Basic Statistics and Probability

Chapter 4: Discrete Random Variables

- Two Types of Random Variables
- Probability Distributions for Discrete Random Variables
- Expected Values of Discrete Random Variables
- The Binomial Random Variable
- The Poisson Random Variable

A random variable (r.v.) is a variable that takes numerical values associated to the outcomes of a certain random experiment, where one (and only one) numerical value is assigned to each sample point.

Examples:

- Toss a coin and define the r.v.

$$
X= \begin{cases}1 & \text { if head } \\ 0 & \text { if tail }\end{cases}
$$

- Consider the r.v. $Y=$ "Number of social networking services used by a person chosen at random"
- Define the r.v. $Z=$ "Height (in m) of a 10 -year-old child chosen at random"

The aim is to know the probability, the chances, that X will take certain values: which values of the r.v. are more frequent and which are less likely.

Two Types of Random Variables

1. If the number of possible values of a r.v. are countable, that is, the values can be listed (although they may be infinite), then we say that the r.v. is discrete.

- Number of eggs per nest
- Numbers of patients per day coming to see a certain physician
- Number of coin tosses till the first occurrence of "Tails"

2. If the possible values of a r.v. are all the numbers in an interval (limited or unlimited) we say that the variable is continuous.

- Length of each egg
- Blood pressure of each patient
- Height of each individual
- Temperature

Probability Distributions for Discrete RV's

To characterize completely the probability distribution of a discrete r.v. we have to specify all the values the variable can take and the probability with which the variable assumes that value.

Example 4.1: Tossing two coins

Toss two coins and define the r.v. $X=$ "Number of heads obtained". The possible values of X are 0,1 and 2 . The probability distribution of X specifies how the probability is distributed over those values

$$
\begin{aligned}
& P\{X=0\}=P(\mathrm{TT})=\frac{1}{4} \\
& P\{X=1\}=P(\mathrm{TH})+P(\mathrm{HT})=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \\
& P\{X=2\}=P(\mathrm{HH})=\frac{1}{4}
\end{aligned}
$$

Usually, the probability distribution of a discrete r.v. X is characterized via its (probability) mass function, which gives for each possible value x of X, the probability that X is equal to x :

$$
x \mapsto p(x)=P\{X=x\} .
$$

Example 4.1: Tossing two coins

b. Histogram representation of $p(x)$

Example 4.2: Insurance policy

An insurance company sells a $\$ 10,000$ one-year term insurance policy at an annual premium of $\$ 290$. Actuarial tables show that the probability of death during the next year for a person of the typical customers age, sex, health, etc., is . 001.

Gain x	Sample Point	Probability
$\$ 290$	Customer lives	.999
$-\$ 9,710$	Customer dies	.001

Properties of a general mass function:

$$
p(x) \geq 0 \quad \text { for all } x
$$

$$
\sum_{x} p(x)=1
$$

Expected Values of Discrete RV's

The population mean, the expected value or the expectation of a random variable X is a measure of cental tendency of the probability distribution of X.

The expectation of a discrete r.v. X is defined as

$$
\mu=E(X)=\sum_{x} x p(x) .
$$

Example 4.1: Tossing two coins

Example 4.2: Insurance policy
What is the expected gain (amount of money made by the company) for a policy of this type?

The population variance of a r.v. X is the expected squared distance between X and its mean μ :

$$
\sigma^{2}=V(X)=E\left[(X-\mu)^{2}\right]=\sum_{x}(x-\mu)^{2} p(x)
$$

It holds that $\sigma^{2}=E\left(X^{2}\right)-\mu^{2}=\sum_{x} x^{2} p(x)-\mu^{2}$.

Example 4.1: Tossing two coins

Example 4.2: Insurance policy

The standard deviation (s.d.) of a r.v. X is the square root of its variance:

$$
\sigma=\sqrt{\sigma^{2}}=\sqrt{V(X)}
$$

Example 4.1: Tossing two coins

Example 4.2: Insurance policy

The Binomial Random Variable

Bernoulli Distribution

A Bernoulli experiment or Bernoulli trial is a random experiment with only two (mutually exclusive) possible results: success (S) and failure (F), with $P(\mathrm{~S})=p$ and $P(\mathrm{~F})=1-p$.
Example 4.3: Toss one coin. Take $S=$ Head and $F=$ Tail.
Example 4.4: A couple, each of them with a recessive gene (blue) and a dominant one (brown) for the eyes colour, have a child. We codify $\mathrm{S}=$ Brown-eyed child and $\mathrm{F}=$ Blue-eyed child.

