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Abstract

This paper is devoted to the analysis of the problem of controllability of fractional
(in time) Ordinary and Partial Differential Equations (ODE/PDE). The fractional time
derivative introduces some memory effects on the system that need to be taken into
account when defining the notion of control. In fact, in contrast with the classical ODE
and PDE control theory, when driving these systems to rest, one is required not only
to control the value of the state at the final time but also the memory accumulated
by the long-tail effects that the fractional derivative introduces. As a consequence,
the notion of null controllability to equilibrium needs to take into account both the
state and the memory term. The existing literature so far is only concerned with the
problem of partial controllability in which the state is controlled, but the behaviour of
the memory term is ignored.

In the present paper we consider the full controllability problem and show that,
due to the memory effects, even at the ODE level, controllability cannot be achieved
in finite time. This negative result holds even for finite-dimensional systems in which
the control is of full dimension. Consequently, the same negative results hold also for
fractional PDE, regardless of whether they are of parabolic or hyperbolic nature.

This negative result exhibits a completely opposite behavior with respect to the
existing literature on classical ODE and PDE control where sharp sufficient conditions
for null controllability are well known.

Key Words. Fractional in time ODE, PDE, partial controllability, nul controllability,
observability.

1 Introduction

This paper is devoted to the analysis of the problem of controllability of fractional (in time)
Ordinary and Partial Differential Equations (ODE/PDE).
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These models arise, for instance, in the context of anomalous diffusion, taking the form:

∂αy

∂tα
= −k(−∆)βy, (1.1)

where α and β are real numbers.
In this model, roughly speaking, the time derivative term corresponds to a long-time

heavy tail decay and the spatial fractional derivative operator to non-local diffusion (see
[28]).

Fractional calculus includes various extensions of the usual definition of derivative from
integer to real order, including the Riemann-Liouville derivative, the Caputo derivative,
the Riesz derivative, the Weyl derivative, etc. In this paper, we only consider the Caputo
derivative.

These models are relevant, in particular, in the context of spatially disordered systems,
porous media, fractal media, turbulent fluids and plasmas, biological media with traps,
binding sites or macro-molecular crowding, stock price movements, etc. We refer the readers
to [10, 9, 28, 29] and the rich references therein for the motivation and description of the
model. On the other hand, we refer to [11, 12, 13, 14, 15, 19] and the rich references therein
for mathematical analysis of these models.

Anomalous diffusion processes do not satisfy the Fick’s law, according to which, for
classical diffusion processes, the current V is proportional to the concentration gradient,

V (x, t) = −k∇y(x, t), (1.2)

where k is the diffusion coefficient and y is the concentration. If, in addition, the material
which diffuses is neither created nor destroyed, then the continuity equation leads to

∂y(x, t)

∂t
= −∇·V (x, t), (1.3)

or to the classical diffusion model

∂y(x, t)

∂t
= k∆y(x, t). (1.4)

As mentioned above, the anomalous diffusion processes under consideration (1.1) do not
fit in this frame and need to be formulated by means of fractional calculus and, as we shall
see, the presence of the fractional time derivative has a great impact on the control properties
of these models.

Here we are interested in the problem of controllability. More precisely, we address the
problem of null controllability in which the objective is to drive the solution to rest, in other
words, to the trivial null state, in finite time.

As we shall see, the presence of fractional derivatives in time forces us to revisit the
concept of controllability analysed until now ([26]), to incorporate also memory effects due to
the tail of the time fractional derivative. As a consequence, the notion of null controllability
to equilibrium needs to take into account both the state and the memory term. The existing
literature is only concerned with the problem of partial controllability in which the state is
controlled, but the behaviour of the memory term is ignored.
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In the present paper we consider the full controllability problem and show that, due to
the memory effects, even at the ODE level controllability cannot be achieved.

This negative result holds even for finite-dimensional systems in which the control is
of full dimension. Consequently, the same negative results hold also for fractional in time
PDE, regardless of whether they are of parabolic or hyperbolic nature. This negative result
exhibits a completely opposite behaviour with respect to the existing literature on classical
ODE and PDE control.

