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Preface

In this book, we fully develop and compare two approachestfemumerical ap-
proximation of exact controls for wave propagation phenoanthe continuous one,
based on a thorough analysis of the continuous model, andisheste one, which
relies upon the analysis of the discrete models under ceratidn. We do it in the
abstract functional setting of conservative semigroups.

The main results of this paper end up unifying, to a largerdxthese two ap-
proaches yielding similar algorithms and convergencesrdtbe discrete approach,
however, has the added advantage of yielding not only eficiamerical approxi-
mations of the continuous controls, but also ensuring tinggbaontrollability of the
finite-dimensional approximated dynamics, i. e. the faat ¢hsubstantial projection
of the approximate dynamics is controlled. It also leadddmtive approximation
processes that converge without a limiting threshold inrthmber of iterations.
Such a threshold has to be taken into account, necessariljdthods derived by
the continuous approach, and it is hard to compute and dstimaractice. This
is a drawback of the methods emanating from the continuopiaph that exhibit
divergence phenomena when the number of iterations in tq@itims aimed to
yield accurate approximations of the control go beyonditinisshold.

We shall also briefly explain how these ideas can be appliedidta assimilation
problems.

Though our results apply in a wide functional setting, ouprapch requires a
fine analysis in the case of unbounded control operatorspethie case of boundary
controls. We will therefore show how this can be done in a #nepse, namely the
1 —d wave equation approximated by finite difference methodgadirticular, we
present several new results on the rates of convergended@otution of the wave
equation with non-homogeneous Dirichlet boundary data.
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Introduction

Motivation

Let Q be a smooth bounded domain®f and consider an open subset- Q.
We consider the controlled wave equatiorfn

Oy — Ay = VXw, t,x) eR;, x Q,
{y:O, (t,x) eRy x 9Q, (0.1)
(y(oax)va[y(ov X)) = (yo(x)vyl(x))a xXe Q.

Here,y, the state of the system, may represent various wave propagdnenom-
ena as, for instance, the displacement for elastic stringsreembranes or acoustic
waves. The control function is representedbyhich is localized in the control
subdomairw throughx,,, the characteristic function @b in Q.

This work is devoted to discuss, analyze and compare twooappes for the
numerical approximation of exact controls, the continuad discrete ones.

System [[Q11) is said to be exactly controllable in tifhef, for all (yo,y1) €
HE(Q) x L2(Q) and(y{,y]) € H3(Q) x L2(Q) there exists a control functione
L?((0,T) x w) such that the solutiopof (0.1) satisfies

(Y(T),ay(T)) = (Yo, ¥1)- (0.2)

Such property is by now well-known to hold under suitablergetric conditions
on the setw in which the control is active, the domai® in which the equation is
posed, and the tim& during which the control acts.

In the seminal work of Lions[[36], in which the Hilbert Uniquess Method
(HUM) was introduced, the problem was reduced to that of theeovability of
the adjoint system and multiplier methods were derived lfierlater to be proved
under suitable geometric restrictions (see also[[2[7, 3dtioer type of multipliers).
Later, in [3[5] it was shown that system (0.1) is exactly coltable in timeT > 0
if and only if (w, Q,T) satisfies the so-called Geometric Control Condition (GCC).
Roughly speaking, this condition states that all rays of i@etic Optics -which
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in the present case are straight lines bouncing on the boymda according to
Descartes law- should enter into the control sulbset a time less thaif .

All along this work we shall assume théa, Q,T) fulfills the GCC. In that
case, for all(yo,y1), (¥3,y]) in H}(Q) x L?(Q), the existence of a control func-
tion v € L?((0,T) x w) such that the corresponding solution [of{0.1) satisfies) (0.2
is guaranteed.

The question we address is that of building efficient nuna¢ragorithms to
compute such a control.

Control and numerics

Of course, this problem is not new, and many articles hava deeoted to it.

In the pioneering works$ [22, 28, 21] (see also the more relseok [24]) it was
shown that high-frequency spurious solutions generatetth&yiscretization pro-
cess could make the discrete controls diverge when the sieehgoes to zero.
These results have later received a thorough theoretigdy $see for instance [28]
in which the finite difference and finite element methods ithdn uniform meshes
were addressed) and the more recent survey articles [62, 17]

The analysis developed in these articles leads to the ngcesslistinguishing
two different approaches, the continuous and the discreés.dn the continuous
one, after characterizing the exact controls of the cootisuvave equations, the
emphasis is done in building efficient numerical methodspjoreximate them. In
the discrete one, by the contrary, one analyzes the coabitity of discrete mod-
els obtained after discretizing the wave equation by slétabmerical methods and
their possible convergence towards the controls of thameotis models under con-
sideration when the mesh-size parameters tend to zero.

In other words, to compute approximations of controls fantemious models,
there are mainly two alternative paths:

first CONTROL and then NUMERICS

or
first NUMERICS and then CONTRQL

In this book we first focus on the continuous approach, thegdagt being to
build an iterative process in an infinite dimensional sgtjielding the control of
the continuous wave equation, to later approximate it nicakly. To be more pre-
cise, we approximate numerically each step of this iteegtiocess. Of course, this
generates error terms in each iteration that add togetluezxantually may produce
divergence phenomena, when the number of iterations ggesntia threshold.

One of the most natural manners to derive such an iteratgeri#hm is in fact
the implementation of the HUM method that characterizescti@rol of minimal
norm, by minimizing a suitable quadratic functional defifi@dthe solutions of the
adjoint system. The minimizer can then be approximated bylignt descent algo-
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rithms. This leads naturally to an iterative algorithm tenpute the control of the
continuous model that later can be approximated by standargrical approxima-
tion methods, such as finite-differences and elements.

Recently, a variant of this continuous approach has beeelojgzd in [9] fol-
lowing Russell’s techniqué [47] to construct the contral ofistabilization results.
According to Russell's approach, the control can be buithadixed point of a con-
tractive map, whose contractivity is ensured by the stzddilility of the system. This
leads then naturally to an iterative method for approxingaé continuous control.
Note however that the control obtained in this manner is hetdne of minimal
norm (the one given by HUM) but rather that obtained througkdrII’'sstabiliza-
tion implies control principleA similar method has been numerically implemented
successfully in[[l] in the context of data assimilation geohs for some nonlinear
models as well.

As we shall see, once the iterative algorithm that the caotis approach yields
is projected into the finite-dimensional numerical appneaiion models, we end
up with a method that is very similar, in form and computagilocost, to the one
obtained by means of the discrete approach. The later ¢smdibuilding discrete
approximation models whose controls converge to the onéeftbntinuous dy-
namics usually after filtering the spurious numerical congs.

The first main advantage of the discrete approach is thaeltlyiapproximate
controls that control, at least partially, the approxindat@merical dynamics. But
this is done to the prize of carefully analyzing the contnapgerties of the finite—
dimensional dynamics, an extra and often complicated tesgkg not required when
developing continuous methods. As we shall explain, d@ietpthe discrete ap-
proach is also computationally relevant since it allowsgde much faster iterative
algorithms. The continuous approach is conceptually smplowever. Indeed, it
superposes the continuous control theory to build an iteratgorithm in the con-
tinuous setting, and classical numerical analysis to apprate it effectively, with-
out getting involved into fine controllability propertiebtbe discrete dynamics.

The results we shall present below apply in the much morergésetting of
conservative semigroups, for which the wave equalion {§the most paradigmatic
example. Most of the presentation will then be done in thigralst unifying frame.

Our main results on the comparison of both approaches inbteaet setting are
presented in ChaptErl 1.

On the convergence of the numerical schemes

Though the results of Chapter 1 apply in a very general ggttine of our main
applications is the boundary contro1d wave equation discretized using finite
differences (or finite elements) methods, see SeLtidni stdh case, the unbound-
edness of the control operator makes hard to check the apves assumptions of
ChapteflL.
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We therefore provide a fine analysis of the convergence piiepeof finite-
difference methods that does not seem to be available irxtbing literature. Thus
in Chapter$B and4 we develop some new technical resultseocoifivergence of
the finite difference approximation methods for the waveatign and, in particular,
on non-homogeneous boundary value problems, that aressggder a complete
analysis of the convergence of numerical controls towacadicuous ones. These
results are of interest independently of their control th&oal implications.

The main difficulty to obtain convergence rates for numémggroximations is
that solutions of the (even in-1d) wave equation with non homogeneous boundary
data are defined in the sensem@sposition

To be more precise, following [36] (see al§o|[B3] 35]) thelongs ta.?(0,T),
the solutiony of

dty_axxy:Oa (t,X)GRJrX(O,l),
{ y(t,0) =0,y(t,1) =v(t), teR,, (0.3)
(y(oax)valy(ov )) = (O’ O)a Xe (07 1)7

in the sense of transposition lies@i[0, T];L?(0,1)) NCY([0, T];H~1(0,1)).
The proof of this fact is based on a hidden regularity (or adihility) result for
the solutiongp of the adjoint system

{att‘p—axx‘p: fa (t’X)E(O’T)X(071)7
$(t,0)=¢(t,1) =0, te(0,T), (0.4
(¢(T,X),0{¢(T,X)) = (0,0), Xe (Oa 1)a

with source ternf € L1(0,T;L%(0,1)) (and forf = agwith g € L1(0, T;H3(0,1))),
that should satisfy
¢ (t,1) € L?(0,T). (0.5)

Note that, with these regularity assumptions on the init&h and the source term,
solutionsp of ([0.4) belong to the spa([0, T];Ha (0,1)) NCY([0,T];L?(0,1)), but
this well-known finite energy property does not guararite®) @ hold by classical
trace inequalities. In fac{_{Q.5) is a consequence of a fiopgrty of hidden regular-
ity of solutions of the wave equation with Dirichlet boungaonditions, both in the
1—d and in the multi-dimensional case. Thus, for the analysthefconvergence
of the numerical approximation methods these hidden reigyf@operties have to
be proved uniformly with respect to the mesh size parameters

Hence the sharp analysis of the convergence of the finiferdiice approxima-
tions of the solutions of (01 3) will be achieved in two maias:

e In Chapte 2 we study the behavior of the finite differencerapimation
schemes of({0l4) from the point of view of admissibility. larpcular, we prove
a uniform admissibility result (already obtained[in][28jat will be needed for the
convergence results. Our proof relies on a discrete midtipéchnique. We also
explain how this can be used to obtain sharp quantitativenagts for a uniform
observability result within classes of filtered data.
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e In ChaptefB we present the convergence of thedifinite difference approx-
imation schemes with homogeneous Dirichlet boundary dathestablish sharp
results about convergence rates. Most of these resultatier iclassical, except for
the convergence of the normal derivatives.

¢ In Chaptef#t we derive convergence results for the finiteetifice approxima-
tion on the 1- d wave equatiori{013) with non-homogeneous boundary daseca
on suitable duality arguments.

Further comments

In Chaptef’b, we conclude our study with some further commant open prob-
lems. In particular, we comment on the consequences of @lysia at the level of
optimal control problems or the extension of our resultditoftilly discrete context.






Chapter 1

Numerical approximation of exact controls for
waves

1.1 Introduction

We present an abstract framework in which our methods antbapp apply, the
wave equation being a particular instance that we preseedtior 1.V7.

1.1.1 An abstract functional setting

Let X be an Hilbert space endowed with the nofrily and letT = (Tt)icr be

a linear strongly continuous group o) with skew-adjoint generatdk : Z(A) C

X — X, satisfyingA* = —A. We shall also assume thatas compact resolvent and
that the domain oA is dense irX.

For convenience, we also assume that 0 is not in the spectrinso that for
s€ N, we can define the Hilbert spacs = Z(A%) of elements ofX such that
| A%||x < o endowed with the norr-|| := ||A%||x. Note that this does not restrict
the generality of our analysis. Indeed, if O is in the speutof A, choosing a point
B € iR which is not in the spectrum &k and replacindA by A— I, our analysis
applies.

Fors> 0, we also define the Hilbert spacésobtained by interpolation between
2(Als) andZ(Al®), that we endow with the normit||s. Fors < 0, we then define
Xs as the dual oX_g with respect to the pivot spacé and we endow it with its
natural dual norm.

We are then interested in the following equation:

y=Ay+Bv t>0, y(0)=yoeX. (1.1)

Here,Bis an operator ir (U, X_1), whereU an Hilbert space. This operator deter-
mines the action of the control functiare L2 ([0,);U) into the system.

The well-posedness of equatidn (1.1) can be guaranteethagsthat the oper-
atorB is admissible in the sense 6f[49, Def. 4.2.1]:
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Definition 1.1. The operatoB € £(U,X_1) is said to be an admissible control op-
erator forT if for somet > 0, the operatog?; defined orL?(0,T;U) by

T
%Tv:/ T:_sBv(s)ds
Jo

satisfies RaZ; C X, where Ra%Z; denotes the range of the magy.
WhenB is an admissible control operator fy system[{T.11) is said to be admis-
sible.

Of course, ifB is bounded, i.e. iB € £(U,X), thenB is admissible fofT. But
such assumption may also hold when the operBt@ not bounded, for instance
when considering the wave equation controlled from itsdbiiét boundary condi-
tions. There, the admissibility property follows from atabile hidden regularity
result for the adjoint equation df(1.1), s€el[36].

To be more precisd is an admissible control operator férif and only if there
existatimel > 0 and a consta@l,q 1 such that any solution of the adjoint equation

¢'=Ap, te(0T), ¢(0)=¢o (1.2)
with datagp € 2(A) (and then inX by density) satisfies

T
| 181 ot < Cyr 10l (1.3)

Note that the semigroup property immediately implies thahé inequality [(1.B)
holds for some timd& *, it also holds for allT > 0.

In this work, we will always assume th& is an admissible control operator
for T. As explained in[[49, Prop. 4.2.5], this implies that for Bvg, € X andv €
leoc([o,oo);U), the solution of equatiod (1.1) has a unique mild solutjomhich
belongs taC([0, »); X).

Let us now focus on the exact controllability property ofteys [1.1) in time
T* > 0. To be more precise, we say that systeml(1.1) is exactlyaitatile in time
T* if for all yo andys in X, there exists a control functione L2(0, T*;U) such that
the solutiony of (I.1) satisfiey(T*) = y;.

Since we assumed thAtis the generator of a strongly continuous group, using
the linearity and the reversibility of (1.1), one easily ckg that the exact control-
lability property of [1.1) in timeT* is equivalent to the priori weaker one, the
so-called null-controllability in tim& *: system[(T11) is said to be null-controllable
in time T* if for all yo € X, there exists a control functione L?(0,T*;U) such that
the solutiony of (I.1) satisfiey(T*) = 0.

In the following, we will focus on the null-controllabilitproperty, i.eys = 0,
and we shall refer to it simply as controllability.

In the sequel we assume that systéml(1.1) is controllablerirestimeT* and
we focus on the controllability property in timie> T*. To be more precise, we are
looking for control functions such that the corresponding solution[of{1.1) satisfies
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y(T) =0. (1.4)

According to the so-called Hilbert Uniqueness Method idtrced by Lions
[37,[36], the controllability property is equivalent, byality, to an observability
inequality for the adjoint systerii (1.2) which consists ia éxistence of a constant
CobsT+ such that for allp € X, the solutiong of the adjoint equatior (11.2) with
initial datagg satisfies

ST

I90l% < Closr- [ 1B"0(0)[3 dt. (1.5)

Now, letT > T* and introduced so that & = T — T* and a smooth function
n = n(t) such that

nsmooth n:R—[0,1, nt)= {é 821[5’\-2(;;5)]’ (1.6)

Of course, usind(113)(1.5) and the fact tAas skew-adjoint, one easily checks
the existence of some positive constdiigs > 0 andCyps > 0 such that for all initial
datago € X, the solutionp of (I.2) with initial datag, satisfies

T
| 1189015 dt < Clallgolk. @)

.
I0l% < Cis [ n(0) B0 (0)1F ct. (18)

Based on these inequalities the Hilbert Uniqueness Metiads/the control of
minimal norm (inL?((0, T),dt/n;U)) by minimizing the functional

T
390) =3 [ nOIBOOIE de+ o, golx. 19

for ¢o € X, where¢ denotes the solution of the adjoint equation](1.2) with data

Indeed, according to the inequaliti€s {1 [7)-[1.8), thisctionald is well-defined,
strictly convex and coercive oK. Therefore, it has a unique minimizéy € X.
Then, if @ denotes the corresponding solution [0f{1.2) with dégathe function
V(t) = n(t)B*@(t) is a control function for[(1]1). Beside¥, is the control of min-
imal L2(0,T;dt/n;U)-norm among all possible controls fdr (IL.1) (i.e. so that the
controlled systenf (111) fulfills the controllability reqament[11)).

In the sequel, we will focus on the computation of the minieni&g of J in (1.9),
which immediately gives the control function accordingtie formula

V(t) = n(t)B ®(t). (1.10)
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1.1.2 Contents of Chaptén 1

Based on this characterization @fy; as the minimizer of the functional in
(@9), one can build an “algorithm” to approximate the miizen in this infinite-
dimensional setting. For, it suffices to apply a steepestetdgr conjugate gradient
iterative algorithm, for instance.

Of course, this procedure can be applied in the context oExaenple above
in which the wave equatiof {0.1) in a bounded dom@imvith Dirichlet boundary
conditions is controlled in the energy spath Q) x L2(Q) by means of.2 controls
localized in an open subset This will be explained further in Sectién1.7.

Once this iterative algorithm is built at the infinite-dinséonal level one can
mimic it for suitable numerical approximation schemes his tvay, combining the
classical convergence properties of numerical schemeshenconvergence prop-
erties of the iterative algorithm for the search of the mimen of J in the func-
tional setting above, one can get quantitative convergessdts towards the con-
trol. Roughly speaking, this is theontinuous approackto the numerical approxi-
mation of controls.

Recently, as mentioned above, a variant of this method hexs teveloped and
applied in [9] in the particular case of the wave equatiorthBathan considering
the HUM controls of minimal norm, characterized as the minmars of a functional
of the formJ, the authors consider the control given by the classicas&Us prin-
ciple, obtained as limit of an iterative process based oalzlstation property. This
iterative procedure, based on the contractivity of the gemip for exponentially de-
caying stabilized wave problems, applied into a numeriparaximation scheme,
leads to convergence rates, similar to those that theiitenaethods for minimizing
the functionals] as above do. Thus, the method implementedlin [9] can be viewed
as a particular instance of the continuous approach, seétafs # 2 in Chaptdr]5.

The first goal of this paper is to fully develop the continuapproachin a general
context of numerical approximation semigroups of the austevolution equation
(I1) based on iterative algorithms for the minimizationtaf functionall. Explicit
convergence rates will be obtained. These results are @frgkapplication for nu-
merous examples, including the wave equation mentionedealsee Sectioln 1.7.
As we shall see, these general results are similar to thasedsin Theoreri 113
obtained in[[9] in the specific context of Russell’s prineipbr the wave equation.
However, the continuous approach we propose, based on thimization of the
functionalJ has several advantages, and in particular the one of bepigabple to
non-bounded (but still admissible) control operatBrand in particular in the case
of boundary control for the wave equation.

The second goal of this paper is to compare these resultshdtie one can get
by means of the discrete approach which consists in coimgal finite-dimensional
numerical approximation scheme of the original semigraughe spirit of the sur-
vey article [52] and the references therein.

To be more precise, let us consider a semi-discrete appatiximof the equation
(@2). For allh > 0, we introduce the equations
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On=Pndn, te(0,T),  ¢n(0) = don, (1.11)

whereA, is a skew-adjoint approximation of the operafoin a finite-dimensional
Hilbert spacev, embedded intX. In practice one can think of finite-difference or
finite-element approximations of the PDE under considenafor instanceh being
the characteristic length of the numerical mesh.

We shall also introducB;, an approximation of the operatBf, defined orv,
with values in some Hilbert spacbs.

Here, we do not give yet a precise meaning to the sense in vithechequence
of operatorg A, B) approximatd A, B) and converge to it ds— 0. We will come
back to that issue later on when stating our main results tiG#1.2.

Once the finite-dimensional approximatién (1.11)[of[(1.23 been set, one then
introduces the discrete functional

1 T * 2
In(¢on) = 5/0 N () [1Brdn(t) G, dt+ (Yon, bon)vi, (1.12)

where ¢y, is the solution of [[1.111) corresponding to daftg@ < VW, andygn is an
approximation iV}, of yp € X.

Of course, the functional, is a natural approximation of the continuous func-
tionalJ defined by[(Z.9). One could then expect the minimd,ab yield convergent
approximations of the minima of the continuous functiohalt turns out thatjn
general, this is not the caseEven worse, it may even happen that, for some gata
to be controlled, the minimizers of these discrete funalsmre not even bounded,
and actually diverge exponentiallylas+ 0, seel[24, 52, 17,18]. This is an evidence
of the lack ofl" -convergence of the functionalg towardsJ.

This instability is due to spurious high-frequency num&ricomponents that
make the discrete versions of the observability ineqeslito blow up a$ — 0,
see e.g/]48,38].

However, once we have understood that these instabilitiss at high-frequen-
cies, one can develop filtering techniques which consisgr@glly, in restricting
the functionalsJ, to subspaces 0¥, in which they are uniformly coercive and
so that these subspaces,has> 0, cover the whole space, thus ensuring thé -
convergence of the restricted functionals. These subsgacebe chosen in various
manners: we refer to [28, 51,112,41] for Fourier filteringteiques,[[43] for bi-grid
methods,[[42] for wavelet approximations and[to[6, 7,[13,f@Dother discretiza-
tion methods designed to attenuate these high frequenbyplpgies. In this way
one can obtain the convergence of discrete controls toverddntinuous one and
even convergence rates, based on the resultsin [15], sSe&g[L7

But, it is important to note that the minimizers obtained binimizing the
functionalsJy, on strict subspaces &f, do not yield exact controls of the finite-
dimensional dynamics but rather partial controls, in whigé controllability re-
quirement at timeé = T is relaxed so that a suitable projection of the solution is
controlled. In other words, relaxing the minimization pees to a subspace of the
whole spac#/, yields a relaxation of the control requirement as well.
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This discrete analysis is based on a deep understanding fihtte-dimensional
dynamics of [TI]1) in contrast with the continuous apprdheit uses simply the
control results for the continuous system and the classésalts on the convergence
of finite-dimensional approximations.

The third and last goal of this Chapter is to compare the cgaree results ob-
tained by the continuous approach with those one gets aygpllge discrete one. As
we shall see, finally, the filtering methods developed in tiserdte setting can also
be understood in the continuous context, as an efficieneption of the numerical
approximation of the gradient-like iteration proceduregaloped in the continuous
frame.

Our main results end up unifying, to a large extent, both thr@inuous and the
discrete approaches.

1.2 Main results

1.2.1 An *“algorithm” in an infinite dimensional setting

In the abstract setting of the previous section, let us thtoe the so-called Gramian
operator\t defined onX by

:
(o, Wo) € X2, (At o, Yohx = /O nOB G0, Bwhd,  (1.13)

whered (1), () are the corresponding solutions I {1.2).

Obviously, this Gramian operator is nothing but the grad@nthe quadratic
term entering in the functiondland therefore plays a key role when identifying the
Euler-Lagrange equations associated to the minimizatfoh and when building
gradient-like iterative algorithms. In particul@by € X is a critical point of] (hence
automatically a minimum sincgis strictly convex) if and only if

At ®o+yo=0. (1.14)

Note that this Gramian operator can be written, at least édiynas
T
At = / n(t)e BB A dt.
JO

Under this form, one immediately sees thatis a self-adjoint non-negative opera-
tor, and that it is bounded and positive definite wHenl (IIZ&)(hold.

Of course, estimatef (1.7)-(1..8), that guarantee itiatwell-defined, coercive
and strictly convex, and hence the uniqueness of the mieintizJ, also imply the
existence and uniqueness of a solutibpne X of (1.14).

Before going further, let us explain that, when assuning)¢({L.8), ifs> 0, for
Yo € Xs the solution®y of (I.14) also belongs t¥s and there exists a constady
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such that
| @olls < Cs|lYolls- (1.15)

This is a consequence of the regularity results derived%h ¢btained for abstract
conservative systems in which the fact of having introduhedime cut-off function
n in (I.8) within the definition of the Gramiafit plays a critical role. Otherwise,
if n = 1 our analysis would have to be restricted to bounded coaprefators such
thatBB* mapsXp to X, for eachp € [0, [s]], see[[15].

Note that the results in [15] can also be seen as an abstnactsrpart of the re-
sults in [11], which state that, in the case of the wave equatiith distributed con-
trols (hence corresponding to the case of bounded conteybtqrs), the Gramian
with this cut-off function = n(t) in time and a control operat&B* € M=o L(Xp)
mapsXs to X for all s> 0. The results in[11] are even more precise when working
on a compact manifold without boundary, in which case it @/pd that the inverse
of the Gramian is a pseudo-differential operator that presethe regularity of the
data.

To fully develop the continuous approach to the numericpteximation of the
controls, we implement the steepest descent algorithmhfontinimization of the
functionald in (T.9). But for doing that it is more convenient to have aerlate
representation of the Gramian.

Let ¢o € X and¢ be the corresponding solution 6f(IL.2). Then solve

W =Ap-nBB'¢, te(0T), Y(T)=0. (1.16)
Then, as it can be easily seen,

At o= (0),

wherey solves[[1.16) ang is the solution of[(T]2).
The steepest descent algorithm then reads as follows:

e Initialization: Define
¢d=0. (1.17)

o lteration: Forgl € X, definepst! by

KL = ok — p(AT %+ yo), (1.18)

wherep > 0 is a fixed parameter, whose (small enough) value will beifipdc
later on.

We shall then show the following results:

Theorem 1.1.Let s> 0. Assume that the estimat@s7)-(1.8) hold true. Let gy € Xs
and @ € X be the solution of1.14)

Then settinggg > 0 as
2
Po= =g~
gdcgbs

(1.19)
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for all p € (0,pp), the sequence defined by 17) (1. I8)satisfies, for some con-
stantd € (0,1) given by

5(p) = \/1—2C%+p2<:gd, (1.20)
obs
that for allke N,
H¢<‘§—®0HX < C8]lyollx (1.21)

Besides®, € Xs and for all ke N, the sequencq';g belongs to X The sequence
¢g also strongly converges @y in Xs and satisfies, for some constanti@depen-
dent of@g € Xs and ke N,

85— @0 <Cs@+198 Iyolly, ke . (1.22)

The first statemeni(1.21) in Theoréml1.1 is nothing but th@iegtion of the
well known results on the convergence rate for the steapestent method when
minimizing quadratic coercive and continuous functional$lilbert spaces [([8]).
However, the resulf{1.22) is new and relies in an essentamar on the fact that
the Gramian operator preserves the regularity propertigealata to be controlled,
a fact that was proved in [15] and for which the weight funetip= n(t) plays a
key role.

