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Abstract

In this article we briefly present some aspects of the state of the art on
efficient numerical approximation methods for control problems involving
Partial Differential Equations. We focus mainly on the wave equation, as
a paradigm of model for vibrations, generating a group of isometries in a
Hilbert space. The purely conservative nature of the problem makes nu-
merical approximation issues of control problems to be particularly com-
plex because of the pathological behavior of the high frequency numerical
components.

1 Introduction

Control Theory is now an old subject. It emerged with the Industrial
Revolution and has been continuously evolving since. New technological
and industrial processes and mechanisms need new control strategies and
this leads to new Mathematics of Control as well. At present Control
Theory is certainly one of the most interdisciplinary areas of research and
it arises vigorously in most modern applications.

Since its origins (see [4], [21]) the field has evolved tremendously and
different tools have been developed to face the main challenges that require
to deal with a variety of models: Ordinary Differential Equations/ Partial
Differential Equations, Linear/Nonlinear, Deterministic/Stochastic, etc.

Practical control problems can be formulated in many different ways,
requiring different kinds of answers, related to the different notions of
control, the various possible modeling paradigms and the degree of pre-
cision of the result one is looking for: optimal control, controllability,
stabilizability, open loop versus feedback or close-loop controls, etc. Last
but no least, the practical feasibility and implementability of the control
mechanisms that theory produces needs to be taken into account.
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In this multi-fold task the mathematical theory of control that has
been developed is nowadays a rich combination of, among other fields,
Fourier, Functional, Complex and Stochastic Analysis, ODE and PDE
theory and Geometry (see [16], [46]).

Needless to say, in practice, controls need to be computed and imple-
mented through numerical algorithms and simulations. Numerical anal-
ysis is then necessary to design convergent algorithms allowing for an
efficient approximation and computation of controls. Again, the existing
theory on numerical methods for control is wide and the employed tech-
niques diverse, adapted to the different problems and contexts mentioned
above.

In this article we present a partial panorama of the state of the art in
what concerns numerical methods for solving control problems for Partial
Differential Equations. This article can not be exhaustive. We have chosen
to focus on a specific topic, that we consider to play a central role in the
theory. We also take the opportunity to point towards some other related
issues of current and for future research.

2 Problem formulation

Optimal controls for PDEs can be often characterized as the solutions
of an optimality system coupling the state to be controlled and the ad-
joint state. One can then numerically approximate these systems to get
a numerical approximation of the control. This leads to the so called
continuous approach in which one first develops the control theory at the
level of the continuous models (PDEs) and then uses numerical analysis
for approximating the control. The discrete approach consists roughly on
proceeding all the way around: We first discretize the PDEs and then
use finite-dimensional control theory to compute the controls of the dis-
cretized model. In the last few years it has been clearly understood that
the two approaches do not necessarily lead to the same results and, in
particular, that the convergence of the procedures is not ensured by the
fact of having used a convergent numerical approximation for the under-
lying PDE dynamics and the control requirement. In fact, each of the
approaches has its advantages and drawbacks. In particular, as analyzed
in [20] in detail:

• The continuous approach may diverge if one mimics at the discrete
level in a straightforward manner iterative algorithms that, at the
continuous one, lead to the right optimal control characterized by
the optimality system.

• The discrete approach may diverge since the controls for the discrete
dynamics do not necessarily converge to those of the continuous
dynamics as the mesh-size parameter tends to zero.

In both cases the reason for these divergence phenomena is the same: The
presence of high frequency numerical oscillations that do not reproduce the
propagation properties of continuous wave equations and that eventually
leads to the failure of convergence of the controls of the discrete dynamics
to those of the continuous one. This makes the discrete approach fail. But,
for the same reason, the continuous approach may fail as well. Indeed,
when implementing at the discrete level the iterative methods developed
to compute the control of the continuous one, one is eventually led to
the control of the discrete dynamics which, as mentioned above, does not
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necessarily converge to the continuous one. The same occurs to other
methods, based on different iterative algorithms for building continuous
controls, as for instance, the one developed in [15] which implements D.
Russell’s method of “stabilization implies control” (see [41]) also closely
related to the works by D. Auroux and J. Blum on the nudging method
for data assimilation for Burgers like equations, see [1].