So far the problem of controllability for fractional PDE has been considered in a number
of articles (see [30], [32], [8]). But there, mainly, the goal was to analyse the impact of
fractional diffusion, by keeping a classical differential behaviour in time. As shown in these
articles, both for heat and wave-like processes, the controllability properties of the classical
heat and wave equations are preserved depending on the amount of diffusion and propagation
phenomena that the fractional Laplacians introduce.

The present paper is a first attempt to controllability in the context of fractional time
derivative operators and the negative results we prove are mainly due to the long tail effect
in time, and therefore are independent of the diffusion and propagation properties of the
fractional laplacian. As we shall see, the property of controllability even fails for scalar
fractional ODE or for systems of ODE in which the control has full range. We refer to
[17] for an analysis of the optimal control problem of fractional diffusion processes and its
finite element numerical approximation. Note however that, in that article, the pathological
phenomena we observe here are not noticed since the goal there is to minimize a quadratic
cost, without getting to fine controllability issues.

2 Formulation of the null controllability problem

In this section, we give a precise formulation for systems of the form (1.1) and its variants.
We first give the definition of the fractional time derivative.
Given a Banach space X, a ∈ R, and f ∈ C1([a,+∞);X) and α ∈ (0, 1), we introduce

the left-hand side Caputo derivative of f at a as follows:

∂αt,a+f
4
=

∫ t

a

f ′(s)

(t− s)α
ds. (2.1)

Remark 2.1 In the above definition, we only consider the case that α ∈ (0, 1) whereas the
Caputo derivative can be defined for any complex number α with a nonnegative real part (see
[4, 34]).

Let H be a Hilbert space and A a linear unbounded operator on H, which generates a
C0-semigroup {S(t)}t≥0 on H. Let U be another Hilbert space and B ∈ L(U,H) the control
operator.

We consider the following control system:{
∂αt,0+y − Ay = Bu in (0,+∞),

y(0) = y0,
(2.2)

with α ∈ (0, 1), y0 ∈ H and u ∈ L2(0, T ;U).
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Here we do not discuss the well-posedness of the system (2.2), which is a wide topic, out
of the scope of this paper. The well-posedness of the system for the models we shall consider
can be easily achieved. Actually, proceeding as in [17], provided A is self-adjoint and of
compact inverse, employing the spectral basis associated to the eigenvectors of A, solutions
of (2.2) can be represented in an unique manner using separation of variables and Fourier
series representations. We refer the readers to [4, 31, 34] for a more systematic discussion of
these solvability issues.

Thus, in what follows, we always assume that there is a unique solution

y(·) ∈ C([0,+∞);H) ∩ C1([0,+∞);D(A∗)′)

to the system (2.2) such that for any ϕ ∈ D(A∗) and t ∈ (0, T ],∫ t

0

〈∂αt y(s), ϕ〉D(A∗)′,D(A∗)ds−
∫ t

0

〈y(s), D∗ϕ〉Hds =

∫ t

0

〈Bv, ϕ〉H .

Before giving the definition of the property of null controllability of (2.2), let us first
recall that, for classical abstract differential equations of the form{

∂tŷ − Aŷ = Bv in (0,+∞),

ŷ(0) = ŷ0,
(2.3)

where ŷ0 ∈ H and v ∈ L2(0, T ;U), the system (2.3) is said to be null controllable at time
T > 0 if for any ŷ0 ∈ H, there is a control v ∈ L2(0, T ;U) such that the corresponding
solution ŷ(·) satisfies that ŷ(T ) = 0.

Remark 2.2 System (2.3) is a classical linear control system, which has been studied ex-
tensively in the literature. When A is a fractional spatial diffusion operator, it describes
some special anomalous diffusion processes and its null controllability has been analysed in
[24, 30, 32, 8].

The emphasis on the present paper is precisely on the dramatic impact that fractional in
time derivatives have on the controllability properties of the system.

The above definition, when translated as such for fractional systems of the form (2.2),
would lead to a notion of partial but not of full null controllability, in the sense that, for
fractional in time derivatives, due to memory effects induced by the integral term, the fact
that the solution y reaches the null value at time t = T does not guarantee that the solution
stays at rest for t ≥ T when the control action stops.

