
Sylvain Ervedoza and Enrique Zuazua

On the numerical approximation
of exact controls for waves

– Monograph –

October 12, 2012

Springer





Preface

In this book, we fully develop and compare two approaches forthe numerical ap-
proximation of exact controls for wave propagation phenomena: the continuous one,
based on a thorough analysis of the continuous model, and thediscrete one, which
relies upon the analysis of the discrete models under consideration. We do it in the
abstract functional setting of conservative semigroups.

The main results of this paper end up unifying, to a large extent, these two ap-
proaches yielding similar algorithms and convergence rates. The discrete approach,
however, has the added advantage of yielding not only efficient numerical approxi-
mations of the continuous controls, but also ensuring the partial controllability of the
finite-dimensional approximated dynamics, i. e. the fact that a substantial projection
of the approximate dynamics is controlled. It also leads to iterative approximation
processes that converge without a limiting threshold in thenumber of iterations.
Such a threshold has to be taken into account, necessarily, for methods derived by
the continuous approach, and it is hard to compute and estimate in practice. This
is a drawback of the methods emanating from the continuous approach that exhibit
divergence phenomena when the number of iterations in the algorithms aimed to
yield accurate approximations of the control go beyond thisthreshold.

We shall also briefly explain how these ideas can be applied for data assimilation
problems.

Though our results apply in a wide functional setting, our approach requires a
fine analysis in the case of unbounded control operators, e.g. in the case of boundary
controls. We will therefore show how this can be done in a simple case, namely the
1−d wave equation approximated by finite difference methods. Inparticular, we
present several new results on the rates of convergence for the solution of the wave
equation with non-homogeneous Dirichlet boundary data.
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v





Acknowledgements

Sylvain Ervedoza is partially supported by the Agence Nationale de la Recherche
(ANR, France), Project C-QUID number BLAN-3-139579, Project CISIFS number
NT09-437023, the AO PICAN of University Paul Sabatier (Toulouse 3) and grant
MTM2011-29306 of the MICINN, Spain. Part of this work has been done while
he was visiting the BCAM – Basque Center for Applied Mathematics as a Visiting
Fellow.

Enrique Zuazua is supported by the ERC Advanced Grant FP7-246775 NU-
MERIWAVES, the Grant PI2010-04 of the Basque Government, the ESF Research
Networking Program OPTPDE and Grant MTM2011-29306 of the MICINN, Spain.

The numerical simulations in Section 1.7 were done with the kind help of Ale-
jandro Maass Jr (Santiago de Chile) while he was visiting theBCAM.

vii





Contents

Introduction

1 Numerical approximation of exact controls for waves . . . . . . . . . . . . . . 7
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 7

1.1.1 An abstract functional setting . . . . . . . . . . . . . . . . . . .. . . . . . . 7
1.1.2 Contents of Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 10

1.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 12
1.2.1 An “algorithm” in an infinite dimensional setting. . . .. . . . . . 12
1.2.2 The continuous approach . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 15
1.2.3 The discrete approach . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 17

1.3 Proof of the main result on the continuous setting . . . . . .. . . . . . . . . . 19
1.3.1 Classical convergence results . . . . . . . . . . . . . . . . . . .. . . . . . . 19
1.3.2 Convergence rates inXs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 The continuous approach . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 22
1.4.1 Proof of Theorem 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 22
1.4.2 Proof of Theorem 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 24

1.5 Improved convergence rates: the discrete approach . . . .. . . . . . . . . . . 24
1.5.1 Proof of Theorem 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 24
1.5.2 Proof of Theorem 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 25

1.6 Advantages of the discrete approach . . . . . . . . . . . . . . . . .. . . . . . . . . . 25
1.6.1 The number of iterations . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 26
1.6.2 Controlling non-smooth data . . . . . . . . . . . . . . . . . . . . .. . . . . . 27
1.6.3 Other minimization algorithms . . . . . . . . . . . . . . . . . . .. . . . . . 29

1.7 Application to the wave equation . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 29
1.7.1 Boundary control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 29
1.7.2 Distributed control . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 45

1.8 A data assimilation problem. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 50
1.8.1 The setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 50
1.8.2 Numerical approximation methods. . . . . . . . . . . . . . . . .. . . . . 52

ix



x Contents

2 The discrete1−d wave equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.1 Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 55
2.2 Spectral decomposition of the discrete laplacian . . . . .. . . . . . . . . . . . 56
2.3 Uniform admissibility of discrete waves . . . . . . . . . . . . .. . . . . . . . . . . 57

