Propuesta de Trabajos Fin de Grado, curso académico 2024-25

PROFESOR: Carlos Mora Corral

Número máximo de TFG que solicita dirigir: 3

1.- TEMA: Cálculo de variaciones

Válido para 2 alumnos.

Resumen/contenido:

Primera variación: ecuación de Euler-Lagrange. Restricciones: multiplicadores de Lagrange. Segunda variación: condición de Legendre, ecuación de Jacobi y condición de Jacobi. Extremos locales fuertes: condición necesaria y condición suficiente de Weierstrass. Convexidad y métodos directos. Problemas de autovalores en EDOs.

Requisitos:

Asignaturas de cuarto relacionadas/compatibles:

Bibliografía/referencias:

U. Brechtken-Manderscheid. Introduction to the Calculus of Variations. Chapman & Hall, 1991.

B. van Brunt. The Calculus of Variations. Springer, 2004.

M. R. Hestenes. Calculus of variations and optimal control theory. John Wiley, 1996.

H. Kielhöfer. Calculus of Variations. Springer, 2018.

M. Kot. A First Course in the Calculus of Variations. American Mathematical Society, 2014.

H. Sagan. Introduction to the Calculus of Variations. Dover, 1992.

D. R. Smith. Variational Methods in Optimization. Dover, 1998.

2.- TEMA: Grado topológico

Válido para 1 alumno.

Resumen/contenido:

Construcción analítica del grado topológico en \mathbb{R}^n . Unicidad del grado topológico. Aplicaciones al análisis (condiciones de inyectividad y sobreyectividad, relación con variable compleja, existencia de soluciones periódicas de EDOs) y a la topología (teorema del punto fijo de Brouwer, teorema de Borsuk, teorema de separación de Jordan).

Requisitos:

Asignaturas de cuarto relacionadas/compatibles:

Bibliografía/referencias:

K. Deimling, Nonlinear functional analysis. Dover. Mineola, 2010.

G. Dinca and J. Mawhin. Brouwer degree — the core of nonlinear analysis. Birkhäuser/Springer, Cham, 2021.

I. Fonseca y W. Gangbo, Degree theory in analysis and applications. Clarendon Press, Oxford University Press, New York, 1995.

3.- TEMA: Teoremas abelianos y tauberianos

Válido para 1 alumno.

Resumen/contenido:

Nociones de sumabilidad: Cesàro, Abel y Lambert. Teoremas de Abel y Tauber. Teoremas de Hardy y Littlewood. Aplicaciones a las series de Fourier y a la teoría de números.

Requisitos:

Asignaturas de cuarto relacionadas/compatibles:

Bibliografía/referencias:

- P. L. Duren, Invitation to Classical Analisis. Pure and Applied Undergraduate Texts, vol. 17. AMS, 2012.
- J. Korevaar. Tauberian theory. A century of developments. Grundlehren der Mathematischen Wissenschaften. Vol. 329. Springer-Verlag, 2004.

4.- TEMA: La función gamma

Válido para 1 alumno.

Resumen/contenido:

Funciones gamma y beta de Euler. Fórmula de duplicación de Legendre. Fórmula de reflexión de Euler. Representación como producto infinito. Fórmula de Stirling y generalización. Teorema de Bohr-Mollerup de unicidad de la función gamma.

Requisitos:

Asignaturas de cuarto relacionadas/compatibles:

Bibliografía/referencias:

P. L. Duren, Invitation to Classical Analisis. Pure and Applied Undergraduate Texts, vol. 17. AMS, 2012.