Basic Statistics and Probability (2018-19)
 Science \& Engineering Program Boston University-Faculty of Science UAM

QUIZ 2. SOLUTIONS

1. Is there enough sample evidence supporting the claim of the manufacturer that the true average fuel efficiency μ is at least 30 mpg ?
a) In the alternative hypothesis we place the statement for which we want to have sample evidence before we accept it:

$$
\begin{array}{ll}
H_{0}: \quad \mu \leq 30 \\
H_{1}: \quad \mu>30
\end{array}
$$

As the sample size is $n=6$ (small; we cannot apply CLT), we have to assume that $X=$ "fuel efficiency of a car from that manufacturer" follows a distribution $\mathrm{N}(\mu, \sigma)$.
b) $\bar{x}=30.05$ is a point estimate of μ and $s=0.99$ is a point estimate of σ. The test statistic is

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}=\frac{30.05-30}{0.99 / \sqrt{6}}=0.124
$$

c) The rejection region of the test given in (a) for $\alpha=0.01$ is $R=\left\{t>t_{5 ; 0.01}\right\}=\{t>3.365\}$.
d) Since $t=0.124<3.365$, there is not enough sample evidence to reject $H_{0}: \mu \leq 30$ at the 1% significance level. The sample does not support the claim of the manufacturer.
e) For any $\alpha<0.4531$ (including the usual values $0.01,0.05$ and 0.1), there is not enough evidence to reject H_{0}. Consequently, the p-value is considered to be "large" and it is not reasonable to reject H_{0}.
2. a) By the Central Limit Theorem, the approximate sampling distribution of the sample mean $\bar{X}=\sum_{i=1}^{100} X_{i} / 100$ is normal. The expectation is $E(\bar{X})=E(X)=\mu=200$ and the standard deviation is s.d. $(\bar{X})=\frac{\sigma}{\sqrt{n}}=\frac{20}{\sqrt{100}}=2$.
b) By the result in (a), the approximate probability that the sample mean cholesterol level \bar{X} is lower than 201 is

$$
P\{\bar{X}<201\} \simeq P\left\{Z<\frac{201-200}{2}\right\}=P\{Z<0.5\}=0.5+0.1915=0.6915
$$

where $Z \sim N(0,1)$.
3. a) $\hat{p}=12 / 35=0.3429$
b) A 95% confidence interval for p :

$$
\mathrm{C}_{95 \%}(p)=\left(\hat{p} \mp z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)=\left(0.3429 \mp 1.96 \sqrt{\frac{0.3429(1-0.3429)}{35}}\right)=(0.3429 \mp 0.1573)
$$

c) We are asked to find n such that the half-length of the $\mathrm{CI}_{95 \%}(p)$ is lower than .05 .

First possible solution:

$$
1.96 \sqrt{\frac{0.3429(1-0.3429)}{35}}<0.05 \Rightarrow n>346.2
$$

Second possible solution:

$$
1.96 \sqrt{\frac{0.5^{2}}{35}}<0.05 \Rightarrow n>384.16
$$

