## Basic Statistics and Probability (2018-19)

Science \& Engineering Program Boston University-Faculty of Science UAM

## MID-TERM. Solutions

Throughout the whole exam and, in general, in this subject we use the basic rule that the probability that a continuous r.v. $X$ is exactly equal to a number is 0 , so $P\{X=a\}=0, P\{X \leq b\}=P\{X<b\}$ or $P\{a \leq X \leq b\}=P\{a<X<b\}$ for any $a$ and $b$.

1. We denote the different kinds of antibiotic as follows: $\mathrm{Te}=$ tetracycline, $\mathrm{Pe}=$ penicillin, $\mathrm{Mi}=$ minocycline, $\mathrm{Ba}=$ Bactrim, $\mathrm{St}=$ streptomycin, $\mathrm{Zi}=$ Zithromax.
a) The sample points for the experiment of withdrawing a single capsule from the box are

$$
\{\mathrm{Te}\},\{\mathrm{Pe}\},\{\mathrm{Mi}\},\{\mathrm{Ba}\},\{\mathrm{St}\},\{\mathrm{Zi}\} .
$$

The probabilities of each sample point are:

$$
\begin{aligned}
& P\{\mathrm{Te}\}=\frac{15}{300}=0.05, P\{\mathrm{Pe}\}=\frac{30}{300}=0.1, P\{\mathrm{Mi}\}=\frac{45}{300}=0.15, \\
& P\{\mathrm{Ba}\}=\frac{60}{300}=0.2, P\{\mathrm{St}\}=\frac{70}{300} \simeq 0.23, P\{\mathrm{Zi}\}=\frac{80}{300} \simeq 0.27 .
\end{aligned}
$$

b) The probability that the capsule selected is either penicillin or streptomycin is

$$
P(\mathrm{Pe} \cup \mathrm{St})=P(\mathrm{Pe})+P(\mathrm{St})=0.1+0.23=0.33
$$

c) The probability that the capsule selected is neither Zithromax nor tetracycline is

$$
1-P(\text { the capsule is either } \mathrm{Zi} \text { or } \mathrm{Te})=1-(0.27+0.05)=0.68
$$

d) The probability that the capsule selected is not penicillin is $P\left(\mathrm{Pe}^{c}\right)=1-P(\mathrm{Pe})=1-0.1=0.9$.
e) The probability that two Zithromax capsules are drawn is

$$
P(1 \text { st capsule is } \mathrm{Zi}, 2 \text { nd capsule is } \mathrm{Zi})=\frac{80}{300} \frac{79}{299}=0.07 \text {. }
$$

The probability that one of capsules is Zithromax and the other one is not is
$P(1$ st capsule is Zi , 2nd capsule is not Zi$)+P(1$ st capsule is not Zi , 2 nd capsule is Zi$)$

$$
=\frac{80}{300} \frac{299-79}{299}+\frac{300-80}{300} \frac{80}{299}=0.20+0.20=0.4 .
$$

2. a) The probability that the die will roll a two if we choose the unfair die is

$$
P(\text { rolling a } 2 \mid \text { not rolling a } 6) P(\text { not rolling a } 6)=\frac{1}{5} \frac{50}{100}=0.1 \text {. }
$$

b) If we pick up one die at random, the probability of rolling a six is
$P(6)=P($ roll a $6 \mid$ fair die $) P($ fair die $)+P($ roll a $6 \mid$ unfair die $) P($ unfair die $)=\frac{1}{6} 0.99+\frac{1}{2} 0.01=0.17$.
c) By the Bayes Rule, if we roll one of the two dice at random and obtain a six, the probability that the rolled die is the unfair one is

$$
P(\text { unfair die } \mid \text { rolling a } 6)=\frac{P(\text { rolling a } 6 \mid \text { unfair die }) P(\text { unfair die })}{P(\text { rolling a } 6)}=\frac{\frac{1}{2} 0.01}{0.17}=0.0294 .
$$

3. Suppose $X$, the lifetime (in years) of an electrical device, is a random variable following a uniform probability distribution on the interval $[c, d]=[1,10]$.
a) The probability density $f$ of $X$ is constant in the interval $[1,10]$ and takes the value $1 /(10-1)=$ $1 / 9 \simeq 0.1111$ along this interval. Outside the interval $[1,10]$ the density is 0 .

b) The probability that the device lasts less than 4 years is the area underneath the density $f$ and to the left of 4 . Since $f$ takes the value 0 to the left of 1 , we compute the area of the rectangle with height $1 / 9$ and width between 1 and 4 :

$$
P\{X<4\}=\frac{3}{9}=\frac{1}{3} .
$$


c) The probability that the lifetime of the device is between 4 and 7 years is the area under the density $f$ and between 4 and 7 , so it is the area of the rectangle with height $1 / 9$ and width between 4 and 7:

$$
P\{4<X<7\}=\frac{3}{9}=\frac{1}{3} .
$$


4. We are considering the Bernoulli trial of asking an American if he/she considers that the International Space Station was a good investment (success) or not (failure). Thus, the parameter $p=0.8$ is the probability that an American chosen at random considers that it was a good investment.
a) Clearly, since $X$ counts the number of individuals in the group of 10 who think it was a good investment, it is a discrete r.v. The probability distribution of $X$ is $\operatorname{Binomial}(n=10, p=0.8)$.
b) The probability mass function of $X$ is