Also note that the results in Theor€ml1.1 are written in tesfritee norms ofyg,
but we will rather prove the following stronger results (@ating to [1.15)):

85— || < & [1@0lix. (1.23)

and, ifyg € X,
|8~ @0 <Cs1+K98¢ | @olly, ke N. (1.24)
Of course, these convergence results also imply that theeseev = nB*¢X,

whereg is the solution of[{TR2) with initial date, converge to the contrd! given

by (L.10):
Hvk—v

Note that, in general[{I.22) also gives estimates on theargence ofX towards
V in stronger norms when the datgto be controlled lies irXs for somes > 0.

L2(0.T:dt/n;U) < Coyollx (1.25)
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1.2.2 The continuous approach

Following the “algorithm” developed in Theordm 1.1, we noppeoximate the se-
quencep§ constructed i (1.1 7}=(1.18). A way of doing that is to imluze operators
A, andB;, as above and to define the discrete operator

T
Ath= / n(t)e BB dt.
0

To be more precise, we shall assume that we have an extenaBymV,, — X
that induces an Hilbert structure ) endowed by the norm- ||;, = ||En- [|x. We
further assume that, for eath> 0, Ay, is skew-adjoint with respect to that scalar
product, so that\ry, is self-adjoint inV,.

Classically, for the numerical method to be consistents iassumed that, for
smooth initial datap € Ns-0Xs, (EnRy — Id)¢ strongly converge to zero iK as
h — 0, whereR,, is a restriction operator fron to \j,. But for our purpose, we need
a slightly different version of it (though of course they agtated), see Assumption
2 in (1.29) below.

Here, we shall rather assume the two following conditions:

Assumption 1.There exiss > 0, 8 > 0 andC > 0 so that for alh > 0

[EnRaollx < Cllgollx, ¢ €X, (1.26)

[(EnR — 1dx) dollx < Ch’[[dolls, ¢ €Xs, (1.27)
[EnAthRa@ollx < Cll¢ollyx. @ €X, (1.28)
I(En/AThRa — EnRAT) ollx < Ch? [l dolls, ¢ € Xs. (1.29)

Assumption 2.The norms of the operators i, in £(\;,) are uniformly bounded
with respect tch > 0:
Coa = ﬁgé)H/\Th”z(vh) < o, (1.30)

where, wherh = 0, we use the notatiovh = X andAtg = Ar.

Before going further, let us emphasize that Assumptiond@ygih straightforward
when the observation operators are uniformly bounded wipect to the (X, Uy)
norms, is not obvious when dealing with boundary contralsirfstance. Indeed, in
that case, one should be careful and prove a uniform adritigsiesult (here and
in the following, “uniform” always refers to the dependermethe discretization
parameter(s)). Also note that Assumption 2 together WitBglimplies [1.2B).

We now have the following result:

Theorem 1.2.Assume that Assumptions 1 and 2 hold. Definby
p1 = min{po,2/%2}, (1.31)

wherepyg is given by Theorein 1.1.
Letp € (0,p1). Let yp € Xs and (yon)n>0 be a sequence of functions such that for
allh >0, yon € Vh.
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For each h> 0, define the sequenqtgh by induction, inspired in the statement
of Theoreni 111, as follows:

96 =0. ke N, 9" = 8l —p (Arndly+Yon) (1.32)

Then consider the sequengg defined by induction b 17} (II8) with this
same parametep.
Then there exists a constant€0 independent of b- 0 such that for all ke N,

HEh¢ISh - ¢ISHX < kp ||Enyon — Yollx -+ CkH? [|yolls- (1.33)

Then, using Theorenis_1.1 ahd]1.2 together, we get the faitpwonvergence
theorem.

Theorem 1.3.Assume that Assumptions 1 and 2 hold.

Let yp € Xsandp € (0,p1), p1 given by(T:33) Let(yon)n-0 be a sequence such
that for allh> 0,

IEnyon— Yollx < ChP[|yolls- (1.34)
Then, for all h> 0, setting
log(h)
C__

whered is given by(1.20) we have, for some constant C independent of h,

KC
| Endon — || < Cllog(h) ™2 yo]L, (1.36)

where¢§5 is the Kt-iterate of the sequendg, defined by{T.32)

This is the so-calledontinuous approaclfor building numerical approximations
of the controls.
At this level it is convenient to underline a number of issues

e The approximate controls we obtain in this way do not coritieldiscrete dy-
namics or some of its projections. They are simply obtairsegjgroximations of
the continuous control by mimicking at the discrete leveliterative algorithm
of Theoreni 1.

e The result above holds provided the number of iterationsidd by the thresh-
old given by [1.3b). Indeed, in case the iterative algorithould be continued
after this step, the error estimate would deteriorate aatingerical experiments
show, see Sectidn1.7.

As mentioned above, the algorithm above and the error etsgwee obtain are
similar to those in[[0] where the iterative process propdseRussell to obtain con-
trollability out of stabilization results is mimicked ateldiscrete level. The number
of iterations in[[9] is of the order of6|log(h)|m|, wherem s a constant that en-
ters in the continuous stabilization property of the diaige operatoA — BB*, and
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the error obtained that way [¥|log(h)|2. But the results in[]9] apply only in the
context of bounded control operators and they do not yieddctimtrol of minimal
L2-norm, whereas our approach applies under the weaker abitiigsissumption
on the control operator and yields effective approximatiohthe minimal norm
controls (suitably weighted in time).

Note that estimate$ (1.36) also imply that the sequaﬁce nB;, ¢h, defined

for k > 0 with ¢(t) = exp(tAn) &, satisfies that/hh is close toV in (L.10) with
some bounds (usually the same) on the error term. We do rtet gtecisely the
corresponding results since it would require to introdugéier assumptions on the
way the spaceldy approximateéJ.

1.2.3 The discrete approach

As we have mentioned above, the discrete approach is bastt @nalysis and
use of the controllability properties of the approximatéstrete dynamics to build
efficient numerical approximations of the controls.

The main difference when implementing it is that it requittes following uni-
form coercivity assumption on the Gramian operator:

Assumption 3.There exists a constafat such that for alh > 0 andggp, € V;,

[§onllfy < €*(Arndon, Pon)h. (1.37)

where, forh = 0, we use the notatiovh = X andAtq = At.

Note that Assumption 3 states the uniform coercivity of tiperators/Aty, or
equivalently, the uniform observability for the approxieeé semigroups. This as-
sumption often fails and is only guaranteed to hold in slétaubspaces 0¥,
after applying suitable filtering mechanisms (se€ [23,/H]).2ndeed, the classi-
cal numerical methods employed to approximateby Aty that are usually based
on replacing the wave equation by a numerical approximatmterpart, usually
provide discrete operatorry, that violate this uniform observability assumption.
Hence providing a subspavg satisfying [1.3F7) requires of a careful analysis of the
observability properties of the discrete dynamics, a faat ts not necessary when
developing the continuous approach.

In any case, under Assumption 3, we can prove the followiranger version of
Theorenti 1R:

Theorem 1.4.Assume that Assumptions 1, 2 and 3 hold. Define

2

— 1.38
e o

p2=

and considep € (0, 7). Let yy € 2(AS) and (Yon)h>0 be a sequence of functions
such that for all h> 0, yon € V.
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For each h> 0, define the sequendg,, by induction as ir(L.32) Then consider
the sequencéX defined by induction b 17)(TI8)with this same parameter.
Then there exists a constantC0 independent of b- 0 such that for all ke N,

Endts, — 05| < C(I1EnYon — Yollx +h® [lyolls ) - (1.39)
H Jy =< )

Then, using Theorenis 1.1 and]1.4 together, we get the fallpaounterpart of
Theoreni LR:

Theorem 1.5.Let us suppose that Assumptions 1, 2 and 3 hold.

Letyp € Xsandp € (0, p2), p2 given by(I.38)
Let (Yon)n>0 be a sequence such thBL34)holds.
Then, for all h> 0, setting

log(h) log(|log(h))
ogd) T " logia)

Kd=16 (1.40)

whered is given by(L.20), we have, for some constant C independent of h and k,
|Endly— 0| <CHlyolle, k> K, (1.41)

wheregf, is the k-iterate of the sequengg, defined by{I.32)
Note that, under Assumptions 1, 2 and 3, forygll € V;,, the equation
Ath@on+Yon =0 (1.42)
has a unique solutio®q,, on which we have a uniform bound:
1Ponlln < € [Iyonn, (1.43)

where% is the constant in Assumption 3.

Now, sincek can be made arbitrarily large in TheorEml1.54ifc Xs andygy, de-
notes an approximation gf that satisfied(1.34), settirdyy, the solution of[(1.42),
we have

1En®on — ol < Ch? [Iyol s, (1.44)

wheredy is the solution of[(1.14). Indeed, in that case, it is veryeasheck that
ath > 0O fixed, ask — o, the sequencq§h converges taby , given by [1.4R) irvh,
see e.g. Theorem1.6.

This is the convergence result obtained[in! [17], using aofitoof, directly
based on the smoothness of the trajectory of the minimdzewhenyy € Xs. We
refer to [17] for numerical evidences on the fact that theveogence rate$ (1.14)
are close to sharp. We will also illustrate this fact in Seuffl.7.
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Outline of Chapter[l]

Chaptefll is organized as follows. In Secfiod 1.3 we proveofdr@1.1. In Section
[I:4 we give the proofs of Theoresi[.231.3. In Sedfioh 1.5meepTheoremls 14—
[L.5. We shall then compare the two approaches in Selctidrrl $ectiol 1.V we
present some applications of these abstract results, ticplar to the wave equa-
tion. In Sectiof 1B we show that some data assimilationlprobcan be treated by
the methods developed in this book.

1.3 Proof of the main result on the continuous setting

This subsection is devoted to the proof of Theofem 1.1. Wé #ten fix T > 0 so
that estimated (1. 7)=(1.8) hold. Givep € Xs, @ € X is chosen to be the unique

solution of [1.14).
Let theng& be the the sequence defined by the induction fornfulal( 1L TBY.

1.3.1 Classical convergence results

First we prove[(1.23) which is classical and correspondbéassual proof of con-
vergence of the steepest descent algorithm for quadraticexofunctionals. We
provide it only for completeness and later use.

Proof (Proof of estimat¢l.23)). Using [1.18), and subtracting todt, we get
6~ Po=95— Po—P(AT9G+Yo) = 9§ — Po—pPAT($5— Do), (1.45)

where the last identity follows from the definition @, in (1.14).
But, for anyy € X,

10— pAT) W% = W% —2p (v w)x + PP AT Y%
Hence, using thal (11.7)=(1.8) can be rewritten as

1 12,112
= vl < |27 %] < Calwlk.
Cobs X
we get that
10— pAnu} < (1-25-+0%Ck) 1w (1.4
obs

Note that, according t6 (1.7)=(1.&2,.C2, > 1 and thus for alp > 0, the quadratic
form 1—2p/C2, .+ pCZ, is nonnegative.
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Thus, for anyp > 0 such thap € (0, pg) with pg as in [Z.IP), and setting(p)
as in [1.20)3(p) belongs to(0, 1) and

[(F=PAT) [ ¢(x) < 3(P)- (1.47)

From [1.4%), we obtain
|57 90|, < 8 |05 - o], (1.4
Of course,[(1.48) immediately implids (1123). O

1.3.2 Convergence rates s

Here, our goal is to show the convergence of the sequgicenstructed in(1.17)-
(@18) in the spacks.

Proof (Proof of the convergence inf)XWhens € R, the convergence estimate
(I22) is deduced by interpolation between the resultsiddafor |s| and [s].
Hence, in the following, we focus on the proof bf (1l.24) faleigerss € N. Besides,
the cases = 0 is already done il (1.23) so we will be interested in the cas&N
ands> 1.

Step 1. The Gramian operator maggA®) to Z(A°).

For yp € X, introduce the functiody € D(A) defined byA%) = . Then the
solutions¥ andy of (1.2) with corresponding initial daté and g satisfy, for all
te (0,T), W(t) =AW(t) = Y(t).

Hence, ifgg € Z(A) andyyp € X, denoting by the solution of [IR) with data
¢o,

(Ardo.doix = [ n(O(B'$(0,BW )t
= [MnwE o8 wOud- [ 7o 0B vGd
Of course, usind(117) and(1..3), this implies that

(At 0. Wo)x| < CallAdollx | #bllx+|n’]| - Char 1 dollx | %bllx
< l1Agollx Aol (Cha+ Car 1'll= 14y ) -

Therefore At maps2(A) to itself.

Of course, the case of an integes N strictly larger than 1 can be treated sim-
ilarly, and is left to the reader. Then, by interpolatioristhlso implies that for all
s> 0, At mapsXs to Xs.

This step already indicates that for edca N, ¢(‘§ constructed by the induction
formula [T.I7){(Z1.18) belongs & provided that/y € Xs.
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Step 2. First estimate on the commutdidr, A]. Takego andyp in Z(A). From the
previous step, we know thér,Al¢o € X, and we can then take its scalar product
with Yo € Z(A):

([A1,Aldo, Yo)x = (ATAPo, Yo)x — (AT o, Yo)x
= (ATAdo, Yo)x + (AT do. Ao)x

- [noEe0.8emuds [ 16 en.8 v
/ 1086 (1),B g () dt.

where¢ andy are the solutions of (1.2) with datis andyy respectively. Hence,
using [1.B), we obtain

[([AT,Aldo, Wo)x| < Caqr |0l 1 bollx Il wollx , (1.49)

and the operatdr\t,A] can be extended as a continuous operator otm X and
IIAT, Alll g x) < Caar [[1[] - (1.50)
Step 3. Convergence iri(A). Apply Ain the identity [T.4b):
A( ot — ‘Do) = A(‘Pé- ‘Do) — pAAT (95 — o)
— A (85— @) — PATAE — @o) + pIAT,Al($] — o). (L51)
Then, using[(1.47) an@(1.60), we obtain

| (8572 - o) |, < & [A (05— @) [, +plliArAllen | (95 - ) |
(1.52)

and, using[(1.23),
|A(o82—0)|| < 5]A (g5~ av)| +p& 1A, Alle 1 Bollx

Therefore,
g [A (08— @)~ [ (98- ), < F1Aw Al 2
Summing up these inequalities, we obtain, forkadl N,
[ (85 00) |, = 3 (1a00l+ 5 AT Allsge Il ). 159

Step 4. Higher order estimatd&.24) They are left to the reader as they are very
similar to those obtained ib (1.63). They are obtained byation fors € N.
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The idea is to write
A (85— @) = (1 - pATIA® (95— @) + plAT. A (9 - @0)

and use the fact that\t, A% is bounded as an operator fra#(AS~1) to X, which
can be proved similarly as i&tep 2 Then one easily gets that

(057 - o), <]

(o5 )
+plliAr,AY

v

-

An easy induction argument then yiel@s (1.24) forsadl N.
To conclude[{1.24) fos > 0, we interpolate (1.24) between the two consecutive
integers|s| and[s]. O

£(2(As-1),X) ‘ <

Remark 1.1Note that, actually, the smoothnegs C*(R) is not really needed to
get Theorerfi I]1. The assumptigre C/SI(R) would be enough.

Also note that, wheBB* mapsZ(AP) to 2(AP) for all p € N, one can even
choosen as being the step functiap(t) = 1 on (0, T*) (whereT* is such that the
observability estimaté(1.5) holds) and vanishing outé@& *).

These remarks are of course related to the fact that in thesedses, the needed
integrations by parts run smoothly, similarly as[inl[15].

1.4 The continuous approach

In this section, we suppose that Assumptions 1 and 2 hold.

1.4.1 Proof of Theoremi 1]2

Proof (Theorerii I]2)n the following, we use the notations introduced in Theorem
[I.2. All the constants that will appear in the proof belownated by a generi€
that may change from line to line, are independerg &f (0, p1), h > 0 andk € N.

Subtracting[(1.118) td (1.82), we obtain

= Rl = 6y, — Rodls — p(yon — Royo) — p (Arndly, — Re/vr 95
= (I —pArn) (¢'6h - Rh¢5) — P(Yon — RaYo) + P (ReAT — AThRn) 95

Hence,
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|8~ RaglY| < || = pAre) (06— Regt) [,
+P||y0h—Rhylo+PH Rh/\T_/\Tth)‘p(i)(Hh' (1.54)

But, for ¢ € W,

11— pATgnlE = 1902~ 20]|A4281 |+ 07 1At
= 119012~ 20| |AH 28] + 02 IArsnl2

< lonll 20 || + 0702, [0

Hence, if we impos@ € (0, p1), wherep; = min{po,2/%2,} as in [1.31L) (with
©ad given by Assumption 2),

—2+pH/\1/2H -2+ p624 <0,

and then for alp,, € Vi,
10— pATR) 02 < 1612 (1.55)
Accordingly, forp € (0, p1),
[0 = pArn) (08— Rigb) | < | (08— Rust) - (1.56)
Equation[1.2B) in Assumption 1 also yields
| (RuAT = AriR o8| <cn? g (1.57)

Using the fact that, according to estimates (IL.15), (1.2@@re is a constar@
independent ok andh > 0 such that for alk € N,

8| = clivlls, (1.58)

we derive
| (RoAr = AreRe) 95| <0 3ol (1.59)

Thus, using[(1.54)[{1.56) and (1159), we obtain
| 8b— Rl | < | 88— Rodt| +pl1yon—Rovolln+Coh? iyolls,  (1.60)

whereC is a constant independentlo&ndh > 0.
Summing up[(1.60), we obtain
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Enps — EnRaBS|| = |08 — Radg|l <k - Ckph?
hPon — EnRado |, = || Pon — Rndo|| < kP |IYon = Ruyolln +Ckoh™ [[yolls.
Finally, according to[{1.88), estimafe (1127) yields
| (EnRa—1)85 < CH® ol (1.61)

and thus[(1.33) follows immediately. O

1.4.2 Proof of Theorem 113

Proof (Theoren 1]3)Jsing TheoremB1l1 aiid 1.2 and the estimaie [1.34), we ob-
tain that, for some consta@t> 0 independent di,

|Endl— @0 < Cllyolls ((1+K95*+koh?). (1.62)

We then optimize the right hand-side of this estimatdithus yielding approxi-
matelyK as in [I.35). Estimaté (1.B6) immediately follows from thedinition of
K. 0

1.5 Improved convergence rates: the discrete approach

In this section, we assume that Assumptions 1 and 2 hold |sutteéssumption 3.

Let us recall that Assumption 3, that states a uniform cegyciesult for the
discrete Gramiang\y, is not a consequence of classical convergence results for
numerical methods. It rather consists in a very precisdtreauhe dynamics of the
discrete equationE {1.111) which is the key of the discrepeagch.

1.5.1 Proof of Theorem 114

Proof (Theorerfi 114)t closely follows the proof of Theorem 1.2, except that now,
following the proof of [1.4l7), based on Assumption 3, we caovp that, forp
(0,p2) and

(p) = \[1- 225 + o2t (1.63)
we have that
Il(I = pATh)Ohllh < & l|nlly - (1.64)

instead of[(T.55).
Consequently, estimatie (1160) can be replaced by



1.6 Advantages of the discrete approach 25

bt~ Rugl ™| < o]ty — Roa|
+ 0 [[Yon — RuYoll +Cph® [lyolls, k€N, (1.65)

whereC is a constant independentlo&ndh > 0.
Of course, this can be rewritten as

6”1 H¢k+l Rh¢k+1’ h o 6%‘]( H‘Pgh_ Rh¢|°(Hh

1
< 31 (PHYOh— Riyolln +Cph® ”yOHs) , (1.66)
d

SO

195 met], < (3 %) (o1~ cor o).

Of course, sincéy € (0,1), by construction, this implies that for &le N,

[#8— R0t < 775 (o 1von—Rovoll + Coh 3ol

Using then[(1.6]1), estimate (1]139) immediately followmikarly as in the proof of
Theoreni LP. 0

1.5.2 Proof of Theorem 115

Proof (Theorerii I15Using [1.39), one only needs to fikkdsuch that
| 8- @0 <ol

Thus, we only have to check that this estimate holds forkaryKg, K¢ given by
(@.40). But this is an immediate consequence of ThedremThis. concludes the
proof of Theoreni 1)5. O

1.6 Advantages of the discrete approach

When comparing the results in TheorEml1.3 and Theérem 1esnmay think that
the continuous approach, which applies with a lot of geitgralields essentially
the same convergence estimates as the discrete one, mmat@tmaking the latter
irrelevant. This is not the case, and we list below an impamamber of facts that
may be used to compare the two techniques.
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1.6.1 The number of iterations

A first look on the number of iterationsg, K¢ in (1.35) and [1.40) indicates that
they do not depend significantly, but only in a logarithmiomer, on the mesh size
h. They rather depend essentially dwiven by [1.2D), which is close to 1.

To be more precise, formula{1135) requires to have an etiorad(p), which
depends on the observability and admissibility constamtani intricate way, see
(I.20). However, these two constants are not easy to conmpgeneral situations
and, usually, one can only get some bounds on them.

Assume thaCops is bounded byCopgest aNdCag by Caq est (here and below, the
index ‘est stands for estimated). Then, takipg< 2/(Cg osCopsesy)» Theoreni LB
applies, an®d(p) < dest, Wheredest is defined by

2
e \/1 S C? £ +p 2Cgtld,est’

‘obsest
and therefore,
1 - 1
|log(8)| ~ [l0g(est)|”
which means that in (1.33) can only be estimated from above

log(h)
log(dest)

Of course, thiKXS, can be much larger thatf, but according td (1.62), estimate
(1.38) also holds with that stopping tink&,,, instead of¢.

Similarly, when applying Theorefn 1.5, that is when Assumpt8 holds, one
can boun&{ in (LZ0) by

Kﬁ < Kgst,h = |_9

log(h) log(|log(h)|)
109(dest) l0g( Jest) '
d

But here, the final iteration time can be any numkdarger thanKg,,, and in
particular it can be chosen to ke~ «. Hence, in the discrete approach, we do not
really care about the estimates we havekgnThis is in contrast with the behavior
of the continuous approach in which, taking the number ahttens beyond the
optimal threshold, can deteriorate the error estimate ahchly makes the method
diverge, see Sectidn 1.7.

Actually, in the discrete approach we prové aconvergence result for the min-
imizers of the functionalg, in (I.12) towards that of in (I.9). Thus, one can use
more sophisticated and rapid algorithms to compute thermim of J,, as, for in-
stance, conjugate gradient methods, see Sdctiod 1.6.8ohkergence will then be
faster, and the number of iterations smaller.

—(s+1)

Kgsth = LG
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1.6.2 Controlling non-smooth data

Here, we are interested in the case in whigke X and we have some discrete initial
dataygh € Vi, such thatenyg, converge toyg strongly inX. Then, neither Theorem
[I.3 nor Theorer 115 applies.

However, in the discrete approach, that is when supposiisgiption 3, simi-
larly as in Theorerh 111, we have the following:

Theorem 1.6.Suppose that Assumptions 1, 2, 3 are satisfied. LetOhyg, € Vi
and &g, be the solution of1.42)
For any p € (0,2/%%%?) and &(p) as in (LE3) the sequencef, defined by
([@.32)satisfies:
| 88— @on| < 8| @wnlly, keN. (1.67)

Of course, the proof of Theordm 1.6 closely follows the on€ldoreni 1.1, and
is therefore omitted.

Note that, sinceby, is the solution of[(1.42), it coincides with the unique (be-
cause of Assumption 3) minimizer df defined in[[1.1P), and the iterat¢$n de-
fined by [1.3R) simply are those of the steepest descentithigofor J,.

But, using Theorem 116, we can prove thatgife X andEpygn converge tojg in
X, the sequence d, ®g, converges irk to @:

Theorem 1.7.Suppose that Assumptions 1, 2 and 3 are satisfied. J_etX and
@ € X be the solution of(T.14) Let yy, € Vi, and @, € V;, be the solution of

@42)

If Enyon weakly (respectively, strongly) converges toiry X as h— 0, E,®on
weakly (respectively, strongly) convergesiigin X.

Theoreni1J is actually well-known and is usually deducedudtable conver-
gence results, similarly as in [17].

Proof. SinceEpyo, weakly convergesty in X, itis bounded irX. Therefore, using
([@43),E,®qn is bounded inX. Hence it weakly converges to somgin X.

Using that®g and @, solve respectivelf (1.14) and (1142), for &y and Wop,
we have

(AT Po, Yo)x + (Wo,Yo)x =0,  (AthPon, Yon)n + (Won,Yon)h = O. (1.68)

In particular, using thaf\t andAr, are self-adjoint in/ andV;, respectively,

(®o, AT Pio)x + (Wo,Yo)x =0,  (Don, Arhon)n + (Won, Yon)h = O. (1.69)

Let us then fixp € Xs andon = Ry Yo. According to Assumption 1,
Entboh — Yo  in X, EnAthon — At In X.
h—0 h—0

In particular,
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(@, N TYo)x = HL"O@Oh,/\ThlIlth = —lim{on, Yon)h
= —(Yo,Yo)x = (Po, AT Yo)x.

Using that/At is an isomorphism oiXs and the fact thaXs is dense inX, we thus
deduce thaiy = ®, i.e. E,®g, weakly converges tdy in X.

Let us now assume th&yon strongly converges tgg in X. Set®g, = A{,}yOh,
@y = At lyo. Lete > 0. Setyy € 2(A%) such that|yo — Jioly < €. The observability
of the continuous model then implies that, settthg= A o, || Po — ®ol|, < Ce.
Besides, applying Theordm 1.5yg, there exists a sequengg Such that

|Enflon — Yollx <Ch?,  ||En®on — o], < CH,
where®on = AL on.
Finally, since/\{h1 is uniformly bounded by Assumption 3,
|| En®on — En®on||c < C||EnFon — Enyonllx -
But

l|EnYoh — EnYonllx < [|EnYon — Yollx + [IYo — Yollx + [|Yo — EnYonllx
< Ch? + &+ |lyo — EnYon|x -

and thus

| @0 — En®onllx < H(DO_ @OHX"' HéO_Ehd)Oth"' HEh@Oh_Eh%th
< Ch? +Ce+Cllyo — EnYonllx -

This last estimate proves that for alb> 0,

limsup|| @ — En®onl|x < Ce.
h—0

This concludes the proof of the strong convergende @y, to @, ash — 0. |

Of course, one can go even further and analyze if Assumptiemeally needed
to get convergences of the discrete minigg of J, towards the continuous origy
of J. It turns out that Assumption 3 is indeed needed as numenédénces show,
see Sectioh 117 and [22,123]20] ahd|[17, Theorem 8] for a #iieat proof.

