English version

Topics on Kähler Geometry and Hodge Theory.

Level of course Master Course

Semester/quarter 2nd semester (Spring 2024)

Hours per week 3 hours

Name of lecturer Mario Garcia-Fernandez

Objectives of the course

This course will be an introduction to complex and Kähler geometry with emphasis on Hodge Theory and elliptic operator theory with a goal towards understanding Kodaira's characterization of complex algebraic manifolds.

Prerequisites

Basic Differential Geometry and Analysis.

Course contents

The course will cover the following topics:

- 1. Introduction to complex geometry: complex manifolds, vector bundles and connections, Chern classes.
- 2. Introduction to Kähler geometry.
- 3. Elliptic operator theory.
- 4. Hodge Theory.
- 5. Kodaira's Embedding Theorem.

Learning outcomes and competences

Relevant to the course subject matter the student should at the end of the

course be able to:

- (a) reproduce key results and give rigorous and detailed proofs of them,
- (b) compare key results,
- (c) apply the basic techniques, results and concepts of the course to concrete examples and exercises,
- (d) to study a prescribed topic on his own and give an oral presentation of selected parts of the topic for his fellow students with pertinent written notes,
- (e) combine concepts from geometry, analysis and topology, and
- (f) show how the course generalizes classical results.

Literature

D. Huybrechts, Complex Geometry – An introduction, Universitext, Springer (2005).

P. Gauduchon, Extremal Kähler Metrics: an elementary introduction, 2017, https://cims.nyu.edu/~rodion/lib/P.%20Gauduchon.%20Calabi's %20extremal%20Kähler%20metrics:%20An%20elementary%20introduction%20-%202017.pdf.

G. Székelyhidi, An Introduction to Extremal Kähler Metrics, Graduate Studies in Mathematics **152**, AMS (2014).

C. Voisin, *Hodge Theory and Complex Algebraic Geometry I*, Cambridge Studies in Advanced Mathematics 76, Cambridge University Press (2002).

R.O. Wells, *Differential Analysis on Complex Manifolds*, GTM **65**, Springer-Verlag New York (2007).

Teaching methods

3 hours of lectures per week including exercises and oral presentations of the students

Language of instruction English