The partial null controllability problem, for the system (2.2), in which one is merely
interested in reaching the state 0 at time t = T , was studied by some authors (see [7, 23, 26]
and the references therein). Similar to the classical controllability result for ODE, when
H = Rn, A is a n-dimensional matrix and B is a n × m matrix, the authors show that
the Kalman rank condition of (A,B) is a sufficient and necessary condition for the partial
null controllability of the system (2.2). More precisely, they proved that (2.2) is partial null
controllable if and only if

rank(B,AB, · · · , An−1B) = n.

Here we consider the following rather stronger notion of null controllability:
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Definition 2.1 System (2.2) is null controllable at time T > 0 if for any y0 ∈ H, there is
a control u ∈ L2(0, T ;U) such that the corresponding solution y(·) satisfies that y(t) = 0 for
all t ≥ T .

In the previous definition we implicitly assume that the control u that has its support in
t ∈ [0, T ], vanishes afterwards, i. e. u(t) ≡ 0 for all t ≥ T . A similar notion was consider in
[1] for scalar ODE with Riemann-Liouville fractional derivative.

Of course, for classical differential equations (both ODE and PDE), both notions of null
controllability coincide since the uniqueness of solutions for the Cauchy problem in that
setting ensures that, once the solution reaches the equilibrium 0 at time t = T , it remains
there y(t) ≡ 0 for all t ≥ T if no added control is implemented after t ≥ T .

The main result of this article shows that, for fractional derivative models, the null
controllability property in the strict sense of Definition 2.1 fails systematically due to the
memory effects induced by the integral entering in the fractional in time derivative.

This negative result is relevant not only from the perspective of null controllability but in
a more general control theoretical context. Indeed, let us for instance consider the classical
linear quadratic optimal control problem on infinite time horizon ([18]), in which the goal is
to minimize the cost

J (u) =

∫ ∞
0

(
|y(t)|2H + |u(t)|2U

)
dt, (2.4)

where u is a control and y is the corresponding solution.
More precisely, consider the optimal control problem (Problem (LQ)): For each y0 ∈ H,

find a u(·) ∈ L2(0,+∞;U) such that

J (u(·)) = inf
u(·)∈L2(0,+∞;U)

J (u(·)). (2.5)

Obviously, the first issue that arises when considering this type of optimal control prob-
lems is whether the set of feasible controls is non void since, otherwise, the minimization
problem does not make sense. Obviously, the feasible set contains all null controls in finite
time, and this is one of the first consequences of null controllability. Indeed, if we can choose
a control u ∈ L2(0, T ;U) such that the state y(t) ≡ 0 for all t ≥ T , then the integral on the
cost is limited to the finite time interval [0, T ] and is obviously finite.

As we shall see, however, these fractional in time systems fail to be null controllable, and
therefore, whether the set of feasible controls is non-empty or not will depend on the decay
properties of solutions of the free dynamics without control. Thus, Problem (LQ) in itself is
an interesting issue that requires further investigation.

3 A negative result on null controllability

The main result of this paper is of negative nature:

Theorem 3.1 System (2.2) is not null controllable for any T > 0 in the sense of Definition
2.1.
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Note that this negative result is independent of the functional setting, the nature of the
generator A and the control operator B. In fact the same negative result holds for finite-
dimensional systems even when B is surjective. . In particular the first order scalar fractional
DE fails to be null controllable as well.

To prove Theorem 3.1, let us first recall the following classical Müntz theorem (see [16]
for a proof).

Lemma 3.1 Let {σk}∞k=0 with 0 = σ0 < σ1 < · · · be an increasing sequence of non-negative
real numbers. Then the set span {sσk}∞k=0 is dense in C([0, L]) for any L > 0 if and only if

∞∑
k=1

1

σk
= +∞. (3.1)

Proof of Theorem 3.1 : Let us assume that the system (2.2) is null controllable for a
T > 0 in the sense of Definition 2.1. Then, for any t ≥ T , we have that∫ T

0

y′(s)

(t− s)α
ds =

∫ t

0

y′(s)

(t− s)α
ds = 0, ∀ t ≥ T.