To sum up, the discrete approach ensures the convergendscodtd controls
even when the initial data to be controlled are onlyXinwhereas the continuous
approach does not work under these low regularity assungtio



1.7 Application to the wave equation 29

1.6.3 Other minimization algorithms

So far we have chosen to use the steepest descent algoriththefminimization
of J in (.9). Of course, many other choices yield better corsecg results, in
particular the conjugate gradient algorithm, when dealifith quadratic coercive
functionals.

However, if one uses the conjugate gradient algorithm tanmie the functional
Jin (@.9), we do not know if, similarly as in Theordm11.1, therétions converge in
Xs when the initial data to be controlled areXg To our knowledge, this is an open
problem. This is related to the fact that the conjugate gradalgorithm strongly
uses orthogonality properties in the natural spé@ndowed with its natural scalar
product(-,-)x and with the scalar product adapted to the minimization jerob
</\T-, -)x.

This prevents us from using the conjugate gradient algoritlinen following the
continuous approach.

However, when considering the discrete approach, sinceraxed (Theorem
[I.5), that the minimizersby, of J, in (T.I2) converge to the minimizeby of J
whenEnyon converge inX, there is full flexibility in the choice of the algorithm to
effectively compute the minimizer @f. In particular, we can then use the conjugate
gradient algorithm, for which we know that the minimumJgis attained in at most
dim(V}) iterations, and in general much faster than that.

As shown in the applications below, this makes the discrepeaach more effi-
cient for numerics.

1.7 Application to the wave equation

Below, we focus on the emblematic example of the wave equatotrolled from
the boundary or from an open subset.

In particular, we will focus on the case of the-H wave equation controlled from
the boundary, in which case we can easily illustrate ourt®gtith some numerical
simulations since the control function will simply be a ftioa of time.

We then explain how our approach works in the context of ihisted controls
so to compare it briefly with the results in [9].

1.7.1 Boundary control

1.7.1.1 The continuous case

Let us consider the 4 d wave equation controlled from= 1:
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{dny—ﬁxxy=0, (t,x) € Ry x (0,1),
y(t,0) =0, y(t,1) = v(t) (t,x) € Ry, (2.70)
(y(ov X),aty(O,X)) = (yO(X)vyl(X))v Xe (07 1)

Then, seX = L2(0,1) x H~%(0,1), Athe operator defined by

A=( o) 7m=Hi0O.D <F0)
XX

where 32 is the Laplace operator defined ¢t1(0,1) with domain 2(d2) =

Hol(O, 1) (in other wordsdR, is the Laplacian with Dirichlet boundary conditions)

andB the operator defined by

0 . ~ . _0)()()7 = O, Xe (O, 1),
Bv= N with ¥ solvin . %
(—a&;y) ’ ysoming {y<0> =0, §(1)=v.

Here, endowind-?(0,1) with its usualL?-norm and the spacd ~*(0,1) with
the norm||(—a3)~/2-|| ., Ais skew-adjoint or.2(0,1) x H=1(0,1) andB is an
admissible control operator. We refer fo[49, Section %8p(also[35, 33]) for the
proof of these facts.

We can then consider the adjoint equation

d[td)_aXX‘p:Ov (t,X) €R+X (071)7
$(t,00=0=¢(t,1), (t,x) € Ry, (1.71)

(¢(O,X),d{¢(o,X)) = (¢0(X)7¢1(X))v Xe (Ov 1)a

with (¢°,¢1) € L?(0,1) x H71(0,1). The corresponding admissibility and observ-
ability properties[(113) and(1.5) we need read as follows (€9, Proposition 9.3.3]
for the computation oB*):

T
£ 1B0. 90,011 < [ 104(~08) 28t DIPdt < C (o) ey 1.

C
Of course, when considering these estimates, one easigrstadds that rather than
considering trajectorie¢ of (I.71) for initial data( o, 1) € L2(0,1) x H~1(0,1),
it is easier to directly work on the set of trajectoriesd) 16 ¢. But this set co-
incides with the set of trajectorigls of (I.Z1) with initial conditions(¢°, ¢1) €
H2(0,1) x L2(0,1).

Therefore, in the following, we shall only consider solutap of (IT.71) with
initial data inH3(0,1) x L%(0,1).

Also note that this space is the natural one when identifyifi@,1) with its
dual since the control syste (1170) takes placX i L?(0,1) x H=1(0,1), and
thereforeX* = H3(0,1) x L2(0,1). This is the usual duality setting in Lioris [36], but
the above argument ensures that all the results of thidgttat have been obtained
within the setting of abstract conservative systems onétlilbpaces identified with
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their duals, can also be applied in the context of the usualitgiipairing between
X =L12(0,1) x H~1(0,1) andX* = H}(0,1) x L2(0,1).
Also note that the duality then reads as follows:

1 1
((Y0,¥1), (90, $1)) (L2,cH-1) (HEx12) = _/o YO¢1+/O k(900 Y10kfo.

In that context, the relevant counterparts[of(1[3).1(1tB)then given by:

i
S10.802 02 < [ 1000 DPASClGo gz (172)

Such a result is well-known to hold if and only T > 2, see[[36]. This can
actually be proved very easily solving the wave equafionfjlusing Fourier series
and Parseval’s identity.

Therefore, in the sequel, we tale> 2 andn as in [1.6) (withT* = 2. To be
more precisey will be chosen such that is C1([0, T]) and satisfieg (0) = n(T) =
n'(0)=n'(T)=0.

The corresponding function&l(1.9) is then definedH3ii0,1) x L?(0,1) as fol-
lows:

.
J(¢o,¢1)=:—zl/o N()[3 (t, 1) dt+((Yo,y1). (0, 91)) (L2.14-1) (2 12) (1.73)

The corresponding Gramian operatbr is then given as follows: Fofgo, ¢1) €
H2(0,1) x L2(0,1), solve

{dltd)_ﬁqubzoa (taX)E(OaT)X(Oal)a
¢(t,0)=¢(t,1) =0, te(0,T), (1.74)
(¢(07)aat¢(oa )) = (¢Oa¢l)7 X€ (Oa 1)
Then solve
attw_axxw:()v (t,X) 6 (OvT)X(Oal)a
{ P(,0) =0, Y(t,1)=—-n(t)oke¢(t,1), te(0T), (1.75)
(l,U(T, )70“7[](1-’ )) = (Oa O)a Xe (07 1)
Then
At (o, 61) = ((—02)~*aw(0,), ~Y(0, ")) (1.76)

Note that the solutiony of (I.73) is a solution by transposition and belongs to
the spaceC®(]0,T];L?(0,1)) NCY([0,T];H~%(0,1)) since its boundary data only
belongs td_?(0, T). Therefore, when computinfyr, we have to identify.?(0, 1) x
H~1(0,1) as the dual oH}(0,1) x L2(0,1) as explained in the previous paragraph,
i. . using the map

L(0,1) x H (0,1) = Hg(0,1) x L*(0,1) : (Yo, Y1) = ((— 90 ‘W1, — o).
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The continuous setting

We are then in position to write the algorithm of Theorend hilHe continuous
setting:

Step 0:Set (¢, 99) = (0,0).

The induction formula k — k+1: Fork > 0, set(¢§*, ¢5*1) as:

(6" 91" = (1 —pAT)(96,61) — P((=00) y1.—Yo)-  (L.77)

Note that the control function is then approximated by thiusace
(t) = n(t)aeX(t,1), te(0.T), (1.78)

where¢X is the solution of[(1.74) with initial dateps, 9¥). Indeed, formula{1.10)
then reads as follows: If®y, @;) denotes the minimum aof in (I.Z3), then the
control functionV that controls[(1.70) and that minimizes th&0, T;dt/n)-norm
among all admissible controls is given by

V(t)=n(t)ke(t,1), te(0,T), (1.79)

where® is the solution of[(1.74) with initial date®d,, @ ).

1.7.1.2 The continuous approach
Theoretical setting

Here, we discretize the wave equatidns (IL.74)-(1.75) usiadinite difference ap-
proximation of the Laplace operator on a uniform mesh ofkized,h=1/(N+1)
with N € N. Below, ¢; 1, ; n are, respectively, the approximationsfofi solutions
of (1.74){(1.7b) at the poinjh. We shall also make use of the notatigi s to
denote respectively thé-component vectors with coordinat@gy, (; .

We shall thus introduce the following discrete version & Gramian operator.
Given (¢on, $1n), compute the solutiogy, of the following system:

Abin— 5 (9141n— 200+ B 10) =0, (1)) € (O.T) x {1, N,
Bon(t) = B 10() =0, te (0T, (1.80
(#n(0),69n(0)) = (don, $1n)-

Then compute the solutiaf, of the following approximation of (1.75):
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1 .
d¥ih— 12 (Wjsrh—2Wjn+Pj—1n) =0, (t,]) € (0,T) x {1,--- N},
Won(t) = 0, Yy an(t) = n(t) 2L, te (.T),

Finally, setArh as

Atn(@on, $1n) = ((—4n) & Wn(0), —(0)), (1.82)

whereuy = (—A4n) 1y, is the unique solution of the discrete elliptic problem

(1.81)

h

1 .
{ (Ujreh—2ujh+Uj1p) = fin, f€{1,--- N},
Uoh = Unt1h = 0.

The continuous approach then reads as follows:

Step 0:Set(¢g’, $o°) = (0,0).
The induction formula k — k+ 1: Fork > 0, set(¢{ ¢, 5 °) as:

(D50, 0510) = (1 — pATH) (DS, 05) — p((— ) Yyin, —Yon).  (1.83)

The superscript ¢ is here to emphasize that this is the seguesmputed by the
continuous approach.

Let us check that this scheme fits the abstract setting of /Eneld.3. In partic-
ular, to use Theorein 1.%}, E, R, need to be defined and Assumptions 1 and 2
verified.

e Vi, = RN x RN, where the firsN components correspond to the approximation
of the displacement and the ld$tones to the velocity.

o To a discrete vectap, € RN, there exists a unique family of Fourier coefficients

(&[®n])ken such that
N
djh= V2 Z &[] sin(kmjh), je{1,--- N}
K=1

This is due to the fact that the family of vectors
Wﬁ = (\/ésin(knjh))je{l,...’,\,}
forms a basis dRN endowed with the scalar produet, -)xn, see Chaptéd 2, Section

22

Then we introduce the following continuous extension:

N
endn(X) = V2 > addn]sinkmx), xe€(0,1)
k=1
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and seky, = diag ey, &,). This extension will be extensively studied in Secfiod 3.2,
where it is denoted b¥},.
The corresponding norm of, is given by

(8] -

which is equivalent (see Chapidr 3, Secfiod 3.2) to the iclalsdiscrete energy of
(@.80), given by

k_ (k2n2|ak[¢0h]| +|adn]?) . (1.84)

dji1, Oh ;. Oh> N 2
_hy (0o S g2 1.85
Enldn] = g( N3 Bia (1.85)

The operatoAy, defined by
o O IdRN

whereAy, denotes thél x N matrix taking value—2/h? on the diagonal and/h?

on the upper and lower diagonals is skew-adjoint with ressfmethe scalar product
of ;. Of course, this operatdy, is the one corresponding to systdm (1.80) in the
sense thap, solves[[1.8D) if and only if

4 <0I¢<;h> =% <5t¢£h)’ te @

Also note that the fact thay, is skew-adjoint implies that solutiorns, of (1.80)
have constant (with respect to timé) norms. This quantity is usually called the
discrete energy of the solutions 6f(11.80).

The operatoByBy; is now simply given by

osi(32)-(2)

wheref, € RN is such that its\ — 1 first components vanish and whdseh com-
ponent is— ¢y on/h°.

The operatoiR, on X = H3(0,1) x L?(0,1) has a diagonal form didgh,rp),
wherer, : H71(0,1) — RN is defined as follows: fop € H=1(0,1), expand it into
its Fourier series .

o(x) = V2 &sin(kmx), xe€(0,1),

k=1
and then setp¢ € RN as

N
(rnd)j = V2 Y &sin(kmtih), j € {1,---,N}.

k=1
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Let us now check Assumptions 1 and 2.

Assumption 1Estimates[(1.26)E(1.27) are very classical véith 1 and@ = 1 (see
e.g. [4]): There exists a consta@tsuch that for all(¢o, $1) € H2NHE(0,1) x
H&(0,1),

[I(EnRn —1d) (@0, $1) 422 < Chl[(Po, 1)l 2t it (1.86)

As already mentioned, estimafe (1.28) is a consequence sfirdystion 2 with
(1.28).

To show [I.2P) we take the initial dat@o,$1) € H2 N H(0,1) x H1(0,1)
and denote by the corresponding solution df(I174). Then, takiign, ¢1n) =
Rn(¢o,¢1) and ¢, the corresponding solution df (1180), from Proposition] &7
ChaptefB, we get
Pnh

0X¢(t,1)+T’

L2(0,T) SCh2/3||(¢0’¢1)||H2ﬂHé'><Hé" (187)

Thus, according to the convergence results of the numesatame[(1.81) td (1.75)
in Propositio 4.8 in Chapt€f 4, settigg the solution of[(1.81) with boundary data
n¢n.n/h andy the solution of[(1.75) with boundary data) dx¢ (1,t), we obtain

1(en(¥h(0)), en(AYn(0))) — (W(0), AW(0)) | 2,py-1 < CHP/® [ (B0, 1) 2yt cria

Then, sincé(0), & y(0)) € H3(0,1) x L2(0, 1) because of the fact thépo, §1) €
H2NH(0,1) x L2(0,1), see Sectiofi 42 in Chapfér 4,

[(en(@4n(0)). en((—n) 4n(0))) — (A (0). (=320 AP (0)) a2
< CH3|(¢o, ]|

which proves
[(EnAThRG = AT) ($0, 01) 112 < Ch2 | (¢o, ZD)[FEREIER

and then[[Z.29) witt® = 2/3 ands = 1 sinceAt (o, $1) € H2NH3 x H} and then
(@88) applies.

Assumption 2The uniform admissibility result is ensured by the fact ttad

map (Pon, P1n) € Vh — —Pnn/h e L?(0,T), wheregy, is the solution of [(1.80), is

bounded, uniformly with respect to> 0. This is a simple consequence of the mul-

tiplier identity given in Lemma 2.2 in[28], see also ChajleTheoreni Z]1.
Besides, foby, € L?(0,T), the solutiony, of
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1
O Wjh— 2 (Wjs1h—2@jn+ Yj—1n) =0,
(taj) € (OaT) X {17 7N}7
LIJO,h(t) = 07 wN+l,h(t) = bh7 te (OaT)a
(Un(T),ayn(T)) = (0,0),

is such that th&.?(0,1) x H=(0,1)-norm of (e(yh(0)),en(d Yn(0))) is bounded,
uniformly with respect td1 > 0, by thel?(0, T)-norm of its boundary terrby,, see
Chaptef#, Theorem 4.6.

Finally, one easily checks that, for some const&hisdependent oh > 0, see
Chaptef#, Sectidn 4.2,

H(%(—Ah)flwlh,%th)]\HéxLz < Cl(en(Won),en(Win)) | 2xp-1-

Assumption 3Note that, in that setting, Assumption 3 does not hold. ldd#e nu-
merical scheme under consideration generates spuriobsfigiguency waves that
travel at arbitrarily small velocity (see [48,]22, 28] 52])itfhat cannot be observed.
Therefore, the discrete systerhs (1.80) are not uniformégolable, whatever > 0
is.

We are thus in a situation in which Theoreml1.3 applies withl and6 = 2/3.
We now illustrate these results by some numerical expettisnen

Remark 1.2Using Propositiof 3]7, Propositibn #.9 and Theolrerh 4.4 camgrove
that Assumption 1 actually holds for asy¥ (0, 3] with 8 = 2s/3 and thus Theorem
[I.3 applies for ang € (0, 3].

Numerical simulations

To apply our numerical method, we need estimate€g andCyq. In this 1—d
context, it is rather easy to get good approximations, sfoceny solution¢g of
(@I 72), using Fourier series and Parseval’s identity, we ge

2
|16 6, 2) Pt = 21) (60,00 7.2

Therefore, we can také* = 2, and we choos& = 4. We then have the estimates
C2,s=1/2 andC2, = 4. With p = 1/8, we haved(p) = v/3/2 ~ 0.86.

But p should also be smaller thari@?2,, where?2, is the uniform constant of ad-
missibility in Assumption 2. Using the multiplier method tire discrete equations
(180) (see Chaptél 2, Theoréml2.1) we h#fg < 6 (actuallyc2(T) < T + 2).
Since ¥8 < 2/6, p1 in (I.31) is greater than/8 and therp = 1/8 is admissible.

In order to test our numerical method, we fix the initial datdé controlled as
Yo = 0 andy; as follows
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—10n(0,1/4),
y1(x) =< lon(1/4,1/2), (1.88)
2(x—1) on(1/2,1),

so that we obviously havgyo,y1) € H3(0,1) x L?(0,1). In Figurel 1.1, we plot the
graph of the initial velocityy;.

In the numerical simulations below, we represent the ftmmsti/ﬁ’c given, for
ke N, by
K,
¢Nﬁ1(t)
h )
where¢/° is the solution of[[1.80) with initial datéps®, $x°), thek-th iterate of
the algorithm in the continuous approach.

VES(t) = —n

t€(0,4),

Fig. 1.1 The initial velocityy; to be controlled.

Forh=1/100, the number of iterations predicted by our method is2Figure
[I.2 left, we show the control this yields.

To compare the obtained result with the one that the diseggieoach yields, we
have computed a reference contrgk, using the discrete approach, (see Figurel1.11
for further details) for a much smallér=1/300. The obtained reference control is
plotted in Figuré 112, right.

To better illustrate how the iterative process evolves, aeehrun it during 50000
iterations and drawn the graph of the relative error

H\}(h’c—vref

L2/||Vref||L2-

This is represented in Figure1.3. As we see, the error ddesach zero but rather
stays bounded from below.

When looking more closely at the evolution of the error, wetbat it first decays
and then increases.

The smallest error (among the first thousand iterationg)higeaed wherk = 13,
which is close to the predicted one. The control obtainedkfer13 is plotted in
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Fig. 1.2 Left, the control obtained by the continuous approach aptieeicted number of itera-
tions, 21, forh=1/100, p = 1/8. Right, the reference contraks computed through the discrete

approach with = 1/300. The relative erroHvkh=21’C ~Veer |,/ ([et],» is 6.24.%

aaaaaaaaaaaaaaaaaaaa

Fig. 1.3 The relative errorﬂvﬁ’C —Veet| /|| et || 2 for the continuous approach at each iteration

for h=1/100,p = 1/8. Left: iterations from 0 to 50000. Right: zoom on the iteyas between 0
and 50.

Figure[1.4, the corresponding error beind®, to be compared with the error at
our predicted iteration numbek £ 21), which is 624%.

The algorithm produces similar results for different valuwe p. For instance,
taking p = 0.01, the predicted iteration numberks= 156, and the best iteration
turns out to be&k = 180, yielding a control that looks very much as the one before
the relative error being.69%. This confirms, in particular, that the smajteis, the
larger is the number of iterations.

It is important to underline thahe limit of the iterative process as the number
of iterations tends to infinity, k+ o, converges to the control of the semi-discrete
dynamics, minimizer of the corresponding functiongldgfined by

1 T ¢Nh 2 N N
Jh(¢0ha¢1h):§/0 U‘T‘ dt—h> yjondjin+hy yjndjn,
=1 =1

wheredy, is the solution of[(1.80) with initial datepon, $11)-
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Fig. 1.4 Left: the best control obtained by iterating the algorithrh tbe continuous ap-
proach withh = 1/100, p = 1/8 and k = 13. Right: the reference control. Relative error:

H\}<h=lac —Veef |,/ [Veet || > = 6.18%.

The exact control of the semi-discrete dynamics is given H®y minimizer
(@, P5,) of the functional, above through the formula

D5 h

Vn=—n— te(0.4),

where®; is the solution of[(1.80) with initial dated§,, ®5;,).
Note that the Gramian4ty, defined by

(Ath(@on, d1n), (don, b1n)) h—/ ‘¢Nh‘ dt,

are not uniformly coercive with respectlo> 0 and their conditioning number de-
generates as exgyh) (c > 0) ash — 0 (seel[39]) and thus the functiondjgare very
ill-conditioned. Therefore, the conjugate gradient allgpon for the minimization of
Jn ends up diverging whehis too small.

We takeN = 20 so that the conjugate gradient algorithm converges. miggt
seem ridiculously small, but as we said, the conditioninghber of the discrete
Gramian blows up as exg/h), and numerical experiments show that the conjugate
gradient algorithm completely diverges fidr> 30.

For N = 20, we can compute the minimizer of the functiodalsing the con-
jugate gradient algorithm. The corresponding discreteto@ntrolv |, = n @y, ,/h
is plotted in Figuré_1]5, right. As one sees, this exact a:IbN@rh has a strong spu-
rious oscillating behavior, see for instance the refer@ocgrol in Figuré T4, right.
The relative errors between the iterated contvfjland this limit oscillating control
V¢, is plotted in Figuré 115, left, exhibiting a slow convergemate due to the bad
conditioning of the Gramian matrix.

These facts constitute a seriovarning about the continuous algorithim. par-
ticular, if the algorithm is employed for a too large numbf&terationsk, something
that can easily happen since the threshold in the numbeermatibns may be hard
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Fig. 1.5 Left, the relative erroHvkh‘C - vﬁ_’hH / HVShH for the continuous approach at each iteraton
fromk =0 tok = 50000 forh = 1/20, p = 1/8. Right, the discrete exact contrgl,, for h=1/20.

to establish in practice, the corresponding control may drg far away from the
actual continuous one.
We conclude illustrating the convergence of the continuagsrithm ash — 0.

C
In Figure[ 1.6, we plot IoﬁHvﬁ“’c —VrefH) versug log(h)|. By linear regression we

get the slope-1.01, which is better than the predicted ord).66. This is due to
the fact thaty; is in H=1+5(0, 1) for all s < 3/2, hence the convergence is expected
to be better thah®/2 for all s < 1/2 see Remark1.2.

Fig. 1.6 Convergence of the continuous approachn as 0: log (Hvﬁﬁ’C — Vref H) versus|log(h)|,
with vies as in FiguréZL 1 right. The plot is done foe (1/100 1/30), the slope being-1.01.

1.7.1.3 The discrete approach
The theoretical setting

To build numerical schemes satisfying Assumption 3, oneaishloetter understand
the dynamics of the solutions of the discrete numerical oathindeed, as observed
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in [28], and illustrated above, Assumption 3 does not holorescan check since the
discrete exact controf , computed in Figurel5 is very far away from the control
of the continuous wave equation, for which a good approxnas given byvef,
see Figur&1l4, right.
This phenomenon is due to spurious high-frequency numevaaes. To avoid
these spurious oscillations one needs to work on filteresigades 0¥, = RN x RN,
For instance, foy € (0,1), consider the filtered space

h(y/h) = {(‘Pom ¢1n), St. don, P1n € fgﬂ:/n{(Sin(k"jh))je{l,---,N}}} :

Of course #y(y/h) is a subspace of. Since the functionén®), (defined bywk =

V/2sin(kmjh))) are eigenfunctions of the discrete Laplace operator (set®{2.2),
we can introduce the orthogonal projectiqhof Vh onto #4(y/h) (with respect to
the scalar product of;, introduced in[(1.84)) and the Gramian operator

N, =PR/ArPY. (1.89)

The filtering operatoPg’ simply consists of doing a discrete Fourier transform
and then removing the coefficients corresponding to frequeénmimbersk larger
thany/h.

Assumptions 1 and 2 then hold for ap¥ (0, 1), with proofs similar to those in
the continuous approach. Furthermore, using the resu®8hfit can be shown that
Assumption 3 also holds when the tiffids greater thaf, := 2/ cogmy/2). Note
that this is not a consequence of the convergence of the mahgcthemes, and this
requires a thorough study of the discrete dynamics. Thefpfd@8] uses a spectral
decomposition of the solutions of the discrete wave eqodfid0) and the Ingham
inequality for nonharmonic Fourier series. We shall revagid slightly improve
these results in Chapter 2, Theorlem 2.1 to get better estinoat the observability
constant.

The algorithm that the discrete method yields can then beldped as follows:

Step 0:Set(¢g . $%%) = (0,0).

The induction formula k — k+1: Fork > 0, set(¢g*, &) as:

(B 05 ) = (1 = AL (Bl 080) — PPY((—4n) ~Yyan, —Yon).  (1.90)

The new algorithm is very similar to the one that the contumiapproach yields.
The only essential difference is that, now, we have intredug filtered Gramian
matrix /\}’h instead of the operatakr, used in the continuous approach, in which
no filtering appears. However, as we shall see below, thisalgarithm is much
better behaved.
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From now on, we set the filtering parameter 1/3 andT = 4, which is larger
than the minimal required time/2og 1ty/2) = 2/ cog 11/6) = 4/+/3 to control the
semi-discrete dynamics. The controls that the discretatite algorithm yields are

()
h b

vea(t) = —n(t) t € (0,4). (1.91)

Numerical simulations

We first need an estimate on the constant of uniform obsdityabhe most explicit
one we are aware of is the one given by the multiplier methagnghereafter in
ChaptefR, Theorem 2.1, which yields:

CosTr = (T cog (%T) - ZCOS(%V) — h—20>1, (1.92)

wherehg is the largest mesh-size under consideration, and thuse #fie function
n(t) equals to 1 on an interval of length close to 4, one can takejtheoximation:

1
%U:®27§ﬁfﬁ

Of course £aq can still be approximated as before 6§, < 6.

Thereforep, in (I.38) is greater thaf2/62) x v/3(v/3— 1) ~ 0.035. Observe
that this is much smaller than the value@f= 1/8 = 0.125 we employed in the
continuous approach.

We run the discrete algorithm with the initial ddi, y1n) given by the natural
approximations ofjy = 0 andy; as in [1.88).

Our first simulations are done with the chojee= 0.035 forh = 1/100. There,
the estimated optimal number of iterations is 95 (Eee L. #d)ich is much larger
than in the continuous approach (where it was 21) due to tttetiatp is much
smaller. In Figuré_T]7 left, we represent the comilﬁl%’d. When compared with
the reference control computed foe= 1/300 by the discrete method (represented

in FigureL.T1), the relative err#rvkh:%‘d — Vet || , /|| Vret || 2 is 5.82%.

In Figure[1.8, we represent the relative erHuﬁ*d —Veet|| , /|| Vret | . for k be-

tween 1 and 50000. The best iterate is the 54-th one, whickgonds to a relative
error of 5380%. It is represented in FigureL.7 right.