Similarly the cure is also the same in both cases: Filtering the high
frequencies so to concentrate the energy of numerical solutions in the low
frequency components that behave truly as continuous waves. The need
of this high frequency filters was already pointed out by R. Glowinski, J.
L. Lions and collaborators (see, for example, [23], [24]).

The simplest and most paradigmatic example of those pathologies is
the wave equation. Indeed, the control of the discrete dynamics generated
by convergent numerical schemes of a 1 − d wave equation can dramati-
cally diverge as the mesh-size tends to zero even in situations where the
wave equation itself is easily controllable (see [45]). This is due to the
pathological behavior of the high frequency numerical solutions. Indeed,
while solutions of the continuous wave equation propagate with velocity
equal to one, solutions of most numerical schemes can propagate with an
asymptotically (as the mesh-size parameter tends to zero) small group ve-
locity ([44]). Furthermore, for the continuous wave equation the fact that
all waves propagate with the same velocity reaching the control region
(for instance the boundary of the domain) in a uniform time is the reason
why controllability holds. Similarly, the very slow propagation of the very
high frequency numerical wave packets is the reason why the controls of
the numerical scheme may diverge, even with an exponential rate ([30])
as the mesh-size parameters tend to zero.

The link between velocity of propagation of solutions of wave like equa-
tions and the boundary control properties of these processes is rigorously
established through the so-called Geometric Control Condition (GCC)
([8]) which ensures, roughly, that wave-like equations are controllable if
and only if all rays of Geometric Optics enter the control region in an
uniform time.

From a numerical analysis viewpoint, although the existing theory is
rather complete for constant coefficient wave equations in uniform nu-
merical grids in which the Fourier representation of solutions is available,
plenty is still to be done for dealing with general variable coefficient wave
equations discretized in non-uniform grids. We refer to [29] for a first study
of this problem in the variable coefficient 1−d case by means of Microlocal
and Wigner measures tools on grids that can be mapped smoothly into
an uniform one.

3 Related issues and perspectives

There are other topics arising in the intersection of the theory of PDEs and
numerical analysis and in which similar issues appear. Important progress
has been done recently developing ideas that are closely related to the ones
discussed above and in which a careful comparison of continuous versus
discrete methods is necessary. We mention here some of them with some
basic related bibliography. Nor the list of topics neither that of the main
related references is complete.

• Filtering: As mentioned above, the most natural cure for the high
frequency numerical pathologies is filtering. This can be done in
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various different manners: By using some Fourier filtering mecha-
nism ([45]), adding numerical artifical viscosity terms ([31]), wavelet
decompositions ([37]) or, the most frequent one, easy to implement,
a two-grid algorithm ([23], [27]). This leads to numerical algorithms
for computing the controls that actually converge but at the prize
of relaxing the control requirement. Indeed, when filtering the nu-
merical solutions one ends up controlling not the whole solution of
the numerical scheme but rather a low frequency projection. A more
systematic study of the filtering mechanisms on non-uniform grids
and the related adaptivity techniques (depending on the data to be
controlled, according to the time evolution of controlled solutions)
is still to be developed.

• Feedback stabilization of wave processes: Similar issues arise in the
context of the exponential stabilization of wave equations by means
of feedback mechanisms. For the continuous wave equation this issue
is well understood and the exponential decay is guaranteed provided
the feedback is effective in a subset of the domain satisfying the
GCC. But, as in the context of controllability, the decay rate fails
to be uniform when the PDE is replaced by a numerical approxima-
tion scheme and this is due, again, to the high frequency spurious
solutions. Extra artificial viscous damping is then required in order
to ensure the uniform exponential decay of solutions ([42], [43], [40],
[18]). Similar issues arise also when computing periodic solutions of
Helmholtz equations ([48]) and in the implementation of the method
of Perfectly Matching Layers ([17]).

