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Science & Engineering Program Boston University-Faculty of Science UAM

MID-TERM. Solutions]|

Throughout the whole exam and, in general, in this subject we use the basic rule
that the probability that a continuous r.v. X is exactly equal to a number is 0, so
P{X =a}=0, P{X <b} = P{X <b} or P{a < X <b} = P{a < X < b} for any a and b.

1. We denote the different kinds of antibiotic as follows: Te = tetracycline, Pe = penicillin, Mi =
minocycline, Ba = Bactrim, St = streptomycin, Zi = Zithromax.

a) The sample points for the experiment of withdrawing a single capsule from the box are
{Te}, {Pe}, {Mi}, {Ba}, {St}, {Zi}.

The probabilities of each sample point are:

15 30 45
P{Te} = —— =0.05, P{Pe} = —— = 0.1, P{Mi} = - = 0.1
{Te} 300 — 2-05, {Pe} 00 — b {Mi} 300 — 15
60 70 80
P{Ba} = — = 0.2, P{St} = — ~0.23, P{Zi} = — ~ 0.27.
{Ba} 300 0.2, P{St} 300 0.23, P{Zi} 300 0.27

b) The probability that the capsule selected is either penicillin or streptomycin is
P(PeuUSt) = P(Pe) + P(St) = 0.1 +0.23 = 0.33
C) The probability that the capsule selected is neither Zithromax nor tetracycline is
1 — P(the capsule is either Zi or Te) = 1 — (0.27 + 0.05) = 0.68.

d) The probability that the capsule selected is not penicillin is P(Pe®) = 1— P(Pe) =1—-0.1 = 0.9.

e) The probability that two Zithromax capsules are drawn is
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The probability that one of capsules is Zithromax and the other one is not is

P(1st capsule is Zi, 2nd capsule is Zi) = 0.07.

P(1st capsule is Zi, 2nd capsule is not Zi) + P(1st capsule is not Zi, 2nd capsule is Zi)

8020979 300-8080 _ 0 o0 o

300 299 + 300 299

2. a) The probability that the die will roll a two if we choose the unfair die is
P(rolling a 2|not rolling a 6) P(not rolling a 6) = é % =0.1
b) If we pick up one die at random, the probability of rolling a six is
P(6) = P(roll a 6|fair die) P(fair die) + P(roll a 6|unfair die) P(unfair die) = %0.99 + % 0.01 =0.17.

C) By the Bayes Rule, if we roll one of the two dice at random and obtain a six, the probability

that the rolled die is the unfair one is

P(rolling a 6|unfair die) P(unfair die) £0.01
P(rolling a 6) ©0.17

= 0.0294.

P(unfair die|rolling a 6) =




3. Suppose X, the lifetime (in years) of an electrical device, is a random variable following a uniform
probability distribution on the interval [c,d] = [1,10].

a) The probability density f of X is constant in the interval [1,10] and takes the value 1/(10—1) =
1/9 ~ 0.1111 along this interval. Outside the interval [1,10] the density is 0.

f(x)
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b) The probability that the device lasts less than 4 years is the area underneath the density f and
to the left of 4. Since f takes the value 0 to the left of 1, we compute the area of the rectangle with
height 1/9 and width between 1 and 4:

3 1

f(x)
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C) The probability that the lifetime of the device is between 4 and 7 years is the area under the
density f and between 4 and 7, so it is the area of the rectangle with height 1/9 and width between
4 and T:

3 1
P{4<X<7}:§:§.

f(x)
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4. We are considering the Bernoulli trial of asking an American if he/she considers that the Inter-
national Space Station was a good investment (success) or not (failure). Thus, the parameter p = 0.8
is the probability that an American chosen at random considers that it was a good investment.

a) Clearly, since X counts the number of individuals in the group of 10 who think it was a good
investment, it is a discrete r.v. The probability distribution of X is Binomial(n = 10,p = 0.8).

b) The probability mass function of X is

1
p(z) = ( 0> 0.8702"7%,  forz=0,...,10,
T

10y 10!
r) (10 —2)!

1
p(7)=P{X =7} = ( 70> 0.870.2% = 120 - 0.2097 - 0.008 = 0.2013.

where

)

d) The probability that all the ten Americans surveyed think the space station has been a good

investment is

p(10) = P{X =10} = 0.8'° = 0.1074.
e) The probability that X equals 7 or 10 is P{X = 7} + P{X = 10} = 0.2013 + 0.1074 = 0.3087.
f)

P{X<8 =1-P{X>8=1-(P{X=9}+P{X=10})=1-(100.870.2 + 0.1074)
=1-(0.2684 + 0.1074) = 0.6242.

g) The population mean and variance for X are respectively
u=EX)=np=10-0.8=38 and o?=V(X)=np(l—p)=10-0.8-0.2 = 1.6.

h) The histogram corresponding to the probability mass function of X is the one on the left.
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One way to see it is that p(10) = P{X = 10} = 0.1074 and this is the only histogram in which the

mass function attains that value.




9. We are considering two r.v.’s: X = length (in cm) of a healthy newly born female baby in Spain
after a full-term pregnancy ~ N(u = 50,0 = 1.5), and Z ~ N(0,1).

a) Here we use the table of the N(0,1) straightaway:
P{0 < Z < 0.67} = 0.2486.

b) Here we use the result in Eﬂ and the fact that the probability that Z ~ N(0,1) is larger than 0

is 0.5:
P{Z >0.67} = P{Z >0} - P{0< Z <0.67} =0.5—0.2486 = 0.2514.

C) Here we use the result in @, the symmetry of the N(0,1) density with respect to 0 and then the
table of the N(0,1) again:

P{-133<Z <067} =P{-133<Z<0}+P{0<Z<0.67}
= P{0 < Z <133} + P{0 < Z < 0.67} = 0.4082 + 0.2486 = 0.6568.

d) If P{Z > ¢} = 0.15, then P{Z < ¢} = P{0 < Z} — P{Z > ¢} = 0.5 — 0.15 = 0.35. We look up
the probability 0.35 in the N(0,1) table and find that

P{0< Z<1.03}=03485 and P{0< Z < 1.04} = 0.3508.

So ¢ is approximately 1.04.
e) By symmetry of the N(0,1) density with respect to 0 we have

0.7=P{-c<Z<c}=P{-c<Z<0}+P{0<Z<c}=2P{0< Z <c}.

So P{0< Z <c}= % = 0.35 and, by the result in c is approximately 1.04 again.
f) The probability that the length of a newly born girl is less than 52 c¢m is

X —-50 52-50
P{X < 52} :P{ 5 <1

= P{0< Z}+ P{0 < Z < 1.33} = 0.5+ 0.4082 = 0.9082.

} — P{Z < 1.33}

g) The probability that the length of a newly born girl is between 49 and 52 cm is

15 ~ 15 15
— P{—0.67< Z < 1.33} = P{—0.67 < Z < 0} + P{0 < Z < 1.33}

= P{0< Z <0.67}+ P{0< Z < 1.33} = 0.2486 + 0.4082 = 0.6568.

49 — X — 2 —
P{49 < X < 52} —P{g o0 05 50}

h) First we standardize X:

X 50 ¢—50 ¢~ 50
15=P{X >cl=P _plz .
015 = P{X > c} { 15 ~ 15 } { ~ 15 }

Now we apply @ where we obtained that P{Z > 1.04} = 0.15, so

c— 50
1.5

=1.04=c=50+4+1.5-1.04 =51.56 cm