Thus, for any ϕ ∈ D(A∗),∫ T

0

〈y′(s), ϕ〉D(A∗)′,D(A∗)

(t− s)α
ds = 0, ∀ t > T,

which implies that∫ T

0

〈y′(s), ϕ〉D(A∗)′,D(A∗)

(t− s)α+j
ds = 0, ∀ t > T, j ∈ {0} ∪ N. (3.2)

Let σ = (t− s)−1. From (3.2), we have that∫ 1
t−T

1
t

〈
y′
(
t− 1

σ

)
, ϕ
〉
D(A∗)′,D(A∗)

σα+j−2dσ = 0, ∀ t > T, j ∈ {0} ∪ N. (3.3)

Let

f(σ) =
〈
y′
(
t− 1

σ

)
, ϕ
〉
D(A∗)′,D(A∗)

σα−2.

From (3.3), we get that∫ 1
t−T

1
t

f(σ)σjdσ = 0, ∀ t > T, j ∈ {0} ∪ N. (3.4)

This, together with Lemma 3.1, implies that

f(·) ≡ 0 in
[1

t
,

1

t− T

)
.

Hence, we find that
y′(·) ≡ 0 in [0, T ).

Taking into account that y(T ) = 0 this also implies that y ≡ 0 in [0, T ].
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4 The dual observation problem

It is by now well known in classical ODE and PDE control theory, that the controllability
and observability properties are in duality. Thus, it is natural to analyze the signification of
the negative result on null controllability in what concerns the dual observability property.

To this end, it is necessary to introduce the adjoint system and, for this, we need to
define the right-sided Caputo fractional derivative at b ∈ R as follows:

(∂t,b−f)(t) =
−1

Γ(1− α)

∫ b

t

f ′(s)

(s− t)α
ds, ∀f ∈ C1((−∞, b];X). (4.1)

Consider the following system: ∂αt,T−z
τ − A∗zτ =

αz0

Γ(1− α)(τ − t)1+α
in (0, T ),

zτ (T ) = 0,
(4.2)

with z0 ∈ D(A∗).
The following holds:

Proposition 4.1 System (2.2) is null controllable in time T if and only if the system (4.2)
is initially observable in the sense that there is a constant C such that for any τ ∈ (T,+∞)
and z0 ∈ D(A∗), it holds∣∣∣ ∫ T

0

t1−αzτ (t)

Γ(2− α)
+

z0

Γ(1− α)(τ − t)α
dt
∣∣∣
H
≤ C|B∗zτ |L2(0,T ;U). (4.3)

Proof : The “if” part. Let

X 4
= {B∗zτ | z solves (4.2) with a z0 ∈ D(A∗) }.

Clearly, X is a linear subspace of L2(0, T ;U). Define a linear functional F on X as follows:

F(B∗zτ ) = − 1

Γ(1− α)

∫ T

0

〈zτ (t)
tα
− z0

(τ − t)α
, y0

〉
H
dt.

From (4.3), we have that ∣∣F(B∗zτ )
∣∣ ≤ C|y0|H |B∗zτ |L2(0,T ;U).

This implies that F is a bounded linear functional on X . By the Hahn-Banach theorem,
F can be extended to be a bounded linear functional on L2(0, T ;U). We still denote the
extension by F if there is no confusion. By Riesz representation theorem, there is a u ∈
L2(0, T ;U) such that

F(B∗zτ ) =

∫ T

0

〈B∗zτ , u〉U .
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We claim this u(·) is the desired control. Indeed, by integrating by parts, one has that∫ T

0

〈(zτ (t), ∂αt y)(t)〉D(A∗),D(A∗)′dt

=
〈
zτ (t),

1

Γ(2− α)

∫ t

0

(t− s)1−αy′(s)ds
〉
D(A∗),D(A∗)′

∣∣∣T
0

−
∫ T

0

〈
∂tz

τ (t),
1

Γ(2− α)