2.3.1 The multiplier identity . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 57
2.3.2 Proof of the uniform hidden regularity result . . . . . . .. . . . . . 58

2.4 An observability result . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 59
2.4.1 Equipartition of the energy . . . . . . . . . . . . . . . . . . . . . .. . . . . . 59
2.4.2 The multiplier identity revisited . . . . . . . . . . . . . . . .. . . . . . . . 60
2.4.3 Uniform observability for filtered solutions. . . . . . .. . . . . . . . 61
2.4.4 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 64

3 Convergence for homogeneous boundary conditions. . . . . . . . . . . . . . . . 65
3.1 Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 65
3.2 Extension operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 65

3.2.1 The Fourier extension . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 66
3.2.2 Other extension operators . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 66

3.3 Orders of convergence for smooth initial data . . . . . . . . .. . . . . . . . . . 70
3.4 Further convergence results . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 76

3.4.1 Strongly convergent initial data . . . . . . . . . . . . . . . . .. . . . . . . 76
3.4.2 Smooth initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 77
3.4.3 General initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 79
3.4.4 Convergence rates in weaker norms . . . . . . . . . . . . . . . . .. . . . 80

3.5 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 81

4 Convergence with non-homogeneous data. . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1 The setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 85
4.2 The Laplace operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 87

4.2.1 Natural functional spaces. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 87
4.2.2 Stronger norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 92
4.2.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 94

4.3 Uniform bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 95
4.3.1 Estimates inC([0,T];L2(0,1)) . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.2 Estimates on∂tyh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Convergence rates for smooth data . . . . . . . . . . . . . . . . . . .. . . . . . . . . 104
4.4.1 Main convergence result . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 104
4.4.2 Convergence ofyh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.4.3 Convergence of∂tyh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4.4 More regular data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 111

4.5 Further convergence results . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 115
4.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 117

5 Further comments and open problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 125



Introduction

Motivation

Let Ω be a smooth bounded domain ofRn and consider an open subsetω ⊂ Ω .
We consider the controlled wave equation inΩ :







∂tty−∆y= vχω , (t,x) ∈R+×Ω ,
y= 0, (t,x) ∈R+× ∂Ω ,
(y(0,x),∂ty(0,x)) = (y0(x),y1(x)), x∈ Ω .

(0.1)

Here,y, the state of the system, may represent various wave propagation phenom-
ena as, for instance, the displacement for elastic strings and membranes or acoustic
waves. The control function is represented byv which is localized in the control
subdomainω throughχω , the characteristic function ofω in Ω .

This work is devoted to discuss, analyze and compare two approaches for the
numerical approximation of exact controls, the continuousand discrete ones.

System (0.1) is said to be exactly controllable in timeT if, for all (y0,y1) ∈
H1

0(Ω)×L2(Ω) and(yT
0 ,y

T
1 ) ∈ H1

0(Ω)×L2(Ω) there exists a control functionv∈
L2((0,T)×ω) such that the solutiony of (0.1) satisfies

(y(T),∂ty(T)) = (yT
0 ,y

T
1 ). (0.2)

Such property is by now well-known to hold under suitable geometric conditions
on the setω in which the control is active, the domainΩ in which the equation is
posed, and the timeT during which the control acts.

In the seminal work of Lions [36], in which the Hilbert Uniqueness Method
(HUM) was introduced, the problem was reduced to that of the observability of
the adjoint system and multiplier methods were derived for the later to be proved
under suitable geometric restrictions (see also [27, 31] for other type of multipliers).
Later, in [3, 5] it was shown that system (0.1) is exactly controllable in timeT > 0
if and only if (ω ,Ω ,T) satisfies the so-called Geometric Control Condition (GCC).
Roughly speaking, this condition states that all rays of Geometric Optics -which

1



2 Contents

in the present case are straight lines bouncing on the boundary ∂Ω according to
Descartes law- should enter into the control subsetω in a time less thanT.

All along this work we shall assume that(ω ,Ω ,T) fulfills the GCC. In that
case, for all(y0,y1), (yT

0 ,y
T
1 ) in H1

0(Ω)× L2(Ω), the existence of a control func-
tion v∈ L2((0,T)×ω) such that the corresponding solution of (0.1) satisfies (0.2)
is guaranteed.

