A random sample of size \(n = 196 \) yielded \(\hat{p} = .64 \).

a. Is the sample size large enough to use the large sample approximation to construct a confidence interval for \(p \)? Explain.
b. Construct a 95% confidence interval for \(p \).
c. Interpret the 95% confidence interval.

\[
\mathrm{CI}_{.95}(\hat{p}) = \left(\hat{p} \pm z_{.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right) = (0.64 \pm 1.96 \sqrt{\frac{0.64(1-0.64)}{196}})
\]

\[
z_{.025} = 1.96
\]

\[
= (0.64 \pm 0.07) = (0.57, 0.71)
\]

c. With a 95% confidence, the true value of \(p \) lies between .57 and .71.

a. Yes. The sample size just has to be \(\geq 20 \) for the large sample approximation to be valid.