∫ t

0

(t− s)1−αy′(s)ds
〉
D(A∗),D(A∗)′

= −
∫ T

0

〈
∂tz

τ (t),
1

Γ(2− α)
(t− s)1−αy(s)

∣∣∣t
0

+
1− α

Γ(2− α)

∫ t

0

y(s)

(t− s)α
ds
〉
H

=

∫ T

0

〈
∂tz

τ (t),
1

Γ(2− α)
t1−αy0

〉
H
dt− 1

Γ(1− α)

∫ T

0

∫ t

0

〈
∂tz

τ (t),
y(s)

(t− s)α
ds
〉
H

= − 1

Γ(1− α)

∫ T

0

〈zτ (t)
tα

, y0

〉
H
dt+

∫ T

0

〈
∂αt,T−z

τ (t), y(t)
〉
H
dt.

(4.4)

Clearly,
〈Ay, zτ 〉H = 〈y, A∗zτ 〉H (4.5)

and ∫ T

0

〈
y(t),

αz0

Γ(1− α)(τ − t)1+α

〉
H
dt

= − 1

Γ(1− α)

〈
y(T ),

z0

(τ − T )α

〉
H

+
1

Γ(1− α)

〈
y0,

z0

(τ − T )α

〉
H

+
〈 1

Γ(1− α)

∫ T

0

y′(t)

(τ − t)α
dt, z0

〉
H

(4.6)

From (4.4) to (4.6), we have that

− 1

Γ(1− α)

∫ T

0

〈zτ (t)
tα
− z0

(τ − t)α
, y0

〉
H
dt

+
1

Γ(1− α)(τ − T )α
〈z0, y(T )〉H −

〈
z0,

1

Γ(1− α)

∫ T

0

y′(t)

(τ − t)α
dt
〉
H

=

∫ T

0

〈u,B∗zτ 〉Hdt.

(4.7)
Therefore, for any τ ∈ (T,+∞) and z0 ∈ D(A∗), it holds that

1

Γ(1− α)(τ − T )α
〈z0, y(T )〉H −

〈
z0,

1

Γ(1− α)

∫ T

0

y′(t)

(τ − t)α
dt
〉
D(A∗),D(A∗)′

= 0. (4.8)

Since

lim
τ→T+

〈
z0,

1

Γ(1− α)

∫ T

0

y′(t)

(τ − t)α
dt
〉
D(A∗),D(A∗)′

=
〈
z0,

1

Γ(1− α)

∫ T

0

y′(t)

(T − t)α
dt
〉
D(A∗),D(A∗)′

=
〈
z0, (∂

α
t y)(T )

〉
D(A∗),D(A∗)′

<∞,

it holds that

lim
τ→T+

1

Γ(1− α)(τ − T )α
〈z0, y(T )〉H <∞,
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which implies that for all z0 ∈ D(A∗), 〈z0, y(T )〉H = 0. Hence, we get that y(T ) = 0. From
(4.8), we find that for any z0 ∈ D(A∗),〈

z0,
1

Γ(1− α)

∫ T

0

y′(t)

(τ − t)α
dt
〉
D(A∗),D(A∗)′

= 0.

This implies that for any τ ∈ (T,+∞),

1

Γ(1− α)

∫ T

0

y′(t)

(τ − t)α
dt = 0. (4.9)

Hence, for any τ > T ,

(∂αt,0+y)(τ) =
1

Γ(1− α)

∫ τ

0

y′(t)

(τ − t)α
dt+

1

Γ(1− α)

∫ τ

T

y′(t)

(τ − t)α
dt = (∂αt,T+y)(τ). (4.10)

From (2.2) and (4.10), for τ > T , y(·) is the solution to{
(∂αt,T+y)(τ) + Ay(τ) = 0 in (T,+∞),

y(T ) = 0.
(4.11)

Hence, we get that y(τ) = 0 for all τ ≥ T .