It might seem surprising that the sequenﬁg does not converge 4ges ask —
oo, This is actually due to the fact that; corresponds to the control computed for

h=1/300. Indeed, settin&zﬁ”d the limit okah’d ask goes to infinity, we represent the

relative error[ V9 — v\ /19|l in Figure[1.9. We shall later explain how to
h —Vho ||l 2/ [V |2

compute\/‘;;’*d, represented in Figute T]11 left.
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Fig. 1.7 Left, the controlvkh=95’d obtained by the discrete approach at the predicted iteration-

ber 95 forh = 1/100,p = 0.035. Right, the controlf~>*¢ corresponding to the iterake= 54 that
approximatese; at best.

aaaaaaaaaaaaaaaaaaaa

Fig. 1.8 The relative errm”vkh‘d ~Veet|| /|| Vet || > for the discrete approach at each iteration for

h=1/100,p = 0.035. Left, for iterations from 0 to 50000. Right, a zoom onitkeations between
0 and 150.

Note that the previous computations are donegdfer 0.035, but as we said, this
is only an estimate on the paramepewe can choose. In particular, one could also
try to takep = 1/8, which is admissible for the continuous wave equationygfnat
is a priori out of the valid range gb for the semi-discrete equation according to our
estimates. Fan = 100, the estimated iteration is then 42. The correspondingal

V=424 s such that the relative err#ﬁ}(h:‘lz’d —Vret | ,/ [[Vret | 2 is of 5.83%. The

best iterate is the 14-th one, for which the relative eHmﬁr:M’d — Vet || , /|| Vret || 2

is of 5.81%. The corresponding plots are very similar to those ofdisep =
0.035. We only plot the relative err#‘l\}(h’d — Vyef Lz/HvrefHL2 versus the number
of iterations in Figuré&1.30.




44 1 Numerical approximation of exact controls for waves

aaaaaaaa

Fig. 1.9 The relative erro ved e / vl for the discrete approach at each iteration for
h ho 2/ Y 2

h=1/100,p = 0.035 and foik from O to 150. The relative error is of orden® # at the estimated
iterationk = 95.

Fig. 1.10 The relative error”vkh’d ~Veet|| , /||Veet || 2 for the discrete approach at each iteration
for h=1/100, p = 0.125 fork from 0 to 50.

The discrete approach: The conjugate gradient method

In previous paragraphs we underlined the difficulty of eatimg the parameters
entering into the algorithm. But, as we have explained, édiscrete approach, we
also have[(I1.44), ensuring the convergence of the minintfzéne functionaIJr’]’
over¥,(y/h):

y 1 /T |dnn|? N N
Hoon o) =5 [ 0| B dt=nY yionbianth Y yiandian  (199)
=1 =1

where ¢y, is the solution of[(1.80) with initial datépon, ¢1n) € #h(y/h). In other
words, the discrete approach consists in looking for theimizer of Jr’]’ over
Th(y/h).

Since the functionaJK is quadratic and well-conditioned according to Assump-
tion 3, one can use the conjugate gradient algorithm to coenfiie minimum
(@8, @) of J¥ over #,(y/h). Doing this, we do not need any estimate on the
admissibility and observability constants to run the alfpons. Besides, this algo-
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rithm is well-known to be much faster than the classicalgtse descent one, but
with exactly the same complexity.

We therefore run the algorithms for=1/100 anch = 1/300,y = 1/3, and the
initial data(yo, y1) with yo = 0 andy; as in [1.88). The algorithm converges very fast
and it requires only 10 and 9 iterations foe= 1/100 andh = 1/300, respectively.

Fig. 1.11 The controlw}’f’d for h=1/100 (left) anch = 1/300 (right). We have sete; = v;’f‘d for
h = 1,/300.

In the previous simulations, the quant'nf(:""’d has been computed using the
conjugate gradient method as indicated above. The refeccamtrol is the one com-
puted forh = 1/300.

In Figurd 1.TP we finally represent the rate of convergentiesodliscrete controls
(to be compared with Figufe_1.6). Here again, the slope097, i.e. much less
than—0.67, the slope predicted by our theoretical results in Thedd. This is
again due to the fact tha is more regular than simply?(0,1), almost lying in
H/2(0,1), see Remark1].2.

In higher dimension, there are a few results which proveanmifobservability
estimates for the wave equation: we refeftd [51] for the 2skoon a uniform mesh,
which yields a sharp result. We referfto [41] for theimensional case under general
approximation conditions. To our knowledge, the resuliifi[is the best one when
considering general meshes in any dimension. Still, a pediiine estimate for the
uniform observability result is missing and whether thesfitig scales obtained in
[41] are sharp is an open problem.

1.7.2 Distributed control
System[[O.1L) fits in the abstract setting[of{1.1) with- H3(Q) x L2(Q),

A= (2 (')) Z(A) = H*NHJ(Q) x H5(Q)
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Fig. 1.12 Convergence of the discrete approaH:vi’,""d — Vet || Versushin logarithmic scales. Here,

Vief IS vﬁ’d for h=1/300. The plot is done fdn € (1/120,1/30), the slope being-0.97.

and

Xw

Indeed A is skew-adjoint with respect to the scalar producket H3 (Q) x L2(Q)
and systen(0]1) is of course admissible siBéebounded from.?(Q) into L?(Q).
Using the scalar product of, B* simply reads aB* = (0, xw).
Besides, it is well-known that when the GCC (sek[3, 5] anditt@duction)
is satisfied for(w, Q,T*), then the wave equation is observable in tiliie To be
more precise, there exists a const@gys > 0 such that for allp solution of

B:(O), U=L%Q).

¢ —A¢p =0, (t,x) € (0,T) x Q,
¢ =0, (t,x) € (0,T) x 2Q, (1.94)
(¢(O,X),d{¢(o,X)) = (¢0(X)7¢1(X) , XE Q,

we have -
190 60) 0120 <Coos [ [ XEIADI2 (1.95)

This is the so-called observability inequality, corresgiog to [1.5) in the abstract
setting.

In the following, we assume th&t (1195) holds (or, equiviljethat the Geometric
Control Condition holds), and we chooge> T* and introduce) as in [1.6).

Note that we made the choice of identifyifig(Q) x L2(Q) with its dual. Do-
ing this, we are thus precisely in the abstract setting ofoféad 1112 arld1.3.
However, in applications, one usually identifie¥ Q) with its dual, thus making
impossible the identification ofi3(Q) x L2(Q) as a reflexive Hilbert space. We
shall comment this later on in Remark11.3.

We are then in position to develop the algorithm{in (1. 17)E§)L
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The continuous setting
We divide it in several steps:

Step 0:Set(¢, ¢?) = (0,0).

The induction formula: ComputegX, the solution of

Gk — Ak =0, (t,x) € (0,T) x Q,
{¢k=o, (t,x) € (0,T) x 0Q, (1.96)
(d)k(O,X),d[d)k(O,X)) = (d’g(x)v‘pi((x) , X€E Q.

Then computepX solution of

dtwk_Awk: _n(t)xg)dl‘pka (t7x) S (OaT) X Q7
Yk =0, (t,x) € (0,T) x0Q, (1.97)

(WK(T, %), & YX(T,x)) = (0,0), x € Q.

Finally, set

(067101 = (96,61 — p (4501 & O) + (oyn)) . (1.98)

Note that the magef, ¢¥) — (YX(0),ay*(0)) defined above is precisely the
mapAy in (1.13).

Remark 1.3As we have said, here, we identifi¥d= H}(Q) x L?(Q) with its dual.
This allows us to work precisely in the abstract setting afta[1.2.

But our approach also works when identifyib§( Q) with its dual. In that case,
we should introduc&* = L?(Q) x H™1(Q) and, thoughA is still skew-adjoint
with respect to theX-scalar product, we shall introdugé the operator defined on
X*=12(Q) x H™1(Q) by

A = (2 (')> . 2(AY) = HYQ) x L2(Q).

The duality product betweex andX* is then

<<§2) ; <$S>>XXX* :/(2)/1(!’0—/95)/0'5(—&71(!’1-

Also, the operatoB* now reads as

The corresponding algorithm then is as follows:
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Step 0:Set(¢3, §9) = (0,0).

The induction formula: ComputedX, the solution of

ik —Agk =0, (t,x) € (0,T) x Q,
{ésk:o, (t,x) € (0,T) x 0Q, (1.99)
((ﬁk(O,X),d[(ﬁk(O,X)) = (‘ﬁg(x)véi((x))v Xe Q.
Then computepX solution of
O Tk —AQPK=—n(t)x2d%, (t,x)€(0,T)xQ,
{wk:o, (t,x) € (0,T) x 0Q, (1.100)
(ka(Tvx)aatka(TaX)) = (070)7 X€ Q.
Finally set
(B2, 810 = (85,85 — p (204(0) + Y- 4@ O +y0) ). (1.101)

Of course, the two algorithmB{1196)=(11.98) ahd (IL.99%41) correspond one

to another. Indeed, for € N,
Pk =ao* P*=yX

and so for alk € N, (§, $¥) = (¢X,4¢5). Hence, of course, the convergence prop-
erties of the sequenc§¢(‘§, ¢‘l<) proved in Theorerm 111 have their counterpart for the
sequenceécﬁ'g,tﬁ'l‘) (they are basically the same except for a shift in the regular
spaces).

The continuous approach

Here we introduce the finite element discretization of theenequation. The setting
we present below is very close to the onelih [9] in order to hie¢preaders to see
the similarities between the worlk|[9] and our results.

We thus assume that there exists a far(ﬂwhw of finite-dimensional subspaces
of H3(Q) with the property that there exigt> 0 andC > 0 so that

1709 — #)llg(2) < CH° 119 llermz o) - Y9 € HXNHG(Q), (1.102)
[(The — d)llL2(q) SCh6||¢||Hg(Q)a v € H3(Q), '
wherers, is the orthogonal projector froid(Q) ontoVh,.

Note that, on a quasi uniform triangulaticfy, see e.g.[4], one can takke= 1
in (1102). )

We then endow}, with theL?(Q) scalar product.

We then define the discrete Laplace operdipas follows:
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Y(@n, Yh) € Vi, (=Bnén; Yn)12(q) = ($n; Uh)i()-

The operator-4;, is then symmetric and positive definite.

We then seBg the operator corresponding to the multiplication by therabger-
istic functionx,, and set, = Bj\h, which is of course a subset 0f = L2(Q). We
then define the operatoBgy, by Bonu = 71,Bou, whereT, is the orthogonal projector
of L2(Q) ontoVk.

The adjoint ofBgy is then given byBy, ¢ = B¢ for ¢ € L2(Q), which easily
implies that the operator norrﬁQOthhHS(Lz( are uniformly bounded.

To fit into our setting, we thus introduce

0 Id 0 ~
Ah:(AhO)’ Bh:<BOh>’ Vh:(Vh)Z,

with E;, = I1d and
_ (™ O
R“_<0 m)'

Assumption 2 immediately follows from the stability of theheme and the fact
that the normg| BOhBShH,Q(LZ(_Q)) are uniformly bounded.

Then, to prove Assumption 1, we refer id [2, 9]: Assumptionaldh with 6
as in [1.I0R) and = 2. Remark that this corresponds to a choice of initial data
in HY, (Q) x H2NHG(Q), whereHg, (Q) is the set of the functiong of H3(Q)
satisfying¢ = 0 andA¢ = 0 on the boundary Q.

Theoreni’LB then applies and yields the same convergendésras the one in
[©l Theorem 1.1].

To develop the continuous method we need to compute theidenaumbersS
in (I.38), and this turns out to be a delicate issue. As empthin Sectiof 1.611,
this requires the knowledge of an approximation of the oladality and admissi-
bility constants. Here, the admissibility constant canddeh to be simplyl. But
evaluating the observability one is a difficult problem.

Certainly, when(w, Q,T) satisfies the multiplier condition (requiring thatis
a neighborhood of a part of the bound#nof Q such that{x € 9Q, (x—x°%)-n>
0} C I andT > 2sup, {|x—x°|} for somex®), one can get a reasonable bound on
the observability constant. Note however that, even in ¢that, the observability
constant is not explicit since the arguments use a multipdiehnique and then a
compactness argument, seel[36, 31]. Otherwise, if only t8€ @ satisfied (see
[3]), such bounds on the observability constant are so fenown.

Let us also emphasize that Assumption 3 does not hold in gesee[[17]. This
is even the case in-1d on uniform meshes. However, by suitably filtering the class
of initial data, variants of Assumption 3 can be proved. Werthe interested reader
to [51,[44[ 12 41] for some non-trivial geometric settingsvhich Assumption 3 is
proved. We shall not develop this point extensively here.

Q))
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1.8 A data assimilation problem

In this section, we discuss a data assimilation problemdaatbe treated by the
techniques developed in this paper.

1.8.1 The setting

Under the same notations as before, we consider a systeendiwthe equation
@' =A®, t>0, ®(0) = &y, m(t) = B*@(t). (1.103)

We assume thady is not knowna priori but, instead, we have partial measure-
ments on the solution through the measu(e) = B*®(t). The question then is the
following: Givenm e LZ(O,T;U ), can we reconstrucby?

This problem is of course very much related to the study obtheervation map:

o {XHLZ(O’T;U) (1.104)

$o— B¢ ’

whereg is the solution of[(112) with initial datey.

Note that this ma’ is well-defined in these spaces under the condifiod (1.3).
Also note that the observability inequalify (IL.5) fbr (li ompletely equivalent to
the fact that the mag’ has continuous inverse frob?(0, T;U) NRan( &) to X.

Therefore, in the following, we will assume the admisstpilind observability
estimates[(1]13)E(1l.5) so to guarantee thats well-defined and invertible on its
range.

Of course, this is not enough to obtain an efficient recoestyn algorithm, that
is an efficient way to compute the map L.

In order to do this, the most natural idea is to introduce timefional

- T
3g0) =5 [ miete—mid dt (1.105)

wheren is as in [1.B), or, what is equivalent at the minimizatiorelewsincem is
assumed to be known,

? 17 x 2 17 2
Jgo) =5 [ nIEe-mi§at—3 [ nimiZa  (1.108)

where¢ is the solution of{(1[2) with initial datéo.
ThenJ can be rewritten as



1.8 A data assimilation problem 51
J 17 * 4112 T «
Jo) =3 [ niB ol at— [ neErg.muat (1.107)
1 T * 2
- 5/0 nIB*gI5 dt -+ (éo.¥(0))x, (1.108)
wherey(0) is given by

y =Ay+nBm te(0,T), y(T)=0. (1.109)

Under the form[{1.108), the functionhappears as a particular case of the functional
Jin (I.9), and therefore, Theordm11.1 applies.

In order to write our results in a satisfactory way, we onlyédto check that the
degree of smoothness wf, manddg are all the same.

Indeed, ifpg € Z(A), applying [1.8) and (115) tA¢do, we obtain

T e g 112 2 2
| B9 @l dt<Cor IAdol
T
IAdol < Chrer- [ B3 .

Therefore, repeating this argument iy € Z(AX) and interpolating fos > 0, we
obtain

IB* @ llnso.r+u) < Cad 1+ [[@olls: @0 € Xs, (1.110)
[¢olls < Cobst 1B @ lpsor-u)»  $o € Xs. (1.111)

These estimates indicate the following fact: for aft 0, the maps mapsXs in
Ran(¢) NH3(0,T*;U) and has a continuous inverse within these spaces. Equiva-
lently, for alls> 0, there exists a consta@ > 0 such that

1 *
c [[¢olls < [IB*¢l[s0.7+u) < Cslldolls;  do € Xs.
Of course, this in particular implies that,if e H3(0,T;U),
[[®olls < Cs[IMl|s(o,1u) - (1.112)

Let us now explain the fact that, whene HS(0,T;U), y(0) belongs toXs. If
me H1(0,T;U), we differentiate in time the equatidn (1.109)yof

(V) =AWY)+nBn+nBm te(0,T), Y(T)=0.

Therefore, since is admissible andym’ +n’m < L?(0,T;U), y belongs to the
spaceC([0, T]; X). Thus, from the equatiof (1.7109) paind the fact thafj vanishes
att =0, Ay(0) = y¥(0) € X and theny(0) € Z(A). This argument can easily be
extended to ang € N by induction and then to arg/> 0 by interpolation.

We have thus obtained that for al> 0, there exists a consta@$ > 0 such that
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IY(O)lls < Cs [Mlsoru) - (1.113)
According to this, Theorefn 1.1 implies the following:

Theorem 1.8.Let s> 0 and me HS(0,T;U). Let yp = y(0), where y denotes the

solution of (T.109)and the sequepcxﬁ% be defined b{T. 17)-(1.13)
Denote bydg the minimizer ofl in (I.I06) Thendg € Xs.

Besides, for alp € (0, pg), wherepy is as in([@19) the sequencgl converges
to @ in X and in % with the convergence ratd.23)-(1.24) whered is given by

(120)
Of course, usind (1.11 3], {1.24) implies:

| 85— @0 _< C8 @+ 1K) IMlysioruy.  kEN. (1.114)

We can then apply the same ideas as the ones used for comgistingte con-
trols.

1.8.2 Numerical approximation methods

Letm, € L?(0, T;Uy) and introduce a functiogy, = yh(0), whereyy, is the solution
of
Yh=Anyn+nBpmy, t€(0,T),  wn(T)=0. (1.115)

Then the functionald, defined by

d 1 T * 2 1 T 2
J(don) =5 [ 1 IBrgn—mul3, dt—5 [, at (1.116)

wheredgy is the solution of[(T.71) with initial datég,, can be rewritten as follows:

~ 1 /T
F(don) = 5 [ 1 IBRGnIS, -+ (o Yorn. (1.117)

The continuous approach
Here, we only suppose that Assumptions 1-2 are fulfilled.
Under Assumptions 1-2, using (1.113), Theofem 1.2 apptidsy&lds the fol-
lowing version of [[1.3B): for alk € N,
|Endl — 08| < CKIIEnyon — yollx + K Mo (1.118)

Therefore, usind (1.114) arld (1.118) and optimizing,isettingKs as in [1.35),
we obtain, for some constant independent,of
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HEh‘p:)(hﬁ - (DOHX < Cllogh|m@1-sIh® IMllhsio.10)
+Clloghl|[Enyon — Yollx - (1.119)

In particular, if | Enyon — Yo||x tends to zero aB — 0 faster than 1| log(h)|, we
have a convergence estimate for this data assimilatiorgrol©f course, a discrete
sequencgon such thagnyo, converges tgg in X can be built by assuming suitable
convergence assumptions iof, toward m and the convergence of the numerical
schemel[(1.115) toward the continuous equafion (1.109).

Note that it can be necessary to consider the regularityeofrtbasuren = B*®
in the space variable. Let us give a precise example comekspg to the case of
distributed observation, see Section 1.7.2, correspgrtdin

. 00
*(ox)

onX = H}(Q) x L2(Q). There,B = B* andU can be taken to coincide witK. If
furthermore the functiorx,, that localizes the effect of the control inis smooth,
B (and thusB*) mapsX; to itself for anys > 0 (these assumptions are very close
to the ones in[[9, 25] on the control/observation operafngrefore, in that case,
if @ € X (k€ N), m=B*® belongs taC*([0, T]; X) NC°([0, T]; X«). Note that the
HX(0, T;X)-norm ofmis then equivalent to it§%([0, T]; X) NC°([0, T]; X¢)-norm by
(@I I12) together with classical energy estimates for smistof [1.10B). Therefore,
a natural space for the measunevould rather beCS([0, T]; X) NC%([0, T]; Xs) and
one could therefore simply take the approximate measyre R,m.

The obtained algorithm is actually very close to the onevaeriin [25] from
the continuous “algorithm” in[[29] and suffers from the sadw®ficiencies and in
particular from the the difficulty of computing the stoppitige.

The discrete approach
In this paragraph, we suppose that Assumptions 1, 2 and 3 hold

Using Theorem 114 an@(1.7113), one can obtain the followirgion of [1.3P):
forallk e N,

| gl — 98], < ko (IEmon—yollx +CH IMlhisiory) . (1.120)

In particular, based on this estimate dnd (11114), we olthairfor some constant
C independent ok andh, for all k > K¢ (given by [1.4D)),

| Endl — 0|, < P 1m0 + C 1Envon — Yol (1121)
In particular, similarly as in(1.44),

IEn@on — @ollx < Ch? [Imllysi0 1) +CIIEnyon — Yollx » (1.122)
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where®g, is the minimizer of}, in (L116).

Remark also that, similarly as in Sectlon 116.2, if one caargntee thajy given
by (I.109) and/on given by [1.115) are such thBiygn strongly converge iiX to yo,
one can guarantee thBag @y, strongly converge taby. Such convergences for the
sequencé&nyon are very natural for sequences of observatiopghat strongly con-
verge tomin L?(0,T;U) (this statement has to be made more precise by explaining
howm, € L2(0,T;Uy) is identified as an element &f(0,T;U)).

Of course, this implies that, similarly as in Sectlon .6l3can be minimized
using faster algorithms than the steepest descent onen @adticular the conjugate

gradient method.



Chapter 2

Observability for the 1—d finite difference wave
equation

2.1 Objectives

In this chapter, we discuss the observability propertietife 1— d finite-difference
wave equation.

For the convenience of the reader, let us recall the equatidready introduced
in (1.80).

Let N e N, h=1/(N+1). Given (¢on, ¢1n), compute the solutiog, of the
following system:

Ot djn— h_12 ($j42h—20jn+¢j-1n) =0, (t,j) € (0,T) x {1,---,N},
Pon(t) = dnrin(t) =0, te(0,T), (2.1)
(#n(0),6:¢n(0)) = (¢on, $1n)-

Here, we will not be interested in any convergence procegsabher try to prove
some estimates uniformly with respectro- 0, and in particular uniform admis-
sibility and observability results. Before going furthkst us also emphasize that
this uniform admissibility result will be an important stepthe proof of the con-
vergence of the discrete waves towards the continuous ohes working with
boundary data im?(0, T).

Note that the discrete equatidn (2.1), as its continuousteopart, is conserva-
tive in the sense that its energy

RS e ans (B -9
N N e e R

sometimes simply denoted I, (t) when no confusion may occur, is constant in
time:
vt >0, En(t) = En(0). (2.3)

55
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2.2 Spectral decomposition of the discrete laplacian

In this section, we briefly recall the spectral decompositibthe discrete laplacian.
To be more precise, we consider the eigenvalue problemiassdavith the 3-
point finite-difference scheme for the-1d Laplacian:

{ _Wj+1+Wj,1—2Wj

o =Awj, =0, N+1,

Wo = W41 = 0.

(2.4)

A simple iteration process shows thatif = 0 andw solves[[ZH), themw; =0
forall j € {0,---,N+ 1}. Hence all the eigenvalues are simple.
Furthermore the spectrum of the discrete Laplacian is dgetine sequence of
eigenvalues
0 < A1(h) < Az(h) < --- < An(h),

which can be computed explicitly
4 . nikh
A(h) = Fsm2 (7) k=1,---,N. (2.5)

The eigenvecton® = (W%, - ,wk) associated to the eigenvaldg(h) can also be
computed explicitly:

ws = Vv2sin(nkjh), j=1,---,N. (2.6)

Observe in particular that the eigenvectors of the dis@gstem do not depend
onh > 0 and coincide with the restriction of the continuous eigeietionsa(x) =
v/2sin(knx) of the Laplace operator ai, 1) to the discrete mesh.

Let us now compare the eigenvalues of the discrete LaplaeeatipA, and the
continuous on@yy:

e For fixedk, limy_,0Ax(h) = 1°k?, which is thek-th eigenvalue of the continuous
Laplace operatordyx on (0,1).
e \We have the following bounds:

%kznzgx\k(h)gkznz forall O<h<1, 1<k<N. (2.7)

e The discrete eigenvaluggAx(h) uniformly converge to the corresponding con-
tinuous one&rrwhenk = o(1/h%3) since, at first order,

’\/W—kn’ ~ CI3h2. (2.8)

Let us now recall some orthogonality properties of the eigetors, that can be
found e.g. in[[28]:
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Lemma 2.1.For any eigenvector w with eigenvaldeof (2.4)the following identity
holds:
Wjt1—
i

If wk and w are normalized (i.e. with If; [w|? = hy ; |wi|? = 1) eigenvectors of
Ap, then

WJ

N
=AhY |wjl% (2.9)
2

N
hy wiwj = 3, (2.10)

=1

N oAWK —wEY wE g —wh
i1~ Wi i1~ Wi
hjzo< = ) < P ) = M, (2.11)

wheredy, is the Kronecker symbol.

and

2.3 Uniform admissibility of discrete waves

For convenience and later use, we begin by stating a unifoimmissibility result,
which can also be found ih [28] and will be useful for studythg convergence of
the discrete normal derivatives of the solutiong ofl(2.h)aals the continuous ones.

Theorem 2.1.For all time T > 0 there exists a finite positive constanflTQ > 0

such that
/.T N (t) 2
0 h

for all solution ¢y, of the adjoint equatiorf2.3) and for all h> 0. Besides, we can
takeQT)=T+2.

The proof of Theorem 211 is briefly given in Sectlon 213.2slbased on a mul-
tiplier identity given in the next section.

dt < C(T)En(0), (2.12)

2.3.1 The multiplier identity

Our results are based on the following multiplier identitgt can be found in [28]:
Theorem 2.2.For all h > 0 and T > 0 any solutiongy, of (2.1)) satisfies

dt+ Z}/ M’

T T
TEh(O)+xh(t)’0 :/0 dt, (2.13)

with
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N ¢ _ ¢
=2h§ jh(EE_T1) ;. 2.14
3 in( B2 ) a0 (214)

The proof of Theorem 212 uses the multipligg; 1 — ¢;-1), which is the dis-
crete counterpart ofdy@. Integrating by parts in space (in a discrete manner) and
time, we obtain[(2.13). We refer to [28] for the details of toenputations. We only
sketch it below since it will be useful later on in Chagtkr 4.

Proof (Sketch)Multiplying the equation[(2]1) byh(¢j.1 — ¢;-1)/h, we have

hZ/ ad; ih (¢J+1 L 1) dt
Z/ 020000 in (P2 o

After tedious computations, one shows (cf|[28]):
N T ¢ _¢.7 T N T
i i+l -1 _ 12
h,zl/o (?nqﬁjjh( - )dt Xh(t)‘0+hZ/0 |G [2dlt

l?t¢J

and

N

hlzl'/(;T h—lz (#+1—20; + ;1) Jh (%) = /o
_hzo/ <¢J+l >2dt

Putting these identities together yields (2.13). O

Tl gn(t)|?
—ho|

2.3.2 Proof of the uniform hidden regularity result

Proof (Theorerii2]1)This is an immediate consequence of Thedrerh 2.2. It suffices
to bound the time boundary terifg(T) — X,(0) by the energ¥;, to get the result:
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1/2
2
<¢,+1—¢J 1) ]

N N
|xh|§2[hzlydt¢j"| [ z
j= =1
N 1/2 N 271/2
h 2 h 9ir1—9i1 . _
SZ[ le|5t¢1|] [ jZl< oh ) ] <En (2.15)

This concludes the proof of Theorém12.1. O

2.4 An observability result
The goal of this section is to show the following result:
Theorem 2.3.Assume thay < 1. Then for all T such that
T >T(y) =2/cogny/2), (2.16)
for every solutionp, of (1.80)in the class
Yh(y/h) = Span{wk, kh<y}

uniformly as h— 0, we have

<Tco§(%[)—2005(%y) 2) En(0 /"I’N] at,  (2.17)

where E is the discrete energy of solutions @.1) defined in(2.2).

