f. is denoted by  $t_3$ .

As the d.f. increase the tails of the  $t_{df}$  get lighter. When d.f.  $\geq$  30, the  $t_{df}$  can be approximated by a N(0,1).



#### Table III Critical Values of t



| Degrees of<br>Freedom | t.100 | t.050 | t.025  | t.010  | t.005  | t.001  | t.0005 |
|-----------------------|-------|-------|--------|--------|--------|--------|--------|
| 1                     | 3.078 | 6.314 | 12,706 | 31.821 | 63.657 | 318.31 | 636.62 |
| 2                     | 1.886 | 2.920 | 4.303  | 6.965  | 9,925  | 22.326 | 31.598 |
| 3                     | 1.638 | 2.353 | 3.182  | 4.541  | 5.841  | 10.213 | 12.924 |
| 4                     | 1.533 | 2.132 | 2.776  | 3.747  | 4.604  | 7.173  | 8.610  |
| 5                     | 1.476 | 2.015 | 2.571  | 3.365  | 4.032  | 5.893  | 6.869  |
| 6                     | 1.470 | 1.943 | 2.447  | 3.143  | 3.707  | 5.208  | 5.959  |
| 7                     | 1.445 | 1.895 | 2.365  | 2.998  | 3,499  | 4.785  | 5.408  |
| 8                     | 1.397 | 1.895 | 2.305  | 2.896  | 3.355  | 4.501  | 5.041  |
| 9                     | 1.383 | 1.833 | 2.262  | 2.821  | 3.250  | 4.297  | 4.781  |
| 10                    | 1.383 | 1.833 | 2.228  | 2.764  | 3.169  | 4.144  | 4.587  |
| 10                    | 1.363 | 1.796 | 2.228  | 2.718  | 3.109  | 4.025  | 4.437  |
| 12                    | 1.305 | 1.790 | 2.179  | 2.681  | 3.055  | 3.930  | 4.318  |
| 13                    | 1.350 | 1.771 | 2.160  | 2.650  | 3.012  | 3.852  | 4.221  |
| 13                    | 1.345 | 1.761 | 2.145  | 2.624  | 2.977  | 3.787  | 4.140  |
| 14                    | 1.343 | 1.753 | 2.143  | 2.602  | 2.947  | 3.733  | 4.073  |
| 16                    | 1.341 | 1.746 | 2.120  | 2.583  | 2.921  | 3.686  | 4.015  |
| 17                    | 1.333 | 1.740 | 2.110  | 2.567  | 2.898  | 3.646  | 3.965  |
| 18                    | 1.330 | 1.740 | 2.101  | 2.552  | 2.878  | 3.610  | 3.905  |
| 18                    | 1.328 | 1.729 | 2.093  | 2.539  | 2.861  | 3.579  | 3.883  |
| 20                    | 1.325 | 1.725 | 2.093  | 2.528  | 2.845  | 3.552  | 3.850  |
| 20                    | 1.323 | 1.723 | 2.080  | 2.518  | 2.845  | 3.527  | 3.819  |
| 21 22                 | 1.323 | 1.721 | 2.080  | 2.508  | 2.831  | 3.505  | 3.792  |
| 23                    | 1.321 | 1.714 | 2.074  | 2.508  | 2.807  | 3.485  | 3.767  |
| 23                    | 1.319 | 1.714 | 2.069  | 2.492  | 2.797  | 3.467  | 3.745  |
| 25                    | 1.316 | 1.708 | 2.064  | 2.485  | 2.787  | 3.450  | 3.725  |
| 26                    | 1.315 | 1.706 | 2.000  | 2.479  | 2.779  | 3.435  | 3.707  |
| 20                    | 1.313 | 1.703 | 2.052  | 2.473  | 2.771  | 3.421  | 3.690  |
| 28                    | 1.314 | 1.703 | 2.032  | 2.475  | 2.763  | 3.408  | 3.690  |
| 29                    | 1.313 | 1.699 | 2.048  | 2.467  | 2.756  | 3.396  | 3.659  |
| 30                    | 1.311 | 1.699 | 2.045  | 2.462  | 2.750  | 3.385  | 3.639  |
| 40                    | 1.303 | 1.697 | 2.042  | 2.437  | 2.704  | 3.307  | 3.551  |
| 60                    | 1.303 | 1.671 | 2.021  | 2.390  | 2.660  | 3.232  | 3.460  |
| 120                   | 1.290 | 1.658 | 1.980  | 2.358  | 2.600  | 3.160  | 3.373  |
| 00                    | 1.289 | 1.645 | 1.980  | 2.326  | 2.576  | 3.090  | 3.291  |
| 00                    | 1.282 | 1.045 | 1.900  | 2.320  | 2.570  | 5.090  | 3.291  |

Instructor: Amparo Baíllo

Basic Statistics and Probability. Chapter 7

 $t_{df;\alpha}$  is the value leaving to its right an area  $\alpha$  in the  $t_{df}$  density:



If df  $\geq$  30, then  $t_{df;\alpha} \simeq z_{\alpha}$ .