The question we address is that of building efficient numerical algorithms to
compute such a control.

Control and numerics

Of course, this problem is not new, and many articles have been devoted to it.
In the pioneering works [22, 23, 21] (see also the more recentbook [24]) it was

shown that high-frequency spurious solutions generated bythe discretization pro-
cess could make the discrete controls diverge when the mesh-size goes to zero.
These results have later received a thorough theoretical study (see for instance [28]
in which the finite difference and finite element methods in 1-d on uniform meshes
were addressed) and the more recent survey articles [52, 17].

The analysis developed in these articles leads to the necessity of distinguishing
two different approaches, the continuous and the discrete ones. In the continuous
one, after characterizing the exact controls of the continuous wave equations, the
emphasis is done in building efficient numerical methods to approximate them. In
the discrete one, by the contrary, one analyzes the controllability of discrete mod-
els obtained after discretizing the wave equation by suitable numerical methods and
their possible convergence towards the controls of the continuous models under con-
sideration when the mesh-size parameters tend to zero.

In other words, to compute approximations of controls for continuous models,
there are mainly two alternative paths:

first CONTROL and then NUMERICS

or
first NUMERICS and then CONTROL.

In this book we first focus on the continuous approach, the keypoint being to
build an iterative process in an infinite dimensional setting yielding the control of
the continuous wave equation, to later approximate it numerically. To be more pre-
cise, we approximate numerically each step of this iterative process. Of course, this
generates error terms in each iteration that add together and eventually may produce
divergence phenomena, when the number of iterations goes beyond a threshold.

One of the most natural manners to derive such an iterative algorithm is in fact
the implementation of the HUM method that characterizes thecontrol of minimal
norm, by minimizing a suitable quadratic functional definedfor the solutions of the
adjoint system. The minimizer can then be approximated by gradient descent algo-
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rithms. This leads naturally to an iterative algorithm to compute the control of the
continuous model that later can be approximated by standardnumerical approxima-
tion methods, such as finite-differences and elements.

Recently, a variant of this continuous approach has been developed in [9] fol-
lowing Russell’s technique [47] to construct the control out of stabilization results.
According to Russell’s approach, the control can be built asthe fixed point of a con-
tractive map, whose contractivity is ensured by the stabilizability of the system. This
leads then naturally to an iterative method for approximating a continuous control.
Note however that the control obtained in this manner is not the one of minimal
norm (the one given by HUM) but rather that obtained through Russell’sstabiliza-
tion implies control principle. A similar method has been numerically implemented
successfully in [1] in the context of data assimilation problems for some nonlinear
models as well.

As we shall see, once the iterative algorithm that the continuous approach yields
is projected into the finite-dimensional numerical approximation models, we end
up with a method that is very similar, in form and computational cost, to the one
obtained by means of the discrete approach. The later consists of building discrete
approximation models whose controls converge to the one of the continuous dy-
namics usually after filtering the spurious numerical components.

The first main advantage of the discrete approach is that it yields approximate
controls that control, at least partially, the approximated numerical dynamics. But
this is done to the prize of carefully analyzing the control properties of the finite–
dimensional dynamics, an extra and often complicated task that is not required when
developing continuous methods. As we shall explain, developing the discrete ap-
proach is also computationally relevant since it allows to use much faster iterative
algorithms. The continuous approach is conceptually simpler, however. Indeed, it
superposes the continuous control theory to build an iterative algorithm in the con-
tinuous setting, and classical numerical analysis to approximate it effectively, with-
out getting involved into fine controllability properties of the discrete dynamics.

The results we shall present below apply in the much more general setting of
conservative semigroups, for which the wave equation (0.1)is the most paradigmatic
example. Most of the presentation will then be done in this abstract unifying frame.

Our main results on the comparison of both approaches in the abstract setting are
presented in Chapter 1.

On the convergence of the numerical schemes

Though the results of Chapter 1 apply in a very general setting, one of our main
applications is the boundary control 1− d wave equation discretized using finite
differences (or finite elements) methods, see Section 1.7. In such case, the unbound-
edness of the control operator makes hard to check the convergence assumptions of
Chapter 1.
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We therefore provide a fine analysis of the convergence properties of finite-
difference methods that does not seem to be available in the existing literature. Thus
in Chapters 3 and 4 we develop some new technical results on the convergence of
the finite difference approximation methods for the wave equation and, in particular,
on non-homogeneous boundary value problems, that are necessary for a complete
analysis of the convergence of numerical controls towards continuous ones. These
results are of interest independently of their control theoretical implications.