The proof of Theorerh 213 is based on the discrete multiptientity in Theo-
rem[2.2 (and developed in [28]). However, the estimates vpta@xbelow yield a
sharp result on the uniform time of observability for digereaves with an explicit
uniform observability constant, thus improving the estiesan [28].

2.4.1 Equipartition of the energy

We also recall the following proof of the so-called propesfyequipartition of the
energy for discrete waves:

Lemma 2.2 (Equipartition of the energy).For h > 0 and ¢y, solution of 2.1),

—hz/ 2t B

where

.
dt+Yh(t)’0 -0, (2.18)
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N
Yh(t)=h> cudjag;. (2.19)
=1

Again, for the proof of LemmB&2.2, we refer fo [28].

2.4.2 The multiplier identity revisited

From now on, we do not follow anymore the proofs[of|[28] buhgattry to optimize
them to improve the obtained estimates.

We introduce a modified enerds, for solutions¢y, or (2.1). First, remark that
any ¢y, solution of [2.1) can be developed on the basis of eigenfomebf A, as
follows .

on(t) = 5 PeetMwlK (2.20)
IKI<N

with p(h) = \/Ak(h) for k > 0 andu_g(h) = — i (h).
According to Lemma&2]1, its energy reads as

Enlgn] =2 3 |6ul*Ac(h). (2.21)

[KI<N

Similarly, the energy oB; ¢y, which is also a solution of(2.1), and that we shall
denote byEn[a ¢ to avoid confusion, can be rewritten as

Enldion =2 S |dl*A(h)?.
=N

Note that, of coursegy[¢n] andEy |6 ¢p] are independent of time singg andd: ¢n,
are solutions of(2]1).
We then introduce

2
Enlgn] = Enlgn] — = Enladn] (222)

This modified energy is thus constant in time and satisfies
. krth
Ealtnl =2 5 [ mco# (45 ). 2.29
KEN 2

We are now in position to state the following multiplier idiyr
Theorem 2.4.For allh > 0and T > O, any solutionpy, of (2.1) satisfies

TE )+ 20, = [

2
dt (2.24)

with
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2

N
Z0(t) = Xl + SO, WO =h Y Agiddy  (2.25)
=1

Proof. To simplify the notations, we do not make explicit the depamzk inh > 0,
which is assumed to be fixed along the computations.

According to Lemma&2]2, sina& ¢y, is a solution of[(2.11), the following identity
holds:

N T X _ 12 h N T
hzo/o 7‘9t¢‘+1h il dtzizl/o |Gty |t
j=or i=
hd (T|agia—adi|” . Yal)[T
+§J-Z)-/o - dt— | . @26)
whereY; is as in [Z.2b).
Of course,
N VT dgya—ady [
2 i+ i _
h,zl/o |atq>1|dt+hjzo/0 - dt = T Ex[6n],
and then[(Z.24) follows froni(2.26) arld (2113). O

2.4.3 Uniform observability for filtered solutions

We now focus on the proof of Theordm R.3. It mainly consistestimating the
terms in [Z.24), and in particulai(t).
2.4.3.1 Estimates ofh(t)

Let us begin with the following bound ovy:
Lemma 2.3.For allh > 0and t> 0, for any solutionp, of (2.7),
h2[¥h(t)] < hEn[én]. (2.27)

Proof. Computingh®Y, we get
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N
h*h(t) = h Zatfﬁj (h°d ¢5)
J:

:hidt¢j(¢j+1—2¢j+¢jl)
—hzzdﬂﬁ <¢J+1 ¢J) hzzdt¢1<¢ ;- 1>

hzat(PJ <¢J+1 ¢J>

and thus estimat€ (2.27) follows immediately. O

But
< En(t),

2.4.3.2 Estimates orX;(t)

This is the most technical step of our proof. The idea is tothisé-ourier decompo-
sition of solutionspy, of (2.1) to boundX;, conveniently.

Proposition 2.1.For all h > 0,t > 0 andy € (0,1), any solutiongy, of (Z.1) with
data in 4 (y/h) satisfies:

E
Xolt)] < P (2.28)
=ty
Proof. Let us begin by computing,[¢y,] at some time, for instance = 0, in terms
of the Fourier coefficients apy(t), & ¢n(t). If

o =

;\FMZ
Nz

thenE;, can be written as

En= k§l|ék|2/\k( )cosz( ) +; |bg|zco§< ) . (2.29)

Proposition 2.1 is then a direct consequence of the follgyémma:

Lemma 2.4.Let &, and h, be two discrete functions which can be written as

Then, setting
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Xo(anbr) = 203 jh (A1)
s Mh JZ]- 2h )

we have

/2
Xo(an.bn) |<2<Z|ak|2Ak neos (5 )) (; |bf|2>  (230)

In particular, if we assume that, for sonyes (0,1),
Ac=b,=0, Vk(>y(N+1), (2.31)

then

N ) 52
X (@0, bn) | < o T )[Z|ak| A(h co( )

+ §1|64|20052 (%h)] . (2.32)

Of course, Lemm@a 24 and in particular estimbie (2.32), gddwereafter, imme-
diately yield [Z.28). 0

Proof (LemmaZ2l4)orallje {1, --,N},

djr1—3aj— 1

in(krth)
2h '

h

V2 z akcos(kmh)

Thus,

Xo(@n, bn) 4hz ih <§ cogkrjh S'”(E"h)> <§ Bgsin(fnjh))
=1 =1

Therefore, by orthogonality properties of the discreter@functions (the counter-
part of Lemma&ZJ1 with the cosine functions),

Xn(@n, bn)|?

<4 (Zh i <k§l§kcos(knjh)sm(:nh) ) 2) (Zh ,i <§le sin(énjh)>2)
a3 o (1)) (3 ).

where we used that, for all sequer(©g)1<k<n,
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2
2h Z(Z ay cogkjh) ) = k§1|ak|z.

Note then that

(sin(Enh))z = %sin2 (@) cog (@) = A(h)cog (@) .

The bound[(2.30) immediately follows.
If we assume(2.31), then by Cauchy-Schwarz inequdlit@d2dmplies

N knth
[Xn(@n, bn)| < @kzlmlz/\k(h) cog (7) +cos( ); 15,2,

and the last term satisfies:

cos(g) §1|65|2 < cos(;y—n)iz by |? cos’ (Zgh) ;
) 2

and estimatd (2.32) follows immediately. O

2.4.4 Proof of Theorem 2]3

Proof (Theoreni_2]3)ldentity (Z.24), estimate$ (2.27) arld (2.28) imply that any
solutiongy, of (2.3) in the class4(y/h) satisfies

'TEh ¢h / ‘ ¢N ’ dt‘ COS(ZWT) (¢h) + gEh((Ph). (2.33)

Therefore,

(T cos(zyn)> En(n] _g / ’¢N ’ dt.

But, sincegn, belongs to the class;(y/h), the Fourier expressions of the energy

En[¢n] in @.21) andEx[¢y] in (223) yield

cos( )" Enlo] < Enlo). (2.34)

which concludes the proof of Theorém]2.3. O



Chapter 3

Convergence of the finite difference method for
the 1 —d wave equation with homogeneous
Dirichlet boundary conditions

3.1 Objectives

This chapter of the book is devoted to the study of the corererg of the numerical
scheme

1
Ot Pjh— 2 (@j+1n—20jn+¢j-1n) =0,

(taj)E(O’T)X{la""N}’ (3.1)
$on(t) = ¢nr1n(t) =0, te (0.T),

(¢n(0),&n(0)) = (¢bon, b1n),

towards the continuous wave equation
att¢_axx¢:07 (tax) € (07T)X(011)1
{¢(t,0)=¢(t,1):07 te(0,T), (3.2)
(¢(0),66(0)) = (¢o, $1)-

Of course, first of all, one needs to explain how discrete amdiicuous solutions
can be compared. This will be done in Secfiod 3.2. In Seéti@nvge will present
our main convergence result. We shall then present sontesfurbnvergence results
in Sectio 3.4 and illustrate them in Section] 3.5.

3.2 Extension operators

We first describe the extension operators we shall use. Weéhei explain how the
obtained results can be interpreted in terms of the morsick®xtension operators.
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3.2.1 The Fourier extension

Forh > 0, given a discrete functioa, = (ajn)jc1.ny (With N+1=1/h), since
the sequences is an orthonormal basis for the -, )¢2(rN)-NOrM due to Lemma
[21, there exist coefficient Such that

N
ah= 5 &wf,  (recall thaw |, = v2sinkijh) ) (3.3)
in the sense that, for ajle {1,---,N},
N
ajn=Y &v2sinkmjh). (3.4)
k=1

Of course, this yields a natural Fourier extension denoyeBbfor discrete func-
tionsay, given by [3.3):

z

Fp(an)(X) = 1ék\/§sin(knx), xe (0,1). (3.5)

Y
Il

The advantage of this definition is that n@(ay,) is a smooth function of.

The energy of a solutiopy, of (3.1) at timet, given by [2.2), is then equivalent,
uniformly with respect tt > 0, to theH2(0, 1) x L(0, 1)-norm of (Fn(¢n), Fn(@y,)).
This issue will be discussed in Proposition 3.3 below.

Another interesting feature of this Fourier extension &t tldue to the discrete
orthogonality properties of the eigenvectefsproved in Lemm&2]1 and their usual
L2(0,1)-orthogonality, i.e./o WX (x)w! (x) dx = & for all k¢ € N, for all discrete
functionsay, b, we have

N 1
h'S ajnbjn= /0 F () Fin(by) dx
=

This fact will be used to simplify some expressions.

3.2.2 Other extension operators

When using finite difference (or finite element) methods, Rbarier extension is
not the most natural one. Given a discrete functige- (a; n) e ny (With N+ 1=
1/h), consider the classical extension operaiyandQy, defined by
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Phfan) %) = ayn-+ (250 ) (), 36)
forxe [jh,(j+1)h), j € {0,--- ,N},

ajpforxe [(j—1/2)h,(j+1/2)h), je{1,--- N},

0forxe [0,h/2)U[(N+1/2)h,1], G-

Qn(an)(x) = {

with the conventionsgp = any1.n =0.

The range of the extension operalyris the set of continuous, piecewise affine
functions with C1) singularities in the pointgh, and vanishing on the boundary.
This corresponds to the most natural approximation Ieatb'r‘rgé(Q 1) functions
and to the point of view of th@1 finite element method. By the contrafyy, pro-
vides the simplest piecewise constant extension of theateséunction which, ob-
viously, lies inL?(0,1) but not inHZ (0, 1).

Note that the extensiori&,(a,) obtained using the Fourier representationl(3.5)
andPn(apn) do not coincide. However, they are closely related as fallow

Proposition 3.1.For each h=1/(N+1) > 0, let &, be a sequence of discrete func-
tions.

Then, for s {0,1}, the sequence of Fourier extensidii% (an))n~o converges
strongly (respectively weakly) in¥D, 1) if and only if the sequenc€(an))n-o
converges strongly (respectively weakly) ifi(611). Besides, if one of these se-
quences converge, then they have the same limit.

Moreover, there exists a constant C independentsfthsuch that

1
c IFn(@n) iz < [IPh(an) [z < ClIFh(an)|l.2 (3-8)
1
¢ [Fn@n)lluz < 1Pn(@n)llg < CllFn(@n) g - (3.9)

Proof. Let us begin with the case= 0.
Let us first compare the?(0, 1)-norms of the function®y(a,) andPy(ay).
From the orthogonality properties of (see Lemma2]1), we have

N N
[Fn(an |||_2 0.1) Z hz |aj,h|2- (3.10)
=1

Computing theL?(0, 1)-norm of Py, (ay,) is slightly more technical:
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/|Ph |2dx—zo/ a,h+x<aj+lh ajh)‘ dx

h
N 1 9
=h [ h+ajh(@j+1h—ajh) + 5 (@410 —ajn) }
JZO 5 3 : :

=z

2 2
(@fn+aji1n+ajndjrih)

|
ol ol w =
zy\/]z l
i

h
(8§ n+af, 1+ 23, h<5‘1+1h)+g3 (afp+at,1p)

h N
(aJ h+aj+1, h) + é z |aj,h|2. (3.12)

l
Il
al

It follows that theL?(0,1)-norms of F,(ay) and Py(ay) are equivalent, hence
implying (3.8), and then the boundedness properties faetisequences are equiv-
alent.

This also implies that the sequen@(an))h-o is @ Cauchy sequenceli(0, 1)
if and only if the sequencéP,(ay)) is a Cauchy sequencelif(0,1), and then one
of these sequences converges strongly if and only if ther otie does.

To guarantee that these sequences have the same limit wdyendhverge, we
have to check that their difference, if uniformly boundeéakly converges to zero
whenh — 0.

Let ¢y denote a smooth test function. On one hand, we have

1 N 1
|| Fulan) 0w dx=3 & [ WK pidx
0 & o
On the other one, we have
1 Dh o
[ Pr(an 00 wiodx = Z IA o (gt 226y ) i o
= hz aj h{dj
=1

with
1 X—(i - (i+1)h x— jh
Yin= h-/(171>hw(x) ( ) h/ ( h ) o
~ 1 G+Dh |X—jh|
B ﬁ./u—nh v <1_ h > dx

Using [3.4), we obtain
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. N
/()1Ph(ah)(x)l#( Zé‘k ( Z\Nkllfj h) (3.12)

Therefore,
/01 (En(an) (X) —Fn(@n)(x) ¢(x) dx
N
kZ <hzwk‘plh_/ W) dX> . (313

Now, fix ¢ € N, and choos€J(x) = W' (x) = v/2sin(¢7x). In this case, using Taylor's
formula, we easily check that

sup |Pjn—y(jh)| < thm
JE{l,.N}

Since, forf <N, see LemmA2]1,
1 N ] ,
[ koow o dx=h 3 whw (i) = .
we then obtain fron{(3.13) that for allc N,

/01 (Pn(an)(X) — Fin(an) () w/ (x) dx — 0.

Since the sef{w'}|cy spans the whole spade?(0,1), if one of the sequences
(Fh(an)) or (Ph(an)) converges weakly i?(0,1), then the other one also con-
verges weakly i .?(0,1) and has the same limit.

This completes the proof in the case: 0.

We now deal with the case= 1. First remark that
1 N
|| 10En(an) Pdx= 3 1acnPien (3.14)
K=1

from the Fourier orthogonality properties, and, using Leaffil,

a a
[, ey (224 ) S w19

Sincec k? < Ak(h) < cok?, these two norms are equivalent, hence implyingl (3.9),
and therefore théi}(0,1)-boundedness properties of the sequeriBaga,)) and
(Pnh(an)) are equivalent.
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If one of these sequences weakly convergelsl&v(lo, 1), then the other one is
bounded inH(0,1) and weakly converges ib?(0,1) to the same limit from the
previous result, and then also weakly convergdﬂéfo, 1).

Besides, if one of these sequences strongly convergﬂé(’(m 1), itis a Cauchy
sequence irhiol(o, 1), and then the other one also is a Cauchy sequeﬂdé@@, 1),
and therefore also strongly converges. a

Similarly, one can prove the following:

Proposition 3.2.For each h=1/(N+ 1) > 0, let &, be a sequence of discrete func-
tions.

Then the sequence of Fourier extensi@igan) )n-0 converges strongly (respec-
tively weakly) in B(0, 1) if and only if the sequend@p(an))n-o converges strongly
(respectively weakly) in4(0,1). Besides, when they converge, they have the same
limit.

Moreover, there exists a constant C independentefthsuch that

2 [Fn(@n) i < |Qn(an) .2 < Cl[Fn(an)z. (3.16)

The proofis very similar to the previous one and is left torader.

The above propositions show that the Fourier extensionsplag same role as
the classical extensions by continuous piecewise affinetiiums or by piecewise
constant functions when considering convergence issuesmtke the choice of
considering this Fourier extension, rather than the usnaspsince it has the ad-
vantage of being smooth.

The following result is also relevant:

Proposition 3.3.There exists a constant C independent of B such that for all

solutions¢y, of (Z.1).
1
¢ I Fn(@n). Fn(a én)llig <2 < En[dn] < ClI(Fn(én),Fn(dtdn)lygez  (3.17)

Proof. The discrete energy of a solutigip of (3.1) at timet exactly coincides with

theH2(0,1) x L2(0,1)-norm of (Pn(¢n), Qn(A ¢n)) attimet. Using the equivalences
(@9) and[[3.16), we immediately obtaln (3.17). O

In the following, we will often omit the operatdf,, from explicit notations
and directly identify the discrete functia = (aj n)jecq1.... Ny With its continuous
Fourier extensiofi,(ap).

3.3 Orders of convergence for smooth initial data

In this section, we consider a solutignof (3:2) with initial data(¢°, ¢*) € H2N
H2(0,1) x H}(0,1). The solutionp of (3:2) then belongs to the space
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¢ € C([0,T];H?NHy(0,1)) NCH([0, T];Hg (0,1)) NC?([0, T];L%(0,1)).

In order to prove it, one can remark that the energy

1
EBI0 = [ (30X + 0 (1) dx
is constant in time for solutions of (3.2) with initial data H3(0,1) x L?(0,1).
We then apply it tad ¢, which is a solution off[(312) with initial datép;, dxxdo) €
H&(0,1) x L%(0,1).
The goal of this section is to prove the following result:

Proposition 3.4.Let (¢°,¢1) € H2NH(0,1) x H}(0,1). Then there exist a con-
stant C= C(T) independent of¢°, ¢*) and a sequencep?, ¢}) of discrete initial
data such that for all h> 0,

H(‘pr?a‘lb%) - (¢ov¢l)HngL2 < Chz/gH(d’O’d’l)HHZmngHg (3.18)

and the solutiong of (3.2) with initial data (¢°,¢*) and ¢, of @) with initial
data(¢?, p?) satisfy, for allh> 0andte [0, T],

1(9n(0). G 8n (1)) = ($(1) 3B O)) gz < CIP (9% 8 g g (319)

and

+(9X¢(71)

H‘er:() SCh2/3H(¢07¢1)HH2ﬂH&><H& (3.20)

L2(0,T)

Remark 3.1The result in[(3.18) may appear somewhat surprising sinbenvap-
proximating(¢°, ¢1) € H2NHZ(0,1) x H3(0, 1) by the classical continuous piece-
wise affine approximations or truncated Fourier seriesaﬂmoximation$¢ﬁ, ¢%)
satisfy

109,90~ (6°.0") gz <CNI@°. 0N ey B2D)
instead of[(3.18).

However, the result i [45] indicates that, even if the cageace of the initial
data is as in[{3.21), one cannot obtain a better result {hd®@)3This is due to
the distance between the continuous and space semi-disemtigroups generated
by (3:2) and[(311), respectively, and their purely consireanature. To be more
precise, when looking at the dispersion diagram, the emjepg of the semi-discrete
wave equatior (3]1) are of the form

Ak(h) = %sin (@)

whereas the ones of the continuous equafiod (3.2),%: krt. In particular, for
anye >0,
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sup {‘\/T(h)—kn‘}zo, while sup {‘\/T(h)—kn‘}:oo.

kSh—Z/.’Hs kzh—Z/S—s

Remark 3.2The main issue in Propositidn_8.4 is the estiméfe {3.20)intases
(3:19) are rather classical in the context of finite elemeethmods, see e.d.][2] and
the references therein.

Proof. Let (¢°,¢1) € H2NH(0,1) x H}(0,1). Expanding these initial data on the
Fourier basis (recall that(x) = v/2 sin(krx)), we have

The solutiong of (3.2) can then be computed explicitly in Fourier:

[e9]

Pt = 5 deexplimt)w, pc=km  fi= % <§k + Ib_k) .

K=1 Hi

And the condition(¢°, ¢1) € H2NHZ(0,1) x HZ(0,1) can be written as

i (k4]¢;9]2+k2]¢k1]2) < 00, Of, equivalently,i K*| fy|? < oo, (3.22)
& =1

and both these quantities are equivalent toHRe H2 (0, 1) x H3(0,1)-norm of the
initial data(¢°, ¢?).

We now look for a solutioy, of (3.1) on the Fourier basis. Using that the func-
tionswK correspond to eigensolutions of the discrete Laplace opefiark < N, one
easily checks that any solution ¢ {B.1) can be writtelfag,:l awld exp(ipy (h)t)
with i (h) = 2sin(krth/2) /h. Keeping this in mind, we take

n(h)

on(t) = 3 dxexplim(htw®, (3.23)

k=1

wheren(h) is an integer smaller tha that will be fixed later on.
We now compute how this solution approximages

[ én(t) — B (®)I1Z
w n(h)
_ Z k2n2|<ﬁk|2+ Z k27'l2|¢k|245|r12 ((“k(h) - Hk)t)

IK|=n(h)-+1 K=1 2
n(h)

5 it B C 3 (KK
k=1

<C(n(h*n*+

1
n(h)Z) ||(¢O’¢1)||a2ﬂH&><Hg’ (3.24)
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where we have used that, for some constarnindependent oh > 0 andk €

{17' o 7N}|
() — e = lzsm(kg“) —kn’ <,

and

sin((WCUZH) | < Tl - .

The same can be done f@my:
1 dn(t) — e (0)]72
- 2 2 ") 2 iy (h i 2
PN L (et — et
=n(h) k=1

1 2
<c (n<h>4h4+ ) 18% 89 g (325)
where we used that

pi(h) et — el

< ‘ansin (M) ‘ + | u(h) — ] < CK*h2.

Estimates[(3.24) and(3.P5) then imply (3.18) and ([3.19) wtieoosingn(h) ~
h—2/3, a choice that, as we will see below, also optimizes the agevee of the
normal derivatives.

We shall now prove (3.20). This will be done in two main steqmsnputing sep-
arately the integrals

T
|—/
0

Estimates onil We shall first write the admissibility inequality proved irhdo-
rem[Z.1 in terms of Fourier series.
Consider a solution, of (3.1) and write it as

Bdn(t. 1)+ ¢NQ()

dt, andl, _/ 1040 (t, 1) — Ben(t, 1) dt. (3.26)

N
_ ; PRI

~ 1(-o Bn
eh = (qqm 'Hk())

The energy of the solution is then given by

where

N ~ 2
En=2 ; A (h) | @cn|”
=1
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Hence the admissibility result in Theoréml2.1 reads asviaid-or any sequence

(&h),
T
J

But the difference&¢n(t, 1) + ¢nn/h reads as

N K |2
~ it W
O h€ T

k=1

N
dt<C'y A(h)|@n|”. (3.27)
K=1

P Wl
ddn(t, )+ () = Y deH V| gaw(1) +
h =1 h
n(h) K |kl
S f (1+ o (3) (1)) it
& e h
Thus, applying[(3:27), we get
T t)[2 n(h) haw (1))
/ 0X¢h(t,1)+ ¢N|:( ) dt<C /\\k\(h)|¢k|2 1+XT‘() . (3.28)
0 k=1 WN
Butforallke {1,--- ,N},
hgw (1) ~ knhcogkm)  kmh
wf  sin(krth)cogkm)  sin(krth)’

and we thus have, for some explicit const@rihdependent oh andk, that for all
h>0andke {1,---,N},

haawX(1)
W

’1+ ‘ < C(kmth)?.

Plugging this last estimate into (3]28) and usigh) < Ck?, we obtain

.
! /
JO

n(h)
dt<C Y |é/?Keh?
k=1

2
Hon(t, 1)+ —¢N’£(t) ‘

n(h)
<cn(h)’h® 5 K|l
k=1

< Cn(h)?h® [ (8% 81 Fzrg g - (3:29)

Estimates onyl. The idea now is to seg, as a solution of(3]1) up to a perturbation.
Note that this is a classical technique in numerical analgsd more particularly in
a posteriorierror analysis.

Indeed, recall that
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n(h)
th=Y GueMwk(x).
o

This implies that
Gt — Oxxn = fn,  (t,X) € R x (0,1)
with
nth)
faxt) =S P MWK (x) (= (h) + K1) .
K=1

In particular, for allt € R,

£ L (k)2
IO < 5 Kt g2 (1—ﬁsm2<7>)

k=1

n(h)
<C'S K g (knh)®
K=1

n(h)
<cnh’h® 5 KA g
K=1
2
< Cn(h)4h4H(¢07¢1)HH2mngHg’

where the consta is independent dfi > 0.
Now, consider;, = ¢, — ¢. Thenz, satisfies the following system of equations

Ot Zn — Oxxzn = T, teR,xe (0,1)
z,(t,0) = z,(t,1) =0, teR, (3.30)
2,(0,X) = Z7(X), Gzn(0,X) = Z'(x), 0 < x < 1,

with (2,2}) = (¢2, ¢1) — (¢°,¢1), which satisfies, according tb (3124) ahd (3.25)
fort =0,

2 1 44 0 414(12
gz < (i ) 108
But this is now the continuous wave equation and one canyeasick that the

normal derivative ofz, then satisfies the following admissibility result: for some
constant independent ofi > 0,

T 2 2 2
| 1o DEdt<C (1l qrizion + @3 [fgaz)-

For a proof of that fact we refer to the book of Liohs|[36] and #rticle [32].
This gives
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l2 = [ 186 (t.1) = an(t, 1) ot

1
<C (I’l(h)z + n(h)4h4> H(d’o’ ¢1)Ha2ﬂH&xH& . (3.31)

Combining the estimateg (3]29) afd (3.31), we obtain

[

The choicen(h) ~ h~2/2 optimizes this estimate and yields (3.20). This choice also

optimizes estimate§ (3.P4) and (3.25) and implies (3.18)(@&m@9) and thus com-
pletes the proof. a

2
dx¢(t,l)+¢N’£(t)’ dtgc(n(i)z (h)4h4>H(¢O7¢1)H|2-|2mngHg'

3.4 Further convergence results

3.4.1 Strongly convergent initial data

As a corollary to Propositidn 3.4, we can give convergenselte foranysequence
of discrete initial datd$?, ¢}) satisfying

im [[ (99, ¢) — (8°.9Y)|g,.2 = 0. (3.32)

Proposition 3.5.Let (¢, ¢1) € H}(0,1) x L2(0,1) and consider a sequence of dis-
crete initial data(¢?, ) satisfying(3:32) Then the solutiong, of I)with initial
data (¢, ¢) converge strongly in G0, T];HZ(0,1)) NC1([0,T];L?(0, 1)) towards
the solutiong of (Z:2)with initial data (¢°, ¢*) as h— 0. Moreover, we have

.
im [ |a@(t,1 +M} dt=0 (3.33)
h—0.J0

Proof. Let (¢°,¢1) € H}(0,1) x L2(0,1) and, givere > 0, choosd ¢/, ¢/*) € H?N
H2(0,1) x H}(0,1) so that

||(¢Ov¢1) - (Ltuoa l‘Ul)HHolez S E.