$$
p(x)=\binom{10}{x} 0.8^{x} 0.2^{10-x}, \quad \text { for } x=0, \ldots, 10
$$

where

$$
\binom{10}{x}=\frac{10!}{x!(10-x)!} .
$$

c)

$$
p(7)=P\{X=7\}=\binom{10}{7} 0.8^{7} 0.2^{3}=120 \cdot 0.2097 \cdot 0.008=0.2013
$$

d) The probability that all the ten Americans surveyed think the space station has been a good investment is

$$
p(10)=P\{X=10\}=0.8^{10}=0.1074
$$

e) The probability that $X$ equals 7 or 10 is $P\{X=7\}+P\{X=10\}=0.2013+0.1074=0.3087$. f)

$$
\begin{aligned}
P\{X \leq 8\} & =1-P\{X>8\}=1-(P\{X=9\}+P\{X=10\})=1-\left(100.8^{9} 0.2+0.1074\right) \\
& =1-(0.2684+0.1074)=0.6242 .
\end{aligned}
$$

g) The population mean and variance for $X$ are respectively

$$
\mu=E(X)=n p=10 \cdot 0.8=8 \quad \text { and } \quad \sigma^{2}=V(X)=n p(1-p)=10 \cdot 0.8 \cdot 0.2=1.6
$$

h) The histogram corresponding to the probability mass function of $X$ is the one on the left.


One way to see it is that $p(10)=P\{X=10\}=0.1074$ and this is the only histogram in which the mass function attains that value.
5. We are considering two r.v.'s: $X=$ length (in cm ) of a healthy newly born female baby in Spain after a full-term pregnancy $\sim \mathrm{N}(\mu=50, \sigma=1.5)$, and $Z \sim \mathrm{~N}(0,1)$.
a) Here we use the table of the $\mathrm{N}(0,1)$ straightaway:

$$
P\{0<Z<0.67\}=0.2486
$$

b) Here we use the result in a) and the fact that the probability that $Z \sim \mathrm{~N}(0,1)$ is larger than 0 is 0.5 :

$$
P\{Z>0.67\}=P\{Z>0\}-P\{0<Z<0.67\}=0.5-0.2486=0.2514 .
$$

c) Here we use the result in $\mathbf{a}$ ), the symmetry of the $N(0,1)$ density with respect to 0 and then the table of the $\mathrm{N}(0,1)$ again:

$$
\begin{aligned}
P\{-1.33<Z<0.67\} & =P\{-1.33<Z<0\}+P\{0<Z<0.67\} \\
& =P\{0<Z<1.33\}+P\{0<Z<0.67\}=0.4082+0.2486=0.6568
\end{aligned}
$$

d) If $P\{Z>c\}=0.15$, then $P\{Z \leq c\}=P\{0<Z\}-P\{Z>c\}=0.5-0.15=0.35$. We look up the probability 0.35 in the $\mathrm{N}(0,1)$ table and find that

$$
P\{0<Z<1.03\}=0.3485 \quad \text { and } \quad P\{0<Z<1.04\}=0.3508
$$

So $c$ is approximately 1.04 .
e) By symmetry of the $\mathrm{N}(0,1)$ density with respect to 0 we have

$$
0.7=P\{-c<Z<c\}=P\{-c<Z<0\}+P\{0<Z<c\}=2 P\{0<Z<c\}
$$

So $P\{0<Z<c\}=\frac{0.7}{2}=0.35$ and, by the result in $\left.\mathbf{d}\right)$. $c$ is approximately 1.04 again.
f) The probability that the length of a newly born girl is less than 52 cm is

$$
\begin{aligned}
P\{X<52\} & =P\left\{\frac{X-50}{1.5}<\frac{52-50}{1.5}\right\}=P\{Z<1.33\} \\
& =P\{0<Z\}+P\{0<Z<1.33\}=0.5+0.4082=0.9082
\end{aligned}
$$

g) The probability that the length of a newly born girl is between 49 and 52 cm is

$$
\begin{aligned}
P\{49<X<52\} & =P\left\{\frac{49-50}{1.5}<\frac{X-50}{1.5}<\frac{52-50}{1.5}\right\} \\
& =P\{-0.67<Z<1.33\}=P\{-0.67<Z<0\}+P\{0<Z<1.33\} \\
& =P\{0<Z<0.67\}+P\{0<Z<1.33\}=0.2486+0.4082=0.6568 .
\end{aligned}
$$

h) First we standardize $X$ :

$$
0.15=P\{X>c\}=P\left\{\frac{X-50}{1.5}>\frac{c-50}{1.5}\right\}=P\left\{Z>\frac{c-50}{1.5}\right\} .
$$

Now we apply d), where we obtained that $P\{Z>1.04\}=0.15$, so

$$
\frac{c-50}{1.5}=1.04 \Rightarrow c=50+1.5 \cdot 1.04=51.56 \mathrm{~cm}
$$