The “only if” part. Define a bounded linear operator L : H → H as follows:

L(z0) = − 1

Γ(1− α)

∫ T

0

〈zτ (t)
tα
− z0

(τ − t)α
, y0

〉
H
dt,

where zτ (·) is the solution to (4.2). If (4.3) does not hold, then, one can find a sequence
{zk0}∞k=1 ⊂ H with zk0 6= 0 for all k ∈ N, such that the corresponding solutions zτ,k to (4.2)
(with z0 replaced by zk0 ) satisfy that

|B∗zτ,k|L2(0,T ;U) ≤
1

k

∣∣∣ 1

Γ(1− α)

∫ T

0

〈zτ (t)
tα
− z0

(τ − t)α
, y0

〉
H
dt
∣∣∣
H
. (4.12)

Write

z̃k0 =

√
kzk0
L(zk0 )

,

and denote by z̃τ,k the corresponding solution to (4.2) (with z0 replaced by z̃k0 ). Then, it
follows from (4.12) that, for each k ∈ N,

|B∗zτ,k|L2(0,T ;U) ≤
1√
k

(4.13)

and
|L(z̃k0 )|H =

√
k. (4.14)
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On the other hand, since the system (2.2) is null controllable, for a given y0 ∈ H, we have
a control u ∈ L2(0, T ;U) driving the corresponding solution to rest. Similar to the proof of
(4.7), we have that

− 1

Γ(1− α)

∫ T

0

〈 z̃τ,k(t)
tα

− z̃k0
(τ − t)α

, y0

〉
H
dt =

∫ T

0

〈u,B∗z̃τ,k〉Hdt. (4.15)

By (4.13) and (4.15), we have that

L(z̃k0 ) tends to 0 weakly in H as k → +∞

Hence, by the Principle of Uniform Boundedness, the sequence {L(z̃k0 )}∞k=1 is uniformly
bounded in H, which contradicts (4.14). This completes the proof of Proposition 4.1.

As an immediate corollary of Theorem 3.1 and Proposition 4.1, we have the following
result.

Corollary 4.1 The system (4.2) is not initially observable.

5 Partial null controllability

In this section we analyse more closely the particular and relevant case of fractional diffusion
models.

Let Ω ⊂ Rd(d ∈ N) be a bounded domain with the C∞ boundary ∂Ω, and ω ⊂ Ω be an
open subset. Define an unbounded linear operator AΩ on L2(Ω) as follows:{

D(AΩ) = H2(Ω) ∩H1
0 (Ω),

AΩϕ = −∆ϕ, ∀ϕ ∈ D(AΩ).

Denote by {λj}∞j=1 with 0 < λ1 < λ2 ≤ λ3 ≤ · · · the eigenvalues of AΩ and {ej}∞j=1 with

|ej|L2(Ω) = 1 the corresponding eigenvectors. For β ∈ [0,+∞), we define AβΩ as follows:
D(AβΩ) =

{
f
∣∣∣ f =

∞∑
j=1

fjej with
∞∑
j=1

λ2β
j f

2
j <∞

}
,

AβΩf =
∞∑
j=1

λβj fjej, ∀ f =
∞∑
j=1

fjej.

Let H = U = L2(Ω), A = AβΩ and Bu = χωu. Then the system (2.2) reads{
∂αt y − A

β
Ωy = Bu in (0,+∞),

y(0) = y0.
(5.1)

A possible strategy to establish the partial null controllability of (5.1) would be inspired in
the iteration method for the null control of the heat equation introduced by Lebeau and
Robbiano in [20] (see also [22]). It works well for α = 1 (classical first order derivative term
in time) and β > 1

2
, as described in [24], [30] and [32]. Let us explain its main idea here.
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Let

Tk =


0, if k = 1,

T

k−1∑
i=1

2−i, if k > 1,
(5.2)

and

T̃k =


T

4
, if k = 1,

T
( k−1∑
i=1

2−i + 2−k−1
)
, if k > 1.