We now use the discrete initial da(ta;ﬁ, Lp,}) provided by Propositionh 3/4. The so-
lutions ¢, of B) with initial data(y?, ¢t) thus converge to the solutiapof (3:2)
with initial data(¢°, ¢/t) in the sense of (3.19)=(3.0).

We now denote by, the solutions of[(3]1) with initial datép, ¢) and¢ the
solution of [3:2) with initial data¢®, ¢*1).

Since¢n — U is a solution of[(3.11), the conservation of the energy andutie
form admissibility property[(2.12) yield
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Onh— Unh
h

SUD (9, A0n) 6~ (. ) )] gz + | 20

te[0,T]

<C|\(¢g. o) (%#’h)HngLz

< C(/|(¢9, #n) — (¢° )HngLerH(d’oad’l)—(il-’oail-’l)||H&X|_z
—(
¢%)

L2(0,T)

(1w 4h) = (R ) g 12)
C(H(‘phv‘ph "Hle2+g+C€hz/3H ‘/" "U HH2mH1xH1)
Besides, recalling thapy, converge tap in the sense of (3.19)=(3.20), we have
Unh

axl,U(t 1) + T

fim sup {|(¢n, & gh) (t) = (W, W) (V) llyg 12 +

h—0tejo,T] L2(0T)

We also use that the energy of the continuous wave equii@ni¢onstant in time
and the admissibility result of the continuous wave equmedind apply it tap — :

sup [|(¢,3)(t) — (&, W) (V)llyg.cz + [10xp (8, 1) — xp(t, 1)| 2o 1) < Ce.

te[0,T]

Combining these three estimates and taking the limsup-a0, for all € > 0,
we get

IimSUp< Sup [|(¢n, &kpn)(t) = (¢,3D) (V)| y...2

h—0 te[0,T]
t
+' Prn(t) + o (t,1) <Ce.
h L2(0,T)
This concludes the proof of Proposition!3.5 siece 0 was arbitrary. a0

3.4.2 Smooth initial data

In this section, we derive higher convergence rates wheinitied data are smoother.
In order to do that, we introduce, férc R, the functional spacbl defined by

H{0)(0,1) = {¢ = % $wk, with % K| Gu|* < oo}
k=1 k=1

endowed with the normij |2, = S K (dl® (3.34)
O =
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These functional spaces correspond to the dom@if(s-Aq)"/?) of the fractional
powers of the Dirichlet Laplace operateﬂd In partlcular we have-l(o)(o, 1) =
L?(0,1), (0)(0 1) = H3(0,1) andH o 1(0,1).

As an extension of Proposmﬁ% 4 we obtam
Proposition 3.6.Let/ € (0,3] and(¢°, ¢*) € H(;*(0,1) x Hy (0,1). Denote by
the solution of(@.2) with initial data (¢°, ¢*). Then there exists a constant-€
C(T,¢) independent ofg°, ¢1) such that the sequendg of solutions of@.) with
initial data (¢, ¢1) constructed in Proposition 3.4 satisfies, for atbo,

sup [|(¢n(t),dgn(t)) — ((t), 3 (1))l| 1.2

te[0,T]
<Cr/3||(¢° ¢") (3.35)

HHfgglefo) )

and
Onn(e)
h

< CH*/3||(¢°,¢%)
L2(O,T)

In particular, for¢ = 3, this result reads as follows: (#°, ¢*) € H, (0,1) x

H<30)(0, 1), the sequencey, constructed in Propositidn 3.4 satisfies the following
convergence results:

sup [|(9n(t). an(®)) = (1), &P O) gz < CHIP(|(9° 8Dl i - (B:37)
20| ORIy e B39)

te[0,T]
’ L2(0,T)

Note that we cannot expect to go beyond the tétsince the consistency of the
method is of order 2.

+0X¢(71)

gy @30

and
Onn(e)
h

Proof (Sketch)The proof of these convergence results follows line to Imedne
of Propositiod 3.4.

Let us for instance explain how it has to be modified to gefdB.Birst remark
that [3.22) now reads

Z K2 G |? ~ H(¢O HH‘*lef :
k=1 @

Estimates[(3.24)E(3.25) can then be modified into
19n(t) = @ O)[[Fs + [ dn(t) — AP (1)]Z2
1
<0 (W 2+ 2 ) 10%. 99 .

(0)
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thus implying [3:3b) immediately when takimgh) ~ h=2/3,
The proof of the strong convergenEe(3.36) also relies upemstimate

_ 1 2
li+12<C (h“n(h)6 ? n(h)%) ||<¢°,¢1>||H<f$1x%),

wherel; and |, are respectively given as above by (3.26). Details are ¢ethée
reader. O

3.4.3 General initial data

In Proposition53]4 arld 3.6, the discrete initial data arg special ones constructed
during the proof. In this section, we explain how this yietdsivergence rates even
for other initial data.

Proposition 3.7.Let/ € (0,3] and (¢°, ¢1) € H(%l(o, 1) x Hfo)(o, 1) and consider

a sequenc(xpr?, qq}) satisfying, for some constants € 0 and8 > 0 independent of
h> 0,

(0. @) — (#°.67)[ly3...2 < Coh®. (3.39)

Denote byg, (respectivelyp) the solution ofB1) (resp. (3:2)) with initial data

(@), @) (resp.(¢°,¢1)).
Then the following estimates hold:

Sup [|(gh(t), aten(t) = (6(1), (V) llng .2

te[0,T]
< (908" 2.1, +Co) . (240

and

H(n\n,h(~)

h +¢X(31)

< (908t o). (34D
L2(0,T) (0) (0)

Proof. The proof easily follows from Propositidn_3.6 since it sipgonsists in
comparinggy, the solution of[(3.11) given by Propositibn B.4, apd the solution
of (3) with initial data(@?, @}). But ¢, — @ solves [(31L) with an initial data of
Ha(0,1) x L?(0,1)-norm less thaoh®.

The first estimatd(3.40) then follows immediately from thetfthat the discrete
energy is constant for solutions ¢f (B.1), whereas estirf@#l) is based on the
uniform admissibility results proved in Theoréml2.1. a
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3.4.4 Convergence rates in weaker norms

For later use, we also give the following result:

Proposition 3.8.Let (¢°, ¢*) € HF, (0,1) x H(10>(O, 1). Denote byg¢ the solution
of B2) with initial data (¢°,¢*). Then for allZ € (0,3], there exists a constant
C = C(T,¢) independent of¢°, $1) such that the sequendg of solutions of(3.1)
with initial data (¢, ¢) constructed in Proposition 3.4 satisfies, for atb-h0

1-/¢ —/
0 *Ho)

sup [|(¢n(t), d¢n(t), o dn(t)) — (¢(t)vat¢(t)aatt¢(t))”|-|(20§/><|-|

te[0,T]
(/3 0 41
SChz H(d’ a¢ )HH(ZO)XH&))' (342)

In particular, if (¢, @) are discrete functions such that for sorfige (0,3], Co
independent of b- 0 and 6 > 0,

(. @) — (%8| 250, 110 < Coh®, (3.43)
© "o
then denoting by, the corresponding solution dB.3), we have

1-(g
xH 0)

sup [[(¢h(t), G n(t), den(t)) — (¢(t)vat¢(t)vatt¢(t))”H<20;/0

te[0,T] xH

(0)
SCG%BWW¢5M@mb+%W>-64®

Proof. The proof of [3.4R) again follows the one of Proposition] 3T#is time,
following ([3:24){3.2b), we get

[[én(t) — ¢(t)|‘afogf + [ ¢n(t) — 0t¢(t)|\ﬁ<103g

_ 1 2
<o (s 160 o,

The proof of the estimate

SUp udnt) ~d Ol < O (828

te[o,T ©
can be done by writing
n(h) , _ ® .
dedn(t) —oup(t) = Y dw (—Hk(h)ze'“k(h)t +er'“kt) + 5 fwkpgew

[k|=1 n(h)+1

and by using the estimate
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_uk(h)zeiP’k(h)t + peh| < CIeh?.

The complete proof of (3.42) is left to the reader.

The proof of [3.44) for initial data satisfyinf (3143) is yesimilar to the one of
Propositio 3.7 and is based on the following facts:

e For any ), solution of the discrete wave equatidn (3.1), for @k Z, the
H,'(0,1) x H(logé(o, 1)-norm of (Y (t), dYn(t)) is independent of the time> 0,
as one easily checks by writing the solutions under the form

N
)= 5 wE (@redtt 4 g et
bit)=3 (& Poye m)

Applying this remark tq Y, & ) and to(6; Y, i Wh) for Yn = @ — ¢n, we get

Sup [[(¢h(t), Ggn(t), dean(t)) — (d(t), 0 (t), (1))

1-(g )
te[0,T] xH

Il 2
Hig) ©xH(g) ®xH,

< C (1P (49,89

. 0 20— (080820802 30,00 )-

e By construction,
HAh(”? _Ah‘pF?HH*fo <C ||(P}? - ¢[9HH2740 ,
(0) (0)
hence

0 1 0 0 41 0
H(%v%vAh%) - (¢ha¢haAh¢h)||H(20;fOXH(10;[0XH&)§O

0 1 0 41
<C (o) = @090 0,10

o We finally conclude[(3.44) by using (3]43) and the estinfaiéZBfort = 0. O

3.5 Numerics

In this section, we briefly illustrate the above convergeresults on the normal
derivatives. The rate of convergence of the discrete tiajexs toward the continu-
ous ones is well-known and well-illustrated in the literatu

We thus choose an initial datg®, ¢1) € H}(0,1) x L?(0,1).

ForN € N, we seth = 1/(N + 1) and take(¢{, ¢;)) defined by¢?, = ¢°(jh)
andei'y = [i(j-1/2nj+1/2n®*(ih) forall j € {1,--- ,N}. We then computéy, the



82 3 Convergence for homogeneous boundary conditions

corresponding solution of (3.1) and the correspondingrdiscderivative ak = 1,
i.e.—¢dnn(t)/h.

Note that, actually, this discrete solution should ratreedbnoted agn 4 Since
we also discretize in time using an explicit scheme. Moreigady, if ¢r‘f,m denotes
the approximation oy, at timekAt, we solve

KL= 29K — ¢r 1 — (At)2Angr. (3.45)

The CFL condition is chosen such that/h = 0.2 so that the convergence of the
scheme (in what concurs solving the boundary-initial vgdteblem) is ensured.

Since our goal is to estimate rates of convergence, we akshaecference data.
In order to do that, we expand the initial ddtg, ¢*) in Fourier:

The corresponding solutiaf of ([3.2) is then explicitly given by

TR <akcos<km>+6k5i”(km>) wk,

& krt

so that

Apt1)=S (ékcos(km)+5k8|nl((l;m)) V2(—1)*km (3.46)
K=1

Of course, we cannot compute numerically these Fourieeséorr the continuous
solutions of [[3.R) since they involve infinite sums. So weetakreference number
Nret large enough and replace the infinite sum in formula (3.4 byncated ver-

sion up toNre. Nret is taken to be large comparedih the number of nodes in the
space discretization involved in the computationg@f(t) /h. We thus approximate
the normal derivative by

Nre f H
(@t D)er = 3 (ékcos(knt) + Bks'”liim)) V2(— 1)k

In the computations below, we takée; = 1000 forN varying between 200 and
400.
In Figure 3.1 left, we have chosén®, ¢1) as follows:

¢°(x) =sin(mx),  ¢i(x)=0. (3.47)

In this particular case, the continuous solution involvae single Fourier mode.
So, we could have takeNes = 1. Figure[3.1 left represents thé(0, T)-norm of
(Ox¢ (t,1))ret + dnn(t)/nfor T =1 versusN in logarithmic scales. The slope of the
linear regression is-1.99, thus very close te-2, the rate predicted by Proposition
B2

We then test the initial data
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R Y T

and plot the error in Figure_3.1, middle. The initial dataog#ly only belongs to

ﬂ5>0H(10/)278(0, 1), so the predicted rate of convergence given by Propogiiidis3

—(1/3)". This is indeed very close to the slop®.31 observed in Figuife 3.1 right.

Fig. 3.1 Plot of | (¢ (t. 1))res + $nn(t) /201, VS I0g(N) for N € {200.- -+, 400}, Nres = 1000
andT = 1. Left: for the initial data(¢°,¢?) in 3.42), slope of the linear regressien—1.99.
Middle: for the initial data(¢°, ¢*) in (3:48), slope= —0.31. Right: for the initial data(¢°, ¢*)
in (3:49), with(x¢ (t,1))rer = —1+t in this case, slope- —0.5.

These numerical experiments both confirm the accuracy ofates of conver-
gence derived in Proposition 3.7.
We then test the initial data

¢°x)=0, X)) =x (3.49)

These data are smooth kiprt(1) # 0. Hencep?! only belongs tm5>oH(10/)275(0, 1)

and we thus expect a convergence rate of otdét. Note that in this case, the
normal derivative of the solution at= 1 can be computed explicitly using Fourier
series and¢ (t,1) = —1+1 (recall the formula[{3.46)). Of course, we are thus
going to use this explicit expression to comp(dgp (t,1))res = —1+t in this case.

Note that the numerical simulations yield the slop@.5 for the linear regres-
sion, see Figur€_3.1 right. This error term mainly comes fithin fact that the
continuous solutiorp of (3.2) does not satisfgp®(x) = —1 as the computation
(09 (t,1))ret = —1+t would imply fort = 0. This creates a layer closette= 0
that the numerical method has some difficulties to handléignire[3.2, we rep-
resent the normal derivative computed numerically Xoe= 300 and compare it
with the continuous normal derivativg¢ (t,1) = —1+t. As one can see, there is a
boundary layer close to= 0.

This last example illustrates the fact that the boundaryditmms play an im-
portant role for the regularity properties of the trajegtof the continuous model
(3:2) and therefore also have an influence on the rates ofcgence of the corre-
sponding approximations given By (B.1). The above exanipteanfirms the good
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Fig. 3.2 Plot of —¢n n(t)/h computed foilN = 300 (black solid line) and afdx¢ (t,1))rer = —1+t
(red dash dot line) fof¢?, ¢*) in @49). Left: On the time interval0, 1). Right: A zoom on the
time interval(0,0.03).

accuracy of the rates of convergence given in Propoditidwhen the regularity
properties are limited by the boundary conditions.



Chapter 4

Convergence with non homogeneous boundary
conditions

4.1 The setting

In this chapter, we consider the continuous wave equation

Oy — Oy =0, (t,x) € (0,T) x (0,1),
y(t,0) = 0 Y( 1)=V( ),t (0,T), (4.1)
(¥(0,-), 6 =y, y!
with
°.yh) €L%(0,1) x H1(0,1),  vel?0,T). (4.2)

Following [36] (see alsd [35%. 33]), systefn_(4.1) can be sbluaiquely in the
sense of transposition and the solutiomelongs to

C([0,T];L%(0,1)) x CX([0, T];H1(0,2)).

Let us briefly recall the main ingredients of this definitidrsolution in the sense
of transposition and this result.
The key idea is the following. Given smooth functiohghe solutiong of

5tt¢—axx¢: fa (t’X)E(O’T)X(071)7
{¢(t,0):¢(t,l):0, te (0,T), (4.3)
(¢(T5 )70t¢(T7)) - (070)7

which are smooth for smooth should satisfy

//yfdxdt——/ V(1) (t, 1)t

[ Y00a80.90x+ 5190,y 1y (@9

85
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Thus one should first check that if € L1(0,T;L?(0,1)), then the solutionp
of (@3) belongs to the energy spacg0, T];H&(0,1)) NC([0,T];L?(0,1)) and is
such thavye (t,1) € L?(0, T) with the following continuity estimate:

H(¢a3t¢)||L°°(0,T;H(}(o,1)XLZ(o,l)) + [lox (t, 1)H|_2(0,T) <C|f HLl(o,T;LZ(o,l))- (4.5)

Of course, there, the first term can be estimated easily grthe energy identity,
whereas the estimate on the normal derivative &t x = 1 is a hidden regularity
result that can be easily proved using multiplier technique

Assuming[(4.b), the map

T 1
2(1) == [ v0ad . 1dt= [P00as0x)dxt 1001

is continuous orL*(0,T;L?(0,1)) and thus there is a unique functignin the
spaceL™(0,T;L?(0,1)) that representsZ, which is by definition the solutioy
of (4.1) in the sense of transposition. The solutjoactually belongs to the space
C(]0,T];L?(0,1)) since it can be approximatedliff (0, T;L?(0,1)) by smooth func-
tions by taking smooth approximations\ofy® andy?.

A similar duality argument shows théty belongs taC([0, T];H~1(0,1)).

Let us finally mention the following regularity result (sé&2]): if (y°,y!) €
H&(0,1) x L?(0,1) andv € H1(0,T) satisfiesv(0) = 0, then the solutioly of (1)
satisfies

y € C([0,T];HY(0,1)) nC([0,T];L?(0,1)) andAy e C([0, T];H 1(0,1)). (4.6)

Now, the goal of this Chapter is to study the convergencemstiutions of

AYin— Vst 2+ Yian) = O, (6 1) € (0.T) x {1, N},
yO,h = Oa YN+l,h(t) - Vh(t)? te (OaT)a
(¥h(0), &yn(0) = (7. ¥p):

towards the solutioy of (4.1), under suitable convergence assumptions on ttee dat

(y2,y#) andvy to (y°,y*) andv.
As in ChapteEBy;, will be identified with its Fourier extensidfy (yy). This will

allow us to identify thed —%(0,1)-norm of f,, as

(4.7)

Ifnllh-102) = 20/l 0y
wherez, solves— dyz, = f, on (0,1), z7(0) = z,(1).

Note that, expanding these discrete functions on the Fobasis, one can check
(see Proposition 4.1 below) that this norm is equivalenMZQ\H&(Ql), wherez;

solves

1 . - - . - -
iz (Zjyan+Zj-1n—2Z0) = fjn, j€{1,- N}, Zh =210 =0.
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The outline of this Chaptdr] 4 is as follows. Since we are wugkwith the
H~1(0,1)-norm, it will be convenient to present some further coneerg results
for the discrete Laplace operator. In Secfion 4.3 we giveesaniform bounds on
the solutionsy, of (@.4). In Sectiom 414 we derive explicit rates of convergefor
smooth solutions. In Sectidn 4.5 we explain how these resigd various con-
vergence results. In Sectifn ¥.6, we illustrate our thémaktesults by numerical
experiments.

4.2 The Laplace operator

In this section, we focus on the convergence of the discrafgace operatody,,
defined for discrete functiors = (zj n)je(1,.. Ny PY

1 .
(Anzn)j = ﬁ(zjjtl,h—zzj,h‘i‘zj—l,h)v je{l,--- N},

with zgh = zy;1h =0.  (4.8)
In particular, we give various results that will be used ards.

Let us first recall that the operateid, is self-adjoint positive definite oRN ac-
cording to the analysis done in Sect[onl2.2. Besides, itsnsigctorsvk and eigen-
valuesAy(h) = g (h)? are explicit, thek-th eigenvectonX(x) = v/2 sin(kmx) is in-
dependent ofi > 0 andpy(h) = 2sin(krth/2) /h.

4.2.1 Natural functional spaces

In this section, we focus on the case of “natural” functiosyzdces, i.e. in our case
H&(0,1), L2(0,1) andH~%(0,1).
As already mentioned, we have the following:

Proposition 4.1.1f f,, is a discrete function, then there exists a constant C indepe
dent of he (0,1) such that

1
c [ fhllq-1 < ||(—Ah)7lfh||Hg <Cl[fually-1- (4.9)

To simplify notations, forf € H=1(0,1), we shall often denote biy-dyx) 1 f the
solutionz € H}(0, 1) of

—owz="Ff on(0,1), z(0)=2z(1)=0.

Proof. Since fy, is a discrete function, it can be expanded in Fourier segdsla
lows:
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N
fh= 5 k.
k=1

Then the expansions af= (—dx) 1 f, andz, = (—4n) 1, are known:

N fk N fk
zZ= Z—Wk Zh = WK,

=N A & H(h)?
Hence N 2 N 2 4
2 | il 2 Ifel” B
Z = o Zn = .
12l k; 2 e ot k;—“kz ()

Since forallk € {1,---,N},

4

My
< < —
S SCT

we easily get Propositidn 4.1. O

We now prove the following convergence result:
Theorem 4.1.Let f € L?(0,1) and expand it in Fourier series as

[

f=% frowk, (4.10)
K=1
and set N
=5 k. (4.11)
K=1
Let then z be the solution of
—oxz=f, on(0,1), z(0)=2z(1) =0, (4.12)
and z of
— (Bnzn)j = fjn, je{l--- N} (4.13)
Then
I = fully-2 + 12— 20l < Ch][fl.2 (4.14)
12— 20| 2 < CHP[|f|.2. (4.15)

Remark 4.10f course, Theorem 4.1 is very classical and can be found forym
different discretization schemes and in particular fotéimilement methods, see for
instance the textbook [46].

Proof. Our proofis of course based on the fact that the functidrare eigenvectors
of both the continuous and discrete Laplace operator. Maittis straightforward
to check that
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I fally 1+ < Chl[f]lLe.

We thus focus on the comparison betweeandz,. Again, we use the fact that
the expansions afandz, in Fourier are explicit:

@ Ny
7=y —w,  z,= wk. (4.16)
2017 2, 2

Now, computing thé4}-norm ofz— z, is easy:

N 2 2 \2 ® 2
2 |l Hig | il
HZ—ZhHHg = kZ 2 (1_ Hk(h)z) 2

=N
ooz, 102 2
SCkZl|fk| kh +mk:§+l|fk| ,

2
k=1 Mk

where we have used that

2
1 % ) 4
—(1- <CKh* vke{l,---,N}. 4.17
uE( pk(h)? { J *.17)

Hence 1
2=y <c (N 5 ) 1.
SinceN + 1 = 1/h, this concludes the proof df(4114).
Similarly, one derives

1
2=l < (14 g5 ) 1152,

which immediately implied (4.15). O
From Propositiof 411 and Theoréml4.1 we deduce:

Theorem 4.2.Let f € H71(0,1) and f, be a sequence of discrete functions such
that
lim || — fiyy-1 = 0.

Then
; -1 -1 —
im [| (=09 f — (=An) |,y = 0. (4.18)

Besides, if fe L?(0,1) and f, satisfies, for som@ > 0,
= fally-2 < Coh,

then
[|(=80) 1 — (—Ah)*lthHg <C (thHLz +coh9) . (4.19)
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Proof. The first part of Theoren 4.2 easily follows by the density 80, 1) func-
tions inH=1(0,1), the uniform stability result of Propositidn 4.1 and the wem
gence result of Theorem4.1, similarly as in the proof of BeioN3.5%. The details
are left to the reader.

The second part of Theordm¥.2 consists of takiipgs in [Z-11), for which we
have

If = fally-e <Chlltl and [|(=80) "~ (=d) ]y < ChIlfl|L2.
Then Proposition 4]1 implies that
1(=20) = (=20) o[ g < Cl il
Of course, these three last estimates imply (4.19). a
Finally, we mention this last result:
Theorem 4.3.Let f € L?(0,1) and z= (—dy) . Then there exists C such that
0x2(1) <C|I |2 | flly-u- (4.20)

Similarly, there exists G 0 such that for all he (0,1), if fy, is a discrete function
and z = (—4n) s, we have

2un
h

Besides, takingnfas in (@.11) we have

2
" <Clifulle il (4.21)

(1) + %‘ < cVh|lf] 2. (4.22)

Proof. We prove this result using the multiplier technique. Sirakyz = f, multi-
plying the equation bydyz, easy integrations by parts show

1 1
02(1)) = —2/ fxﬁxz+/ 13,22,
Jo Jo
Of course, this implieg (4.20) from the fact tHM\Hg = f]lg-1.

In order to prove estimaté (4]21), we develop a similar mlidétr argument.
Namely, we multiply the equation

_(Ahzh)J:fJ‘hv J 6{177N}7

by j(zj+1,n— Zj—1,n). We thus obtain

I |2 N <2j+1h_zjlh> N <Zj+1h_zjh>2
| =—-2h jh P e L B f',h"’h 2= .
B0 an (BB g5 (B2t
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Hence

ZNh

|22 < €l g +C 2 < Cllfle -2+ Cll
which yields estimatd (4.21).

We now aim at provind (4.22). First remark thmtalso solves

_aXXZh = ﬂ'h on (Oa 1)1 Zh(o) = Zh(l) = Oa

e A Hik
“2 (b

where

2
) wK. (4.23)
But one easily has

Ifalle<Clifllz. [[fa—fllu-s <CHIF 2. (4.24)
Indeed, from[(4.117),

| |2 Hk 2\* 2
Hfh—thHl zu— —(“k—(h)) < CR||f|f2,

and thus[(4.14) yield§ (4.24).
Therefore, usind (4.21),

182(1) — Bean(D] <C(||f — full o | f — fall )2 <CVR il (4.25)

Besides,

. .
dan(v)+ 4 = 5 (-1 (1 T e

Note that this last expression coincides with the contisutrmal derivativékZ(1)
of the solutionz’of the continuous problem

N sin(krh
—0xxZ = Gn, on (0,1), wheregy = z fi “k <1— ( )>Wk, (4.26)

1i(h)2 krh
#0) = #1) = 0.

Using that for some consta@tindependent ofiandk € {1,--- ,N},

sin(krh)
krh

‘ u?
i (h)?

we easily compute

<C, ‘1— ‘gc»@hz,
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[Gnllz <ClIfll2,  [IGnlly-1 <Ch][f][2. (4.27)

Hence, from[(4.20),

Ah| _
|

Together with[(4.25), this concludes the proof of Theolesh 4. O

Oxzn(1) + |0x2(1)| < CVh| T 2.

4.2.2 Stronger norms

Recalling the definition of the functional spaddé) (0,1) in 3:33), we prove the
counterparts of the above theorem within these spaces.
First, Proposition 4]1 can be modified into:

Proposition 4.2.Let ¢ € R. If f, is a discrete function, then there exists a constant
C =C(¢) independent of k (0,1) such that

1 -1
< ||(— L, <C ). .