• Optimal design of flexible structures: The subject of the optimal
design of controllers and actuators for systems governed by PDEs is
also widely open. Again, the issue of whether the discrete approach
suffices to compute accurate approximations of continuous optimal
shapes and designs is a relevant and widely open issue. But, in this
context, theory is still lacking of completeness. This is even the case
at the level of the continuous problem in which the existence and
geometric properties of optimal shapes and designs is often unknown.
For the problem of optimal placement of observers and actuators for
models of vibrations we refer to ([25], [26], [34], [35] and [39]). We
also refer to [14] and [10] where, in a number of 1 − d and 2 − d
time-independent model examples, the convergence of the discrete
optimal shapes towards the continuous ones is proved.

• Optimal design in fluid mechanics in the presence of shocks: The
debate on whether one should develop either continuous or discrete
methods for solving optimal control and design problems for PDEs
has been also very intense as is still ongoing in the context of Fluid
Mechanics, motivated by optimal design in aerodynamics. This issue
is particularly important when solutions develop shock discontinu-
ities, as it happens for some of the most relevant models consisting
on scalar conservation laws or hyperbolic systems. Because of the
discontinuity of solutions, classical linearizations are not justified.
We refer to [9] where and ad-hoc linearization is developed taking
care of the Rankine-Hugoniot condition. This allows to derive not
only the sensitivity of the smooth components of solutions but also
of the shock location. In this context a straightforward linearization
of the discrete models does not necessarily lead to the correct sen-
sitivity analysis of the continuous ones ([22]). In view of this, the
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sensitivity of shocks has to be carefully incorporated to the numeri-
cal methods aiming to approximate the optimal controls and shapes.
We refer to [11] where a hybrid method is proposed, alternating the
continuous and the discrete approaches in the implementation of
descent methods for an inverse design problem associated with the
inviscid Burgers equation. We also refer to [13] for an adaptation to
the problem of flux identification and to [12] for a discussion of the
validity of this method for viscous models as viscosity tends to zero.

• Inverse problems. Similar issues arise in the context of inverse prob-
lems for wave-like problems and the classical Calderón’s problem.
In recent years a number of works have been devoted to adapt the
techniques for an efficient numerical approximation of the controls
of the wave equation to inverse problems. We refer for instance to [2]
where this has been done in the context of the problem of recovering
the potential of a 1 − d wave equation from one measurement by
means of finite-difference schemes adding a Tychonoff regularization
term.

• The heat equation. There is also a wide literature on the null control
of heat equations, which consists on driving the solutions to the zero
rest by means of a localized control. Null controllability turns out
to be equivalent to an observability inequality for the adjoint heat
equation, a fact that is by now well known to hold in an arbitrarily
small time and from arbitrary open non-empty observation subsets.
These inequalities have been established using Fourier series argu-
ments in 1− d and Carleman inequalities in the multi-d case.

Much less is known from the numerical analysis point of view. Of
course, in this context of the heat equation, both the continuous
and the discrete approach can be implemented as well. We refer
to [28] for an analysis of the convergence results obtained by the
continuous one. In [36] a numerical method is derived which com-
bines the efficient numerical algorithms for the control of the wave
equation that, in particular, use the filtering of the numerical high
frequencies, and the Kannai transform that allows transmuting con-
trol properties of the wave equation into the heat one ([32]). In this
way one can derive a performant method for computing numerical
approximations of the controls, avoiding the classical ill-posedness
of the problem, related to the strong time-irreversibility of the heat
equation. Note however that the controls obtained in this way are
not those of minimal L2-norm.

Another important development in this context is related to the
Carleman inequalities for discrete approximations of the spectrum
of elliptic equations and the heat equation. This allows proving a
number of results on the uniform control of numerical approximation
schemes for linear and semilinear heat equations. Note however that
the filtering of high frequencies is needed because of the reminder
terms that the discrete Carleman inequalities exhibit with respect
to the continuous one. But this does not arise because of technical
reasons only. In fact, as indicated in [46] and [47], in the multi-
dimensional case, the standard unique continuation properties of
the eigenfunctions of the Laplacian and the heat equation do not
hold for finite-difference approximations at high frequencies. Thus,
the filtering of high frequency numerical components is a must for
multi-d problems.
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