(5.3)

Put

Ik = [Tk, T̃k), Jk = [T̃k, Tk+1), rk =
16C2

1

(Tk+1 − T̃k)4
, for k = 1, 2, · · ·

Clearly,
rk → +∞ as k → +∞. (5.4)

For each k ∈ N, denote by Pk the orthogonal projection from L2(G) to Spanλj≤rk{ej}. On

each interval Ik, one can find a control u(k)(·) ∈ L2(Ik;L
2(ω)) such that the corresponding

solution y(k)(·) to (5.1) on Ik satisfies

Pk
(
y(k)
(
T̃k
))

= 0.

Furthermore, there is a constant C1, independent of k and y, such that

|u|L2(Ik;L2(ω)) ≤ C1e
C1
√
rk |y(Tk)|L2(Ω). (5.5)

On every interval Jk, we let the heat equation freely evolve. We start by having the initial
datum for the equation on I1 to be y0. For the initial datum on Ik, k = 2, 3, · · · , we define it
the ending value of the solution to the equation on Jk−1. The initial datum of the equation
on Jk, k = 1, 2, · · · , is given by the ending value of the solution for the equation on Ik. If
there is no eigenvalue of −A in (rk, rk+1], we simply set u(k)(·) = 0 on Ik. Thanks to the
energy decay of (5.1), we can get that there is a constant C2, independent of k and y, such
that

|y(Tk)|L2(Ω) ≤ Ce−Cr
β
k−1 . (5.6)

The inequalities (5.5) and (5.6) yield that the control

|u|L2(Ik;L2(ω)) ≤ (C1 + C2)eC1
√
rk−C2r

β
k−1|y0|L2(Ω). (5.7)

Hence, we obtain that

u(·) =
∞∑
k=1

χIk(·)u(k) ∈ L2(0, T ;L2(ω)),

drives the solution of the system (5.1) to 0 at time T .
Clearly, that a key point to guarantee the above strategy works is the exponential decay

of the solution, i.e., the Fourier coefficient corresponding to the j-th eigenfunction ej of y
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decays as e−λ
β
j . Such kind of decay compensates the term eC1

√
rk if β > 1

2
. This also explains

why the method fails when β < 1
2
. The reason why the method also fails in the critical case

β = 1/2 is more subtle and is related with Müntz Lemma above (see [30]).
This iterative method also fails when considering fractional order in time derivative terms

as in (5.1).
Indeed, let us recall that for a, b ∈ C, Re a > 0, the Mittag-Leffler function Ea,b is defined

by

Ea,b(s) =
∞∑
k=0

sk

Γ(ak + b)
, ∀s ∈ C. (5.8)

Let us recall some properties of Mittag-Leffler functions as follows ([6]):

Eα,1(x) =
1

π

∞∑
k=0

ak(α)

xk+1
, 0 ≤ α < 1, (5.9)

where {ak(α)}∞k=0 ⊂ R and a0(α) 6= 0 for α ∈ (0, 1). This implies that

Eα,1(−x) = O
(1

x

)
, as x→ +∞. (5.10)

Furthermore, the following recurrence relation holds:

Eα,1(−x) =
2x

π

∫ ∞
0

E2α,1(−γ2)

x2 + γ2
dγ, 0 ≤ α ≤ 1. (5.11)

Particularly,

E1,1(−x) =
2x

π

∫ ∞
0

cosh(iγ)

x2 + γ2
dγ = e−x (5.12)

and

E 1
2
,1(−x) =

2x

π

∫ ∞
0

e−γ
2

x2 + γ2
dγ. (5.13)

By (5.13), we have that

E 1
2
,1(−x) =

2x

π

∫ x2

0

e−γ
2

x2 + γ2
dγ +

2x

π

∫ ∞
x2

e−γ
2

x2 + γ2
dγ ≤ 2

(1

x
+ e−x

2
)
. (5.14)

This indicates that there are two components in E 1
2
,1(·). As x → −∞, one of them decays

polynomially and the other one decays exponentially.
For j ∈ N, put

y0,j = 〈y0, ej〉L2(Ω) and uj = 〈χωu, ej〉L2(Ω).