Example 4.5: In a campaign for early detection of diabetes among volunteers, an oral glucose tolerance test measures blood glucose after not eating for at least 8 hours and 2 hours after drinking a glucose-containing beverage. If the glucose level is above $200 \mathrm{mg} / \mathrm{dl}$, the individual is classified as a potential diabetic. If not, the individual is considered healthy. We codify $\mathrm{S}=$ "Potential diabetic" with $p=0.03$.

The Bernoulli distribution is that of the r.v.

$$
X= \begin{cases}1 & \text { if the Bernoulli trial yields success } \\ 0 & \text { if failure is obtained }\end{cases}
$$

We denote it $X \sim \operatorname{Bernoulli}(p)$. The mass function is

The expectation and variance are

$$
E(X)=p \quad \text { and } \quad V(X)=p(1-p)
$$

Bernoulli experiments give rise to many other probability distributions, such as the binomial, or the geometric.

Binomial Distribution

We repeat n independent Bernoulli trials, with $P(S)=p$ in each trial. The binomial distribution $B(n, p)$ is the probability distribution of the r.v. $X=$ "number of successes in the n trials".

The mass function is

$$
p(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad \text { for } x=0,1, \ldots, n
$$

where $\quad\binom{n}{x}=\frac{n!}{x!(n-x)!} \quad$ and $\quad n!=n(n-1) \cdots 3 \cdot 2 \cdot 1$.
The expectation and variance are

$$
E(X)=n p \quad y \quad V(X)=n p(1-p)
$$

Remark: X can be expressed as $X=\sum_{i=1}^{n} Z_{i}$, where $Z_{i} \sim \operatorname{Bernoulli}(p)$ for $i=1, \ldots, n$.

Example 4.4: Colour of eyes in a child

If the couple has three children in common, which is the mass function of the r.v. $X=$ "number of children with brown eyes"?

Example 4.5: Early detection of diabetes

The test is carried out on 10 volunteers and we define the r.v. $X=$ "number of potential diabetics among those 10 ".

What is the probability that there is more than one potential diabetic among the 10 observed volunteers?

Example 4.6: Colorectal Cancer and Gene Mutation

In a certain country the probability that a person who has suffered colorectal cancer has a mutation in gene p 53 is 60%. A sample of 5 patients with colorectal cancer is taken. Compute the probability that at most one of them has the mutated gene. Which is the expected number of patients, among those 5 , who will have the mutated gene? Which is the variance?

The Poisson Random Variable

The r.v X follows a Poisson distribution with parameter $\lambda>0$, and we denote it by $X \sim \operatorname{Poisson}(\lambda)$, if its mass function is

$$
p(x)=e^{-\lambda} \frac{\lambda^{x}}{x!} \quad \text { for } x=0,1,2, \ldots
$$

Then $E(X)=\lambda=V(X)$.

Instructor: Amparo Baillo

The Poisson distribution is the limit of the binomial in the following sense: $B(n, p) \longrightarrow$ Poisson (λ) when $n \rightarrow \infty, p \rightarrow 0$ and $n p \rightarrow \lambda$ (Law of Rare Events).
In practice, if $X \sim B(n, p)$ with $n \geq 30, p \leq 0.1$ and $n p \leq 10$, then

$$
P\{X=k\} \simeq P\{Y=k\}
$$

where $Y \sim \operatorname{Poisson}(\lambda)$ and $\lambda=n p$.

Example 4.5: Early detection of diabetes

The test is tried on 100 volunteers. What is the probability that at most 3 of them are potential diabetics?

The Poisson distribution is frequently used as a probabilistic model for the number of independent events (arrivals, accidents, calls,...) taking place in a time or space unit, when the rate or frequency of those events (that is, the mean number of those events per time or space unit) is constant.

- Number of traffic accidents per month at a busy intersection.
- Number of mutations in a fragment of DNA of a specified length after a certain dose of radiation.
- Number of misprints per page in a book.
- Number of nuclear disintegrations per unit time in a radioactive material.
- Number of excitatory postsynaptic potentials received by the dendritic tree of a neuron in one minute.
- Number of death claims per day received by an insurance company. More examples in www.wikigenes.org/e/mesh/e/5842.html