The proof of Proposition 412 follows line to line the one obposition 4.1 and
is left to the reader.
The convergence results of Theorlem 4.1 can be extendedassol

Theorem 4.4.Let¢ € Rand fe H, (0,1) and z= (~dk) ' f be the corresponding

solution of the Laplace equatiqd.12) With the notations of Theordm 4.1, setting
fn as in@I1)and z = (—An) ", we have

— _ — < , .
£ = Tl 1+ 2=l < CHIT g (4.29)
_ ;< .
220l < CIP |l - (4.30)
Here again, the proof of Theordm¥.4 is very similar to the eih€heoreni 4.1l

and is left to the reader.
We now focus on the convergence of the normal derivatives:

Theorem 4.5.Let! > 0and fe H/; (0,1) and z= (—dx) 1 be the corresponding
solution of the Laplace equatidéﬁ]) With the notations of Theordm 4.1, setting
fn as in@I1)and z = (—A4n) 1 fh, we have

o) + 0| < ol zzaB 1), (4.31)

Proof. The proof of [4.31L) follows the one df(4122), except for tisémates[(4.24)

on f, in @23) and[[Z.27) ogy, defined in[4-26).
Using that for alh > 0 andk € {1,--- ,N},
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(- (i) =

we easily derive that

~ 1
1= e < +CHmaLNt 2 ) 11,

In particular, if ¢ € (0,2], ||f — fn]| > < Ch€|\f||Hé;0) and if £ > 2, ||f -y > <
Ch | f HHfm’ thus yielding

Hf - 1?‘f'l|||_2 < Chmin{[’z} HfHH{O) '

Similarly, 3 _
= folly-a < GO

We thus obtain, instead df(4]25),

|32(1) — Oxzn(1)| < CHMMEH/20242.2) | ¢ I, -

Estimates okz,(1) + zyn/h can be deduced similarly from estimatesgyn(de-
fined in [4.26)) and are left to the reader. O

Remark 4.2Very likely, estimate[(4.31) can be improved for —1/2 into
dz(1) + %‘ < CHMin{t+1/2.2) HfHHfO) . (4.32)

For instance, using that, ff = 3 fywX, the solutiore of #12) can be expanded
asz= Y fi/u2wk and we get

AWK (1)
e

)

oxz(1) = Z fi

provided the sum converges. Since forladt N,

0xvvk(1)‘ _c
T TS

by Cauchy Schwarz, for anyy > —1/2, we obtain

|0XZ(1)| < Céo HfHH:g)

instead of[(4.20).
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Of course, we can get similar estimates for the discretdisolg, = (—An) 1,
and obtain, for alf g > —1/2, a constant,, independent of > 0 such that for all

discrete functiorfy, andz, = (—An) " fy,

Ah

< Cy Il 1o -
| < Callfll o

instead of[(4.2]1).

Using these two estimates instead[of (#.20) and {4.21), eltmifing the proof
of Theoren{4b, we can obtain the following result: Foréalt —1/2 ande > 0,
there exists a consta@t . = C(¢, &) such thatf € H{o),

32(1) + 20| < ¢ i +y/z-e 2 I, (4.33)

This last estimate is better thdn (4.31) when (—1/2,0) and wher? € (1,2).

4.2.3 Numerical results

This section aims at giving numerical simulations and evi#s of the convergence
results [[4.311) for the normal derivatives of solutions & tliscrete Laplace equa-
tion. We do not present a systematic study of the convergehtee solution in
L2(0,1) nor in H}(0,1) since these results are classical and can be found in many
textbooks of numerical analysis, see €.¢[ 4, 46].

In order to do that, we choose continuous functiéramdz solving [4.12).

ForN € N, we then discretize the source tefnmto f,, simply by takingfy(j)
f(jh) for j € {1,--- ,N} and compute, the solution of—Apz, = f, with 75, =
Zn11n = 0. We then computéz(1) + zyn/h.

Ouir first test function is

f(x) = —sin(27mx) + 3sin(7x), for z(x) = sirliigx) - 35";(1”)()- (4.34)

The plot of\ oxz(1) + ZN,h/h] versusN is represented in logarithmic scales in Figure
[4.7, left. Here, we have chos&he [100,300. The slope of the linear regression is
—1.99 and completely corresponds to the result of Thegrem 4.5.
We then test
1

f(x) = 1 corresponding t@(x) = — =————— + % _

(x+1)% 2(x+1) (4.35)

X
7
Numerical simulations are represented in Fiduré 4.1, right

This functionf is smooth, but it does not satisfy0) = f(1) = 0. Thus itis only

in ﬂ5>0H(10/)278(0, 1) and the slope predicted by Theorem 4.5 and completely
agrees with the slope observed in Figuré 4.1 right.
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Fig. 4.1 Plot of |3xz(1) + 2y n/h| versusN in logarithmic scales. Left, fof as in [4.3%): the slope
is —1.99. Right, forf as in ): the slope is1.00.

These two examples indicate that the rates of convergertbe aformal deriva-
tives obtained in Theorem 4.5 are accurate.

4.3 Uniform bounds onyy,

The goal of this section is to obtain uniform bounds/gim the natural space for the
wave equation with non-homogeneous Dirichlet controlt h&([0, T];L?(0,1)) N
CY([0,TE;H*(0,1)):

Theorem 4.6.There exists a constant C independent of @such that any solution
yn of @2 with initial data (y?,y}) and source termyve L2(0,T) satisfies

SU% [ (yn (1), 5tYh(t))|||_2(o,1)fol(o,1)

telo,
<C (H (yoay%) ||L2(0,l)><H*1(0,l) + ”Vh”Lz(O,T)) . (4.36)

The proof of Theorerfi 416 is done in two steps, one focusinghenestimate
on yy, the other one oy}, respectively, corresponding to Proposition] 4.3 and
Propositiod 4.14.

As we will see, each one of these propositions is based ontabiiduality
argument for solutions of the adjoint system.

4.3.1 Estimates ir€(]0, T];L%(0,1))

We have the following:

Proposition 4.3. There exists a constant C independent of @ such that any solu-
tion y, of (4.1) satisfies
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[Ynlli=(o7:201)) <C (HYRHLZ(OJ_) + HyﬁHH—l(o)l) + HVhHL2(O,T)) : (4.37)

We postpone the proof to the end of the section. As in the roatis case, Propo-
sition[4.3 will be a consequence of a suitable duality argume
Namely, letf, € L1(0,T;L?(0,1)) and definag, as being the solution of

1
Gt @ n— ™ (@ 1h+ @-1h— 2@ 0] = fjn

(t,j)G(O,T)X{l,“',N}, (438)

@n(t) = W+1n(t) =0, te(0,T),
@n(T)=0,8@n(T)=0, j=1,...,N.

Then, multiplying [4.V) by, solution of [4.38), we obtain
N T N T 1
0= h,Z/O GtYjn@ ndt— hjzl./o 2 Yi+Lh+Yi-1h—2Yinl@ndt
N T N T 1
= hjzl/o Yjhoe @ ndt— hjzl/o r2Yinl@+iht @-1n— 26y p)dt

N ToT @h
+hy (dYJ,h(Pj,h—yJ',hat‘Pj,h)‘o _/ Ynprh =t
=1 °

N T N
=0 [ Yinfiadt+n Y (7100 =y n@n(0) (4.39)
=1 =1
_/th(t) Wnll) g
0 h

Note that identity[(4.39) is a discrete counterpart of theticmous identity[(414).
Remark that this can be used as a definition of solutions @) (@ transposition,
even if in that case, solutions ¢f (%.7) obviously exist du¢he finite dimensional
nature of systeni (4.7).
Formulation[(4.3B) will be used to derive estimates on sohgyy, by duality.
But we shall first prove the following lemma:

Lemma 4.1.For ¢, solution of (4.38) there exists a constant C independent of®
such that

1éhllL=(0:7:120.1)) T 10l (07;02(0)) < CllFnllroTi200)) (4.40)

and

< ClIfallroriz0))- (4.41)

i
h L2(0,T)

Proof. The first inequality[(4.40) is an energy estimate, whereaElj4s a hidden
regularity property.

Multiplying (4.38) byd; ¢; nh and summing ovey, we obtain



4.3 Uniform bounds 97
N N 1
h Zlﬁnqq,hﬁtqoj,h —h le [@1h+ P-1h— 2@ ] AP
i= i=
N
=h Z fj)hﬁt(l)j)h. (4.42)
=1
The left hand side of{4.42) is the derivative of the energy

d/hN hN /@iin—@n\?) 1dEa)
@ (15 (g s 13 (Asm0s)’) _ 1omia
dt<2JZ 1 21; h 2 dt

whereas the right hand side satisfies

N N 12
< <hz Ifj,h|2> (hz %@, h|2>
=1 1
N
< <h2|fj,h|2> v En[@](t).
=1

Equation [4.4R) then implies

1/2
‘d\/_ ‘ <hz|fJh ) . (4.43)

Integrating in time, we obtain that for dlie [0, T],

T N 1/2
VED< [ (h le|fj,h<t>|2> d.

Finally, recalling the properties of the Fourier extensiperator in Sectioh 3.2, we

obtain [4.40).

Estimate[(4.41) can be deduced from the multiplier appratesteloped in the
proof of Theorenh 2]2 by multiplying (4.88) by @} 1 — @—1n):

N T , , N T , ,

. (pj+1,h_(le,h) B / . <(pj+1,h_(le,h)
h/f-hidt_h P L ¢ L I T4
,:§1~0 ihl < h J:§1.0 GPni h

_hZ/ [(PJ+1h+‘PJ 1h— 2901}“] jh<(pj+1’h;(pj1’h> dt. (4.44)

N
‘h > find@n
=1

The right hand-side of (4.44) has already been dealt withéngroof of Theorem
22 and yields:
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N T ) )
o Biah— @
hz/0 Oy i <7’”hh ‘ ”‘> dt
_hZ/ [(Pj+1h+§01 1h— Zq’j,h] jh<(Pj+1,h;(Pj1,h>

| a5 [ ARt

- [MEma-xo]),

d

where, similarly as in[(2.34)%,(t) is given by

N SN
Xn(t) = 2h leh (W) & h
]:

From the conditiongh(T) = d @ (T) = 0in (£38),X,(T) = 0. Besides, as il (2.15),
one hagX,(0)| < Ex(0).
On the other hand,

N T ) Y — o T N 1/2
hZ/ finih (W) dt g/ (hz i) VED e
& o Jo =
< sup{\/Eh }/ hZ|th|

te[0,T]

Therefore, from[{4.40), there exists a constant indeperafénsuch that

[ a5 [

dqojd

<c</T (n S |1 |2)1/2dt>2

< j.h ;

Jo (2,10

which implies [4.41). 0

Proof (PropositionZB)Lemmd4.]l and identity (4.89) allow us to deduce bounds
ony. Indeed,

[¥allL=0.7;12(01)) = sup / Yh(X
fell(0,T;L%(0,1))

HfHLl( (0.T);L2(0,2))

But therey, is the Fourier extensioRh(yy) (recall Sectioi3]2), hence it involves
only Fourier modes smaller théh We thus only have to consider the projection of
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f onto the firstN Fourier modes. But this exactly corresponds to discretetions
fh. Therefore,

N T
IVhllLe0.T:120.0)) = sup {h / yj‘hfj‘hdt}-
(OTLAOL) fnel1(0,T;L2(0,1)) JZL o 7

H fh HLl((O,T);Lz(O,l)) <1

But, introducingg,, the solution of[(4.38) with source terfip, using Lemma& 411,
we obtain:

N T N T
f _ ¢ ! RV Wn(t)
N3 vinfindt=—h3 (R0d0s(0) ~ylama0)-+ [ (Ot

<C ||yg||L2(o,1) [0 (0) [l 202 +C Hy%HH*l(O,l) In(0)ll2(01)

N

“h

+IVnll2om) 20T

<C (HngLZ(O,l) + HyﬁHHfl(o,l) T HVhHLZ(O,T)) Ihlluror1201)) -

This yields in particulaf{4.37). O

4.3.2 Estimates oy,

We now focus on getting estimates ayy,.

Proposition 4.4.There exists a constant C independent of @ such that any solu-
tion y, of (@.1) satisfies

[at¥nllLeom;H-1(02)) <C (HngLZ(O,l) + ||Y%HH—1(0,1> + ||Vh|||_2(o,T)) . (4.45)
Similarly as for Propositioi 413, this result is obtainedduality, based on the

following identity: if @, solves the adjoint wave equatidn (4.38) with source term
fn = A gn with g, € L1(0,T;H2(0,1)), we have:

N T N
hy /0 Yindgindt=—hY (1@ n(0) ~y;n¢n(0)
=1 =1

T t
+ / () AU 5 4.46)
0 h
The proof of Propositioh 414 is sketched at the end of theimgcsince it is very
similar to the one of Propositidn 4.3.
Hence, we focus on the following adjoint problem:
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1
Ot Pjn— 2 [@1h+ @-1h— 20| = AGjn,
(taj)E(OaT)X{la"'aN}v (447)
(R),h(t) = (PN+1,h(t) - 07 t_e (OaT)a
(pj’h(T):O,dtqoj,o(T):O, ]Zl,...,N.
We shall thus prove the following:

Lemma 4.2.For g, solution of (£.47) there exists a constant C independent of®
such that

H%HLm(o,T;H&(o,l)) + 1 @(0)[ 201y <C ||9h||L1(0,T;H(}(0,1)) (4.48)

and

W h
H— <CllonllLroTHi0.) - (4.49)

L2(0,T)

Proof. To study solutionsg, of (4.47), it is convenient to first assume ttugtis
compactly supported in time ifD, T) and use the density of compactly supported
functions in time inL1(0, T; H2(0,1)).

Let us introducey, satisfyinga; Y, = ¢, which satisfies

1
GiPjn— 2 [Wis1h+ Wi—1h— 2Wj 0] =9jn,
(t,j) € (0,T) x{L,....,N},  (4.50)

Yon(t) = Unran(t) = 0, te(0,T),
Win(T) =0, aYn(T) = ji=1,...,N.
Obviously, using Lemmia4.1, we immediately obtain

||9h|||_1 0,T;L2(0,1))

‘QUNh

14l iero w0+ 140morazos + [ g, <
<C ||gh|||_1(o,T;Hg(o,1)> :

To derive more precise estimates gr, we multiply (4.50) by —(dj1n +
AWj-1h—20;n)/h?:

d (h N /ayin—awin\® hXN w,+1h+w, 1h—2wm
5 (53 (Aun-dun)® 05 ( )
N
gJ+1h 9in)\ [ G¥jr1h— GWjn
“ng (B ) ().

Arguing as in[[4.4B), this allows to conclude that
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%Yiji1h 5t‘l’j,h>2 h 3 (4’1+1h+4/1 1h—21,UJh>
e l3s (M) 8

<c(/T (h S <91+17h—91,h)2>1/2dt)2 (4.51)
<c| [ Zo - @

Using [4.38) and; Yy, = @, and again the equivalences proven in Sedfioh 3.2, we
deduce

I\)

@h]lL=(0,7; HE0.) T 19t ¥h + Gnllio 0 7):1200)) < CllGnllLriom;mE0,1))

where we use the equation ¢f,. In order to get[(4.48), we only use the fact that
gn(0) =0.

To deduce[(4.49), we need to apply a multiplier techniquéneretjuation$ (4.47)
directly.

Multiplying (4.47) by j(®,4+1,n — @j—1.n), We obtain, similarly as if (2.13),

/OT dt+—ZJ/

_/ X, (0) — ih(@rLh=@-1h 5
= ["Enwat-x0 -h [ lejh( . )atgj,hdt, (4.52)

‘WJ

dt

whereXy is as in [[2.14). To derivé (4.19), it is then sufficient to bd@ach term in
the right hand side of this identity.
First remark that

T T N Y Y 2 T N
_ Pi+1,h— (Pj,h> / 2
E tdt_h/ Z AT AN G4k Z 2 dt
./o n(t) Jo & < h 0 & 2@l

TN (aWiiin—agin)? Ty 2
<f> dt+h/o Zow“"u"“' dt

:h/(; Zo
_h/ (athlh 0tlllj,h> dt+h/ Z<w1+lh+w1 1h— ij,h)zdt
+h/ %gjhdt—FZh/ Z(“U‘”“WJ L ij’“)gj,hdt.

In particular, from[(4.5]1), we obtain

T T N )
E tdt—h/ 2t
f, Bwdt=n [ 5 &,

2
<C ||g||L1(O,T;H&(0-,1)) '
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Let us then boun¥,(0). Sincegy(0) =0,
N .
=1
A @+1n(0 <P 1h(
—mzm(J E )t%
=1

ZZthh(%lh — @i—1n( )(leh )+ Wj—1n(0 )—zw,-,h(O)).
j=1

h2
It follows then from [4.511) that
|xh(0)| <C ”thEl(O,T;H(}(O,l)) .

We now deal with the last term ib (4152):

T N ' Y
o @ Pi+1h— @P—1h .
| = 2h/0 jleh (7% )atgj,hdt.

Integrating by parts we get
I = —h/ Z @0 ((+1aGj1n— (j —1)dgj-1p) dt

. (3Qjr1hn— RO 1,
:_h./o gl(pj’h ((dgjlyh—i—a[gijl)h)‘i‘Jh( J+1,hh i 1,h>) dt.

Taking into account that, by assumptigq(0) = gn(T) =0,

T N . .
B . 91+1,h—911,h>)
|_h/2 in( (@-1h+0jean) + jh [ 20 ) dt
0 2 @ n ((91 1h+0jiLh) +] < h

But ¢ h = dt Y n, and then equatio (4.50) yields:

= zgm(g,m+gﬁm»+m<@iﬂ%@¢ﬂ>)m

TN W Wi g 2
+h/o 3 <l.UJ+1,h Wj-1n wJ,h> (G 1n0p1n)dt
=1

h2

T N . . —2W; . P
+h [ z (‘I’J+1,h+ w;]gl,h %,h) jh<91+1,hh911,h) qt.
=1

Since
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T N . .
03 g (@1t iean) +in (22TI) )
0 &
T N
:h/ hOiiandt,
0 JZng,th+l,h

due to estimate§ (4.51), we obtain

T N
[ —h/ 0j,ngj+1,ndt
O;) j+

These estimates, combined with (4.52), finally give

AT m+ ZJ

—h/o Z (19j.n/* — 9j,n0j+1n) dt
Jo &

2
<Cllgltom;nz0.0) -

2
<C ||g||L1(0,T;H§(0,1)) ’
or, equivalently,

[

ROIE
h

. h N T 24t
+§JZ)/0 ‘at(ijrl,h_at(pJvh’

hTN

%|gj+1h_gjh| dt <CH9H|_1 0,T; Hl(01)) (4-53)

Remark then that

N T 2 T N 5
h / & Pi1h— AP n dt—h/ |Gj+1,h — gjn|dt
,Zo-o 041, il 0 j;) j+1, j.
nS [ [abran-awalZan [ 3 | o
= tWjr1h— GtWjn t—/ Oj+1,h —0jn/°dt
ZO J J 0 J; j j

2
_ h;/ <¢J+2h+ Win—20jan ‘-/-’j+1,h+‘-/-’j1,h_2‘-/-’j,h> at

h2
+ 0 — 2
+2hz/0 (‘I’J+2,h Yin le’h)(ng,h—gj,h)dt,
~o

h2
_ons /T (‘»"Jﬂh*"”l’“_zw) (95410 —gjn) dt
J;). 0 h2 o ' |

with the notation_1p = = h andPni2h = —YPn -
In view of (4.51), we have
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T 2 T N
A | @ 10— AP dt—h'/o Zo|gj+1,h—gj,h|2dt

2
< CllgltxormH0)-
Estimate[(4.49) then follows directly from (4]53). O

Proof (Propositioi 44)Sinceyy is a smooth function of time and space (recall that
yh has been identified with its Fourier extension, see SeCi@), 3

[0t¥nllL=((0,1);1-1(0.2)) = sup / AYG.

gel((0,T);HE(0,1))
loll 10,7, H&(O 1))S

As in the proof of Propositioh 413, we can take the supremurtheffunctions
g € LY(0,T;H2(0,1)) that are Fourier extensions of discrete functions. Theegfo
using Lemma 4J2 together with the duality identity (4.46% immediately obtain
Propositiod 4.14. O

4.4 Convergence rates for smooth data

4.4.1 Main convergence result

Our goal is to show the following result:

Theorem 4.7.Let (y°,y') € H}(0,1) x L?(0,1) and ve H(0,T) be such that
v(0) = 0 and y the corresponding solution 1) with initial data (y°,y*) and
boundary condition v.

Then there exists a discrete sequence of initial dgfayt) such that the solution
yn of (@.1) with initial data (yo,y%) and boundary data v satisfies the following
convergence rates:

e Convergence ofyy the following convergence estimates hold:

sup V() = yOll2 <C (2091 [yp e + 02 M ). (454)
te[o,T] 0
If we furthermore assume thatV) =

(™) =Yz <2 (0P lugie + Ml ) - (4.55)

e Convergence od,y: the following convergence estimates hold:

sup [[dyn(t) — &y()ll-2 < O (| 6Py gz + Mz ) - (4.56)
te[0,T] 0
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Remark 4.3The above convergencés (4.54) dnd (4.56) may appear sogwsiace
the rates of convergence of the displacement and of the iel® not the same
except whery(T) = 0. We refer to Section 4.4.2 for the details of the proof.

More curiously, the rates of convergence for the displac#rase not the same
depending on the fact thafT) = 0 or not. This definitely is a surprise. In the proof
below, we will see that this is due to the rate (4.22) of cogeace of the normal
derivative for solutions of the Laplace operator.

The proof is divided in two main steps, namely one focusinghenconvergence
of y, towardsy and the other one on the convergencedgf, to a:y, these two
estimates being the object of the next sections.

Also, recall that under the assumptions of Theofem 4.7, thetieny of (£.1)
lies in C([0, T];H(0,1)), its time derivativedy belongs toC([0,T];L2(0,1)) and
AytoC([0, T|;H~1(0,1)).

As in the case of homogeneous Dirichlet boundary conditiores will write
down

Y= g yh= S g (4.57)
=1 k=1
whoseH3 (0,1) x L%(0,1)-norm coincides with
2 - " - -
1P Y e = 5 RTRE+ S (9l < oo,
0 K=1 K=1
We will then choose the initial data?, yt) of the form

N N
ﬁ:gﬁw,%:gﬁw. (4.58)
=1 =1

4.4.2 Convergence ofi

Proposition 4.5.Under the assumptions of Theorem 4.7, takilgy;) as in(@58)
we have the convergeno@sb4)and (4.53)

Proof. To estimate the convergenceygftoy at timeT, we write

)=y (™) (T 4.59
uw<rw<mu—-%$g%{4<w<»w<»w}. (4.59)
er L2<0,1)§

We thus fixgr € L2(0,1) and compute

[ onm -ymer (460)
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We expandpr on its Fourier basis:

8
8

=73 aw, ¥ @< (4.61)
K=1 K=1
Computation of [3y(T)er.
Let us now computg’oly(T)q)r. In order to do that, we introdugg solution of
a[t¢_aXX¢:oa (t7x) S (OaT)X (071)7
¢(T)=0, &o(T)=gr.

Then, multiplying[4:11) byp, we easily obtain

1 T 1 1
[ymer = [ voagendt+ [as©) - [yie©.  @63)
JO 0 JO JO
Butv(t) = [5dv(s)ds thus yielding
T T T
/0 v(t)dko(t,1)dt = /o Av(t) (/t Ko (s, 1)ds) dt.
We therefore introduc®(t) = jiT ¢ (s)ds One then easily checks that

1 T 1 1
| ymer= [ avvaetndi- [ Yaoo)+ [ Yaeo. @
0 0 0 0

where® solves

Ot ®—ox®=—¢r, (t,x)€(0,T)x(0,1),
{ ®(t,0)=d(t,1)=0, te(0,T), (4.65)
®P(T)=0, a®(T)=0.

We also introducer the solution of
— OxxZr = @r, On(07 1)7 vay (0) =Zr (1) = Oa (466)

so that
Y=0¢—7 (4.67)

satisfies

W(t,0)=Y(t,1)=0, te(0,T), (4.68)

oW -0 =0, (t,x)€(0,T)x(0,1)
{wm =z, A¥(T) =0

and



4.4 Convergence rates for smooth data 107
1 T 1 1
L ymer = [ avnawe.nai- [ yPawo+ [ yawo)
T
+ /O Av(t)dzr (1) dt

and, using thaty is independent of time,

1 T 1 1
/Oy(T)(prz/O d[v(t)dx'#(t,l)dt—/o yoan(O)—i—/o y'aw(0)

+V(T)okzr (1). (4.69)

Computation of 3 yh(T)er.
Expandingyn(T) in discrete Fourier series, we get

1 1 N
/0 Y(T)er :/o Ya(T)@rn= hglyj',h(T)(Pj,T,h,

where N
<pj,T,h:kzl@v¢-<, je{1,--- N} (4.70)
Then, similarly as in[{4.84), we can prove
1 N N
Lo = [ avn 2ae- N3 ndk@n(0)+h 3 11011(0)
(4.71)

where®, is the solution of

1
= (®j11h— 2@ h+ Dj_1h) = —(PJ T,hs

h
t (O,T),

O Pjn—

Pop(t) = Pnyrn(t) = 0
O(T) =0, G Pn(T) =

Note that, due to the orthogonality properties of the Faurésis, we can write

N
—hzy?,hdtt‘l’]h +thJhd[(DJh /yodtt(l’h +/ Yot Ph(0)
=1

- /0 Y03 Pn(0) + /O Y13 0,(0)

and thus[(4.41) can be rewritten as

-1 T 1 1
/Yh(T)(PI'Z—/ av(t %dt—/ yodtt(ph(o)-i-/ yia®,(0).  (4.73)
0 0 0
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Then setting
zrn = (—0n) “@ra, (4.74)

we obtain

/Olyh(T)qOr:—/OTdtv —dt—/ y0a: #4(0) +/ y'ah(0)
-V

(T) h”‘ (4.75)

>

whereY, is the solution of

h_12 (Wisrh—2¥n+%_1n) =0,

(taj)E(OaT)X{lv"'vN}v (4.76)
Yhn(t) = Hgan(t) =0, te(0,T)
YU(T) =2zrh, G%H(T)=0.