The solution to (5.1) reads

y(x, t) =
∞∑
j=1

Eα,1(−λβj tα)y0,jej(x) +
∞∑
j=1

∫ t

0

(t− s)α−1Eα,α(λβ(t− s)α)uj(s)ej(x)ds. (5.15)

12



If we take u = 0, then the solution is

y(x, t) =
∞∑
j=1

Eα,1(−λβj tα)y0,jej(x). (5.16)

Hence, if α ∈ (0, 1), it holds that

Eα,1(−λβj tα) = O
( 1

λβj t
α

)
as j → +∞.

This concludes that the solution to (5.1) decays polynomially rather than exponentially.
On the other hand, by (5.12), we have that y decays exponentially if α = 1.

6 Further comments

• Existence of feasible controls for Problem (LQ).

We have proved in Section 3 that it is impossible to prove the existence of a feasible
control for Problem (LQ) by establishing the null controllability of (2.2). There is
however another possibility to achieve this goal, without requiring the null controlla-
bility property that fails. indeed, note that in order to prove that the class of feasible
controls is non-empty it is sufficient to show the existence of controls such that the
solution to (2.2) decays fast enough so that J (u) < +∞. One could try to achieve
this property as in the classical ODE and PDE control theory by means of a suitable
feedback operator,

Let us comment on the stabilization problem for a special case of (2.2), i.e., (5.1).

We first consider the simplest case that ω = Ω. If α = 1, to guarantee that the solution
to (2.3) decays exponentially with a decay rate λ, it suffices to take the feedback control
u = −λŷ. However, if α 6= 1 with the same feedback u = −λy in (5.1), we have that{

∂αt y − A
β
Ωy = −λy in (0,+∞),

y(0) = y0.
(6.1)

The solution to (6.1) is

y(x, t) =
∞∑
j=1

Eα,1
(
− (λβj + λ

)
tα)y0,jej(x). (6.2)

From (5.9), it holds that

Eα,1
(
− (λβj + λ)tα

)
= O

( 1

(λβj + λ)tα

)
as j → +∞.

Hence, such kind of feedback does not modify the decay rate of y as t tends infinity.

Obviouslyy if α > 1
2
, the null control u ≡ 0 is feasible, since the free solution decays

sufficiently has to ensure that the cost functional J is finite. Whether Problem (LQ)
has a feasible control for the case α < 1

2
is unknown.
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• Stabilization.

The stabilization problem for the system (2.2) consists precisely on finding a feedback
control u = F (y), with a suitable linear map F , to accelerate the speed of the decay
of solutions of the free system as t→∞.

The stabilization problem for the system (2.3) involving classical first order in time
derivatives, has been studied extensively. Usually, one can use an instantaneous feed-
back operator, acting in any give time instance t, out of partial measurements of the
state at time t, without employing the past memory of the system, F ∈ L(H,U), to
stabilize the system (2.3). One typically seeks for exponential decay properties al-
though in some particular cases of infinite-dimensional conservative systems, the decay
achieved can be slow, either polynomial or logarithmic in time(see [3, 10, 21, 33] and
the references therein).

However, in the present context of fractional in time models, instantaneous feedback
operators F ∈ L(H,U), may not suffice to achieve the exponential decay of the system
(2.2). This can be seen, for instance, on the following toy model:{

∂αt y = u in (0,+∞),

y(0) = y0.
(6.3)

In this case, F ∈ L(H,U) = L(R,R) means that Fy = cy for some c ∈ R. Furthermore,
to stabilize the system, we should let c < 0. Then the solution to (6.3) reads

y(t) = Eα,1(ctα)y0 = O
( 1

ctα

)
as t→ +∞.

Clearly, no matter what the value of c is, the solution decays polynomially. This
example also shows that if F ∈ L(H,U), the rate of the polynomial decay depends
only on α, which cannot be improved by the choice of F .

According to this example, to stabilize (2.2), one should use other forms of feedback
operators, possibly including the effect of the past memory of the system.

• Higher order fractional in time derivatives.

We have studied the case that 0 < α < 1 and proved that (2.2) is not null controllable.
By a similar argument, one can prove that for any α > 0, α /∈ N, the system (2.2) is
not null controllable. We also can show that a linear bounded feedback cannot be used
to stabilize the system (2.2) for any α > 0, α /∈ N.
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