## Check on your own that:

$$t_{10:0.05} = 1.812$$
  $t_{4:0.01} = 3.747$   $t_{5:0.005} = 4.032$ 

If  $X \sim N(\mu, \sigma)$  and  $X_1, \ldots, X_n$  is a sample from X with sample mean  $\overline{X}$ , then the *t*-statistic

$$t=\frac{\bar{X}-\mu}{s/\sqrt{n}}$$

follows a  $t_{n-1}$  distribution. This result holds for any n.

Then a confidence interval for the mean  $\mu$  of a normal population at the confidence level  $1-\alpha$  is

$$\mathsf{Cl}_{1-lpha}(\mu) = \left(\bar{x} \pm t_{n-1;lpha/2} \frac{s}{\sqrt{n}}\right)$$

Exercise in McClave & Sincich: Radon exposure in Egyptian tombs. Many ancient Egyptian tombs were cut from limestone rock that contained uranium. Since most tombs are not well-ventilated, guards, tour guides, and visitors may be exposed to deadly radon gas. In Radiation Protection Dosimetry (Dec. 2010), a study of radon exposure in tombs in the Valley of Kings, Luxor, Egypt (recently opened for public tours), was conducted. The radon levels – measured in becquerels per cubic meter (Bq/m3) – in the inner chambers of a sample of 12 tombs were determined. For this data, assume that  $\bar{x} = 3,643$  Bg/m<sup>3</sup> and s = 1,187 $Bq/m^3$ . Use this information to estimate, with 95% confidence, the true mean level of radon exposure in tombs in the Valley of Kings.

# **Confidence Interval for a Population Proportion**

Let X be a Bernoulli(p) r.v.

$$X = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

For a sample of size *n* from *X* we compute its sample mean,  $\hat{p} = \bar{X}$ . By the CLT, for large *n*, the *z*-statistic

$$Z = \frac{\hat{p} - p}{\sqrt{\hat{p}(1 - \hat{p})}/\sqrt{n}}$$

is approximately N(0, 1).

Then, for large  $n \ (n \ge 20)$  and  $0.1 \le p \le 0.9$ , a confidence interval for p at the confidence level  $1 - \alpha$  is

$$\mathsf{Cl}_{1-lpha}(p) = \left(\hat{p} \pm z_{lpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$$

**Exercise in McClave & Sincich: Paying for music downloads.** If you use the Internet, have you ever paid to access or download music? This was one of the questions of interest in a recent *Pew Internet and American Life Project Survey* (Oct. 2010). Telephone interviews were conducted on a representative sample of 1,003 adults living in the United States. For this sample, 506 adults stated that they have paid to download music.

**a.** Use the survey information to find a point estimate for the true proportion of U.S. adults who have paid to download music.

**b.** Find an interval estimate for the proportion, part **a**. Use a 90% confidence interval.

**c.** Give a practical interpretation of the interval, part **b**. Your answer should begin with "We are 90% confident  $\dots$ "

# **Determining the Sample Size**

The appropriate sample size n for making an inference about a population mean or proportion depends on the desired certainty.

The reliability of a confidence interval for the population mean  $\mu$  or proportion p is given by the sampling error SE within which we want to estimate  $\mu$  or p with that confidence level:

SE = Half-width of the confidence interval.

## Example (Latex allergy in health care workers):

Suppose we want to estimate  $\mu$ , the expected number of latex gloves used per week by health care workers with a latex allergy, with a confidence level of 95% and a sampling error SE of 1. Which is the minimum required sample size?

## Example (Radon exposure in Egyptian tombs):

What sample size should they use if the researchers want to estimate the mean level of radon exposure in those tombs to within 300 Bq/m<sup>3</sup> of its true value?

## Example (Paying for music downloads):

How many telephone interviews should be conducted in order to estimate the proportion p of U.S. adults who have paid to download music to within 0.01 with 90% confidence?