OitWinh—

Estimating the difference [§ y(T)@r — o yn(T)@r.
First, sincezr solves the Laplace equatidn (4.68),c H>NHZ(0,1) and

||ZT||H2mHg ~|l¢rlL2.
Sincegr € L?(0,1), using Theorerfi4l1 and Theoréml4.3,

[zrn = 2r[|ys < Chllgr]lcz, (4.77)

IO < VRl (4.78)

Hence using Propositién 3.8, we obtain

Sup ||(q+l atl‘H‘l att%) (wvatwvattw)”H&xszH*l

te[0,T]

law 1)+ A

. <CH3||gr2. (4.79)

L2(0,T)

We thus deduce that
[ v (B a0 ) dus [[Pah0) - awio)
- /O y <atwn<0>—atw<0>>\ < grlliz (6P gz + Ve )

According to [4.6B),[{4.15) and the bouhd (4.78), this irpli
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-1
[ o™ -y
< C (VAT #0223 iz + Vb)) -
Using now identity[(4.59), we obtain the following result:
IY(T) = (T2 < € (VAT |+ 03[ 6Py gz + M)
which implies that, ifv(T) =0,
(™) = ¥(Dllz < CH ([[0P9) iz + Vst )
whereas otherwise
Iyn(T) =YDl <€ (W2 6Py gz + VAIVI2 ) -

Conclusion. Note that all the above estimates hold uniformly forin bounded
intervals of time. This concludes the proof of Proposifids. 4 a

4.4.3 Convergence akyh

Proposition 4.6.Under the assumptions of Theorlem 4.7, takiylgy;) as in(@.58)
we have the convergen@58)

Proof. The proof of Proposition 416 closely follows the one of Prsition[4.53 and
actually it is easier. We first begin by the following remark:

1 1
(™)~ ayTlh = sup { [“amTor— [ ayTier .
(preH& JO JO

Jorllg <1

Hence we fixgr € H3(0,1). We expand it in Fourier series:

8

or="73 aw,  with or|lf = 5 Krad (4.80)
1 k=1

=
Il

We thus introduce N
Pra=Y @
K=1

Using the fact thafty;, belongs to the span of thé-first Fourier modes,

1 1
[ aw(Tor = / Ayn(T)Pr . (4.81)
JO 0
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Hence we are reduced to show

1 1
[ avion— [ aniens

< CPR ([| 0P lygrz + Ve ) g - (4.82)
Again, we will express each of these quantities by an adjoirmulation and

then relate the proof of (4.82) to convergence results fetijoint system.
Indeed,

1 T 1 1
| aymer = [ vaetdi- [ a0+ [0, (@89
0 JO JO JO
where¢ solves

dttd’—axx‘p:oa (t,X)E(O,T)X(O,l),
{ #(t,0) =¢(t,1) =0, te (0,T), (4.84)

(¢(T),0(T)) = (¢r,0).

Then, introducingb(t) = j;T ¢ (s)ds we easily check thad solves

{ancp—axxcp:o, (t,x) € (0,T) x (0,1),
®(t,0) = D(t,1) =0, te(0,T), (4.85)
(®(T),q®(T)) = (0,—¢r).

Besides, identity[{4.83) then becomes

1 T 1 -1
[ aymer = [ avinaendis [ yae©- [ yae©). @86
JO 0 0 JO

Similarly, we have

/atyh Jprn=— / avt) dt+/ Y26 @ (0) /yhatcbh 0), (4.87)
where®y, solves

0,

(7) (O )X{lv"'vN}v (488)
te(0,T),

1
) 5 (Pjr1h+ @j_1h— 20 p)

Ot Pjn—
Pop(t) = Puyan(t) =
(@n(T), 0 Pn(T )):(0 —@rh)-

Also remark that, sincer |, is formed by Fourier modes smaller thah @y, has
this same structure. Due to the orthogonality propertigh@fourier basis and the
choice of the initial data if(4.58), we have



4.4 Convergence rates for smooth data 111
1 T e 1 1

[ anmmMenn=—- [ avHtmdie [ yamn0)- [ yamo). @89
Jo Jo Jo Jo

We are thus in the setting of Proposit[on]3.8 sipge= HO1 and one easily checks

[[or — @rnll 2 <Chllgr(ly.

We thus obtain

)
KD(t,1) + —(t)
h L2(O,T)

<CH3|lgr[lyz.  (4.90)

sup [|(& Pn, 6t Ph) — (&P, i P) | 2,2+

te[0,T]

Then, using the identitieE (4.186) ad (4.89), we get

1 T

[ avmor [ awmors

0 JO
<Pt g (16°Y) gz + M) - (490)

Combined with[(4.8]1), this easily yields (4182). O

4.4.4 More regular data

In this section, our goal is to explain what happens for simeainitial data(y®,y*)
andy, for instance for(y°,y!) € H2NH2(0,1) x H3(0,1) andv € H%(0, T) with
v(0) = ¢v(0) = 0. More precisely, we are going to prove the following:

Theorem 4.8.Let (o € {1,2} and fix (y°,y!) € H{§™(0,1) x H(0,1) and ve
Hf*1(0,T) satisfying ¥0) = &Vv(0) = 0if £o = 1, or v(0) = 6,v(0) = dv(0) = 0if
lo=2. Let(y2,y}) be as in(@58)and y, the corresponding solution of.7) with
Dirichlet boundary conditionsy= v.

Then there exists a constant€0 independent of b- 0 and t€ [0, T] such that

o for the displacementyfor allt € [0, T],

Iyn(t) = y(®)ll 2 < CRODR (PN | Liger o + IVltorior
He  xHg) (oT)
+ChY2|v(t)|. (4.92)

o for the velocityayy, forall t € [0,T],
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19ty (t) = By(1) [ly-2 < CHOTDB ([0 9] gt + IVllrora 01
HS xHQ) (0T)
+Ch¥2|gv(t)]. (4.93)

Proof. The proof follows the one of Theordm #.7.

Let us then focus on the convergence of the displacementaiogvfthe proof
of Propositior. 45. We introducgr € L?(0,1), zr as in [4.66),¥ the solution of
the homogeneous wave equatibn (4.68) with initial data0) and, similarly,¢r n
as in[4.70)zr n as in [4.7%), andH, the solution of the discrete homogeneous wave
equation[(4.76) with initial datézr p,0). Since

21 € H2)(0.2) and]lzr |z = or .2

e By (4.19),
|zrn— 2|2 <CPlerll2. (4.94)

Propositio 3.8 applies and yields:
H(d[%,dn%) - (dlwadltt’u)HH*foxH*fo*l < Chzmﬁl)/g H(pTHLZ

In particular,
‘/ V(3 Yh(0) — G W(0 /y (%h(0) - aMO))‘
< CHPOH 73] gr | 2 !\(y",yl)HHfgufo& . (4.95)

According to identities[(4.89) an@ (4]75), we shall theniden convergence
estimate on . .
/ av <axwa,1)+ %ﬁ( )) dt.
JO

In order to do that, we writé,v = jg &tV and introduce

§0= [ woos &= [ e ds

so that
/T av (aqu(t, 1)+ L”“—““) dt— /T v (axf(t, 1)+ 5“—““) dt.
Jo h 0 h

Of course£ andé;, can be interpreted as solutions of continuous and discrate w
equationsé solves

attE —0xx5 = Oa (t,X) € (O,T) X (07 1)
{E(t,O)_E(t,l)_O, te (0,T), (4.96)
&(T)=0, &é(T) = —zr,
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whereas, solves

Oéjn— h_12 (&j41n—2&n+Ej—1n) =0,

(tvj) € (OvT)X{lv"'vN}a (497)
&on(t) = Entin(t) =0, te(0,T),
én(T) =0, Gtén(T) = —z7h.

Then, due to[(4.94), the convergence results in Propo8iipyield

&n,n(t)

0& (t,1) + == <ch3|gr|-.

L2(0,T)

This implies in particular that

:
‘ / atV<0xW(t,1)+%’r?(t))dt}SCh4/3|€0r||L2||0nV|L2(o,T)- (4.98)

Hence, if¢o = 1, i.e. (YO, y}) € H(ZO)(O, 1) x H(lo)(o, 1) andv € H2(0,T) with

v(0) = ¢v(0) = 0, combining[(4.95) and (4.D8) in identitids (4.69) ahd B}, we
get

IYn(T) =Y(TM)ll2(0.1) < cht/? (H (Yoayl)HHfo) xHY) + ”V'HZ(O,T))
+Ch'2|v(T)|.  (4.99)

The caselp = 2. In this casey € H3(0,T), we introducel = ftTE and ¢, =
ftT &, so that

{nn(t)

dt = ./(;T Py (dXZ(t, 1)+ T) dt. (4.100)

/O~T av (dXW(t, 1)+ %Th(t))

Obviously, the functior{ can be characterized as the solution of a wave equation,
namely:

(t,0)=Z(t,1)=0, te(0,T), (4.101)
{(T)=0,a(T)=0.

We thus introduces solution of

{attz_aXXZ_ZTv (t,X)E(O,T)X(O,l)

aXXWT =Z7r, On (07 1)7 WT(O) = WT(l) = 07 (4-102)

so that

solves
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&l — Ol =0, (t,x) € (0,T) x (0,1)
{(t,00={(t,1)=0, te(0,T), (4.103)
{(T)=wr, &{(T)=0
Doing that
T T .
| dwvact = [ awvad(tdi-dwr (Dav(T).  (@4.104)

Similar computations can be done 6. We thus obtain that

T T 7
/0 diZMTh(t) dt = A di ZN}:(t) dt— WNHTM dtV(T), (4105)

wherewr , = (An)~Yzr, and{, solves

5 1 /= ~ -
atth,h_ ﬁ (ZjJrl,h_ZZj,h‘Fijl,h) — 0’

(taj)E(OaT)X{lv"'vN}7 (4.106)

on(t) = {ns1n(t) = te(0,T)

07
¢h(T) =wrp, &n(T)=0.

We now derive convergence estimates. Recall firstzhat H(ZO) (0,1) and the con-
vergenced (4.94). Sineg < H(ZO), settingZr 1, its projection on theN-first Fourier
modes, we have:

| Zrn—zr|» < CH ||zT||H(20) < CP|ler]| 2. (4.107)
Settingwir p = (4n) 171, Theoreni 44 and Theordm#.5 yield

||WT_V~VT,h||H& < Ch2||zT||H(20) <CH|l¢r| 2, (4.108)

WN.T h

dawr (1) + < Chzr |z < CHlorl,e.

According to the estimaté (4.94), we thus have

Using then estimaté (4.21),
WNTh  WNTh
e
and thus W
Bawr (1) + = | < CHP lgr 2. (4.109)
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Besides, due td (4.94) and (4.107),

250 = 2rnll 2 < CHllgrl2,
which readily implies

[l wr p —WT,h||H& <CP||gr|2,

and thus, by[(4.108),
[ —wr |1 < CHlgr .2

Using then Propositidn 3.6,

0XZ(-,1)+%(-) < CH||or]| 2. (4.110)

L2(0,T)

Combined with the convergencgs(4.1109) 4nd (4.110), iles{.10D),[(4.104) and
(4.105) then imply

/T av (dXW(t,1)+%+m> dt‘
0
< CH[|@r]| 2 [|10keV]l 2+ CHP [l @r || 2 [0 v(T)| < CHPl@r |l 2 [V][s-  (4.111)

Combining [4.9b) and(4.111) in identiti¢s (4.69) and (J}, " get[[4.9R) when
lo=2.

The proof of the estimatE(4.193) on the rate of convergenc@yg relies on very
similar estimates which are left to the reader. O

4.5 Further convergence results

As a corollary to Theoren 4.6 and TheorEml 4.7, we can giveagence results
for anysequence of discrete initial da(tyfﬂ,yﬁ) and boundary data, satisfying

lim (|08 98) = 0P o2 =0 and  limlvy—Vlzor) =0 (4.112)

Proposition 4.7.Let(y°,y!) € L?(0,1) x H=1(0, 1) and ve L?(0,T). Then consider
sequences of discrete initial datg),yt) and  satisfying(@I12) Then the solu-
tions y, of (@.4)with initial data (y°,y%) and boundary datayyconverge strongly in
C([0,T];L2(0,1)) NC([0, T];H~1(0,1)) towards the solution y of&.) with initial
data(y°,y') and boundary data v as 0.

Proof. Similarly as in the proof of Propositidn_3.5, this result istained by us-
ing the density ofH2(0,T) in L?(0,T) and of H3(0,1) x L2(0,1) in L?(0,1) x
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H~1(0,1). We then use Theorem 4.7 for smooth solutions and the unitability
results in Theorem 4.6 to obtain Proposition 4.7. Detailthefproof are left to the
reader. O

Another important corollary of Theoren 4.7 is the fact thfthe initial data
(y°,y) belong toH}(0,1) x L2(0,1) and the Dirichlet data lies in H}(0,T), any
sequence of discrete initi@}”,yﬁ) and Dirichlet datas, satisfying

[ORY) = Y |21+ IV =Vl 207y < Coh®, (4.113)

for some constaro uniform inh > 0 and@ > 0, yield solutionsy, of (#.7) such
thaty,(T) approximates at a rab8"2/3.9} the statey(T), wherey is the continuous
trajectory corresponding to initial datg®, y*) and source term.

Proposition 4.8.Let (y°,y!) € H}(0,1) x L?(0,1) and ve H}(0,T) and consider
sequence§f,yt) and , satisfying@.113)

Denote by y (respectively y) the solution . 4) (resp.(@.1) with initial data
(Y2, yt) (resp.(y°,y})) and Dirichlet boundary datay (resp. v).

Then the following estimates hold:

”(yh(T)aath(T)) - (y(T)aaIy(T))HLZXH*l
SCh2/3(||(y°,y1)||ngL2+Hv||H&(O,T))+CC‘0h9. (4.114)

Remark 4.41n the convergence resuli (4.114), we keep explicitly theethelence in

the constan€y coming into play in[(4.113). In many situations, this constzan be

chosen proportional t(y?,y*)|| 1, 2+ IVlliy2 o.7)- In particular, in the control the-
2 :

oretical setting of Chaptét 1 and its application to the wegreation in Sectidnl 7,
this dependence 0@y is important to derive Assumption 1 and more specifically
estimate[(1.29).

Proof. The proof follows the one of Propositibn B.7. The idea is tmparey with
¥, the solution of[(4.]7) constructed in TheoreEml4.7 and thezotapareyy, andy
by using Proposition 413 and Propositfonl4.6. O

Remark 4.5Note that under the assumptions of Proposifioh 4.8, thedtajiesyy
converge toy in the spaceC([0,T];L2(0,1)) NC([0,T];H~1(0,1)) with the rates
(@52)-{4.5b) in addition to the err@ph®.

Of course, Propositidn 4.8 is based on the convergencd @stained in Theo-
rem[4.T. Similar results can be stated based on Thelorénot idstance:
Proposition 4.9.Let (o € {0,1,2}. Let (y°,y*) € H({§™(0,1) x H(§ (0,1) and ve
He? (0, T) and consider sequencé®, yi) and v, satisfying@.113)

Let(y2,yt) as in@.58)and y, the corresponding solution ¢E7) with Dirichlet
boundary conditionsy

Denote by y (respectively y) the solution dfE.4) (resp. (@) with initial data
(Y, yi) (resp.(y°,y})) and Dirichlet boundary datap(resp. v).
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Then the following estimates hold:

[[(Yn(T), Byn(T)) = (Y(T), &Y(T))ll 2.2
< CHeltot1)/3 <||(yo’y1)||Hfg“xng + IVIIHéM(O)T)) +CGoh?.  (4.115)

Remark 4.6Propositio 4B can then be slightly generalizedéfpe [0, 2] by inter-
polation.

4.6 Numerical results

In this section, we present numerical simulations and exide of Proposition 41.9.
Since our main interest is in the non-homogeneous boundargitton, we focus
on the casgy®,y!) = (0,0) and(yp,yt) = (0,0).

We fix T = 2. This choice is done for convenience to explicitly compiine
solutiony of (@) with initial data(0,0) and source ternv. Indeed, forT = 2,
multiplying the equation[(4]1) by solution of [3.2) with initial data¢°, ¢*) €
H2(0,1) x L?(0,1) and using the 2-periodicity of the solutions of the wave ¢iqua
(3.2), we obtain

2

-1 -1 .
| y@x00tdx- [ ay@x9°0dx= [“vtae .1t
0 0 0

Based on this formula, taking successivepf, 1) = (WX, 0) and(0,w¥) and solv-
ing explicitly the equatior(3]2) satisfied Iy we obtain

¥ =y <\/é(—1)k /O 2v(t)sin(km)dt> WK,
ay(2) = Z <\/§(—1)k+lkn /0 2v(t)cos(knt)dt) wk.

We will numerically compute the reference solutions usimgse formulae by re-
stricting the sums ovek € {1,--- Nt} for a large enougiNe¢. We will choose
Nret = 300 forN varying between 50 and 200.

We then compute numerically the solutignof (@7) with initial data(y?, yt) =
(0,0) and source term(t).

Of course, we also discretize the equationl(4.7) in time. Weé th an explicit
manner similarly as i {3.45). jk denotes the approximation gf solution of [47)
at timekAt, we solve
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0

At ? :
ykh“=2yh—yhl—<At>2Ahyﬁ—(Ft) R
v(kAt)

The time discretization parametdt is chosen such that the CFL condition is
At/h = 0.3. With such low CFL condition, the effects of the time-digization
can be neglected.

We run the tests for several choicesvaind forN € {50, - - - ,200}:

vi(t) =sin(mt)®, te(0,2), vot) =sin(mt)?, te(0,2),
va(t) =sin(rt), te(0,2), va(t)=t, te(0,2),
sin(rt), te(0,2).

In each case, we plot the?-norm of the error on the displacement and Hhe!-
norm of the error on the velocity I in logarithmic scales: Figufe 4.2 corresponds
to the datav;. We then compute the slopes of the linear regression fok3kerror
on the displacement and for th 1-error on the velocity. We put all these data in

Table[4.1.

Fig. 4.2 Plots of the errors versusl in logarithmic scales for;. Left, the L2(0,1) error
IVa(T) —y(T)||.2 for T = 2: the slope of the linear regression-i¢.96. Right, theH ~(0, 1) error
10:Yn(T) — ty(T)||y-1 for T = 2: the slope of the linear regression-4.98.

Table[4.1 is composed of five columns. The first one is the dadamuconsider-
ation. The second and third ones respectively are the cadslpes of the linear
regression of, respectively, thé-error on the displacement and for tHe 1-error
on the velocity. The fourth and fifth columns are the ratesetgd from the analysis
of the datav and Proposition 4]19:

e v; € H3(0,2): we thus expect froni{4.1]L5) a convergence of the ordbf.6Fhis
is indeed what is observed numerically.
e V, is smooth but its boundary condition vanishes only up to ofdeHence

Vo € Hé’/zfg(o, 2) for all € > 0 due to the boundary conditions. Using Remark
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[4.8, the expected slopes ar®&/3~, which is not far from the slopes computed
numerically.

the same discussion applies fat which belongs td—lg/zfe(o, 2) forall € > 0.
Hence the expected slopes argé™, which again are confirmed by the numerical
experiments.

v4 almost belongs tug/“(o, 2) except for what concerns its non-zero value at
t = 2. But the value of/ is an impediment for the order of convergence only for
the displacement, see Theoriem 4.8. We therefore expecvargamce of th&?-
norm of the error on the displacement likéh, whereas the convergence of the
H~1-norm of the error on the velocity is expected to go much fasgh! . The
numerical test indicates a good accuracy on the convergéticeH ~1-norm on
the velocity error. The convergence of tilenorm of the displacement is slightly
better than expected.

vs is smooth and satisfies;(0) = dvs(0) = 0 andvs(2) = 0 but g vs(2) £ 0.
According to Theoreri 418, we thus expect that tRenorm of the error on the
displacement behaves as wherbelongs td—|g’/2 (0,1), i.e. ash®3 . However,
the H1-norm of the error on the velocity should behave 2 according to
(@93). This is completely consistent with the slopes olsgnumerically.

Datd | Computed_? slopd ComputedH —* slopg|Exp. L?-slopg Exp. H I-slopd
1 —1.96 —1.98 -2 -2
Vo —187 —1.70 —5/3 —5/3
Vs —0.99 095 -1 T
\ —-0.97 —0.95 -1/2 -1
Vs —1.82 147 ~5/3" —3/2

Table 4.1 Numerical investigation of the convergence rates. Colut@d 3 give the slopes
observed numerically (respectively, for thé error on the displacement, for thé—1 error on
the velocity), whereas columns 4 and 5 provide the slopepéatively, for the 2 error on the
displacement, for thel— error on the velocity) expected from our theoretical result

In each case, the numerical results indicate good accufatye dheoretical re-
sults derived in Theorem 4.8 and Proposifiod 4.9.






Chapter 5
Further comments and open problems

Discrete versus Continuous approaches

We have developed the time continuous and space discreteaames for solving a
control problem (and a data assimilation one) and we havweegrthat:

e The continuous approach works well for a limited number efdtions. In other
words, the error between the continuous control and theoxppated one decreases
for a number of iterations. But, if one goes too far in theatem process, beyond
a threshold that theory predicts, the result can be conipletisleading. Indeed,
one eventually converges to a discrete control that is fayawom the continuous
one because of the high frequency spurious oscillationgs;Tdpetting precise esti-
mates on the threshold in the number of iterations is veryigmt. But this is hard
to do in practical applications since this requires, in ipaftar, explicit bounds on
the observability constants, something that is unknowreimegal and in particular
for problems with variable coefficients, multi-dimensibpeoblems with complex
geometries, etc.

The main advantage of the continuous approach is that iteapplied by simply
combining the control theoretical results of the contirmiowodel and the numeri-
cal convergence results for the initial-boundary valuebfgm without any further
study of the control theoretical properties of the numéraggroximation scheme.
e The discrete approach yields good results after a given eunttiterations (very
close to the one of the continuous approach) and has theagreantage that the er-
ror keeps diminishing as the number of iterations incread®ss there is no risk in
going beyond any threshold in the number of iterations. Hexeyuaranteeing that
the discrete approach converges, contrarily to the cootisapproach, requires the
study of the control theoretical properties of the discsstgtems and, in particular,
the proof of a uniform observability result, uniformly witespect to the mesh-size.
This requires a good understanding of the dynamics of th&isok of humerical
schemes and often careful filtering devices to eliminatdtgk frequency spurious
oscillations.

e The main advantage of the discrete approach is that one nmeydes faster min-
imization algorithms, like conjugate gradient methods arensophisticated ones,

121
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which converge often much faster. This justifies why thedhigh study of uniform
observability properties still is a major issue when nucedly computing controls.

Comparison with Russell's approach

The steepest descent algorithm applied in the continuatisgeising the HUM
approach leads to the following sequence of solutions oatheint problem

k-1 _
¢ = <_Z}(I —p/\T)J> pYo,
=

that, ask tends to infinity, approximates the solution of the adjoyrgtem determin-
ing the exact control. Indeed, when lettikg» «, we get

lim ¥ = (1 — (1 = pAr)) *pyo = Aryo.
Of course, this holds when the operatbr pAy) is of norm strictly smaller than 1.
This is precisely implied by the assumption tipat- 0 is small enough and the fact
thatAr is positive definite, se€ (1.47).
On the other other hand, the approach developedlin [9], iedpn Russell’s
iteration, that allows to get the control as a consequenteaitabilization property,
leads to (see alsb [25] in the context of data assimilation)

Y=3 (L)Y,

k>0

whereLy is an operator of(X) of norm strictly smaller than 1 aridr is computed
through the resolution of two wave equations (one forward @me backward) on
(0, T) (whereT > T*) with a damping term.

The numerical method proposed [ [9] then follows the samegtesty as our
so-called continuous approach:

e Study the convergence of the sequek{ie= Z‘J‘:o(LT)JyO, in the spaceX and
Z(A). At this stage, the authors use tlR* mapsZ(A%?) into Z(A);

e ApproximatelLt by some discrete operatbf}, based on the natural approxima-
tions of the wave equation;

o Compare¥l = 5% _o(Ltn)lyon with W

e Optimize the choice df.

The method in[[B] enters in the class of continuous methodse KMowever that
the continuous approach we proposed, inspired in HUM ratietr on Russell’s
principle, does not requiBB* to mapZ(A%?) into Z(A).

In the continuous setting, the algorithm based on the tievensal approach de-
rived in [29] when recovering a source term is very close tegell's approach:
indeed, it corresponds to computing iterates of an opecdtoorm strictly smaller
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than one, and deduced from the resolution of two dissipataxee equations. In that
context, one easily understands that the approadh’in [28}®the framework of
the continuous approach based lon [29].

Uniform discrete observability estimates

The discrete approach relies in an essential manner upamifeem observability
estimates[(1.37) of the semi-discrete approximations efctimtinuous model, i.e.
Assumption 3, which, as we have said, is not an easy task t@pmgractice.

In particular, to our knowledge, there are only few resulkéal hold in general
geometric settings and for regular finite-elements metimad jecessarily on uni-
form meshes), namely the ones(in|[12] 41]. However, thesemars do not yield
estimates on the time under which uniform observabilitydsoThis is due to their
strategy, based on resolvent estimates as a charactnipdtbbservability, see for
instance[[4D]. The scale of filtering employed in these waokguarantee uniform
discrete observability estimates is very likely not optimts improvement is an
interesting open problem.

Therefore, getting uniform observability estimates gslla challenging issue
when considering general geometric setting guarantebagtiservability inequal-
ity (L.B) of the continuous model, in particular with respecthe time and the scale
of filtering required for guaranteeing uniform discrete efvgbility estimates.

Optimal control theory

Optimal control problems and the design of feedback corstystems are topics
that are closely related to the questions we have analyzexa8y to the numer-
ical algorithms for exact control problem we studied here,apuld also address
the problem of numerically computing feedback control epars. As one could
expect, getting discrete optimal feedback controls wharverge to the continuous
one usually requires the so-called uniform stabilizapititoperty, se€ [30, 34, 19],
ensuring that the exponential decay rate of the energy cfahgions, both contin-
uous and discrete, is bounded from below uniformly with eesppo the mesh-size
parameter. This issue is very closely related to the unifdisarete observability
estimated(1.37). In [16], following the approach(ofl[26& @xplained how discrete
observability inequalities can be transferred into umfatabilizability results for
the corresponding damped equations by the addition of atdaihumerical viscos-
ity. This should provide convergent approximations of oyati feedback operators,
as it has been done in [44].

However, to our knowledge, getting explicit rates on thevewgence of these
feedback controllers is an open problem.
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Fully discrete approximations

Our approach is very general and can also be applied to fidtyete systems under
very similar assumptions. For instance, one can formulaenalogs of Assump-
tions 1 and 2 that take into account the required convergerogeerties of the fully
discrete numerical approximation scheme, whereas Assomptonsists of a uni-
form (with respect to the space-time mesh size parametbsgreability result for
the fully discrete systems.

Note that, according to the results in[14], the correspogdilly discrete ver-
sion of Assumption 3, which reads as uniform observabiktyneates for the fully-
discrete system, can be deduced as a consequence of thedtintiedous (and space
discrete) analogs.
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