The main difficulty to obtain convergence rates for numerical approximations is
that solutions of the (even in 1−d) wave equation with non homogeneous boundary
data are defined in the sense oftransposition.

To be more precise, following [36] (see also [33, 35]), ifv belongs toL2(0,T),
the solutiony of







∂tty− ∂xxy= 0, (t,x) ∈ R+× (0,1),
y(t,0) = 0, y(t,1) = v(t), t ∈R+,
(y(0,x),∂ty(0,x)) = (0,0), x∈ (0,1),

(0.3)

in the sense of transposition lies inC([0,T];L2(0,1))∩C1([0,T];H−1(0,1)).
The proof of this fact is based on a hidden regularity (or admissibility) result for

the solutionsϕ of the adjoint system






∂tt ϕ − ∂xxϕ = f , (t,x) ∈ (0,T)× (0,1),
ϕ(t,0) = ϕ(t,1) = 0, t ∈ (0,T),
(ϕ(T,x),∂t ϕ(T,x)) = (0,0), x∈ (0,1),

(0.4)

with source termf ∈ L1(0,T;L2(0,1)) (and for f = ∂tg with g∈ L1(0,T;H1
0(0,1))),

that should satisfy
∂xϕ(t,1) ∈ L2(0,T). (0.5)

Note that, with these regularity assumptions on the initialdata and the source term,
solutionsϕ of (0.4) belong to the spaceC([0,T];H1

0(0,1))∩C1([0,T];L2(0,1)), but
this well-known finite energy property does not guarantee (0.5) to hold by classical
trace inequalities. In fact, (0.5) is a consequence of a fine property of hidden regular-
ity of solutions of the wave equation with Dirichlet boundary conditions, both in the
1−d and in the multi-dimensional case. Thus, for the analysis ofthe convergence
of the numerical approximation methods these hidden regularity properties have to
be proved uniformly with respect to the mesh size parameters.

Hence the sharp analysis of the convergence of the finite-difference approxima-
tions of the solutions of (0.3) will be achieved in two main steps:

• In Chapter 2 we study the behavior of the finite difference approximation
schemes of (0.4) from the point of view of admissibility. In particular, we prove
a uniform admissibility result (already obtained in [28]) that will be needed for the
convergence results. Our proof relies on a discrete multiplier technique. We also
explain how this can be used to obtain sharp quantitative estimates for a uniform
observability result within classes of filtered data.
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• In Chapter 3 we present the convergence of the 1−d finite difference approx-
imation schemes with homogeneous Dirichlet boundary data and establish sharp
results about convergence rates. Most of these results are rather classical, except for
the convergence of the normal derivatives.

• In Chapter 4 we derive convergence results for the finite difference approxima-
tion on the 1−d wave equation (0.3) with non-homogeneous boundary data, based
on suitable duality arguments.

Further comments

In Chapter 5, we conclude our study with some further comments and open prob-
lems. In particular, we comment on the consequences of our analysis at the level of
optimal control problems or the extension of our results to the fully discrete context.





Chapter 1
Numerical approximation of exact controls for
waves

1.1 Introduction

We present an abstract framework in which our methods and approach apply, the
wave equation being a particular instance that we present inSection 1.7.

1.1.1 An abstract functional setting

Let X be an Hilbert space endowed with the norm‖·‖X and letT = (Tt )t∈R be
a linear strongly continuous group onX, with skew-adjoint generatorA : D(A) ⊂
X → X, satisfyingA∗ =−A. We shall also assume thatA has compact resolvent and
that the domain ofA is dense inX.

For convenience, we also assume that 0 is not in the spectrum of A, so that for
s∈ N, we can define the Hilbert spacesXs = D(As) of elements ofX such that
‖Asx‖X < ∞ endowed with the norm‖·‖s := ‖As·‖X . Note that this does not restrict
the generality of our analysis. Indeed, if 0 is in the spectrum of A, choosing a point
β ∈ iR which is not in the spectrum ofA and replacingA by A−β I , our analysis
applies.

Fors≥ 0, we also define the Hilbert spacesXs obtained by interpolation between
D(A⌊s⌋) andD(A⌈s⌉), that we endow with the norm‖·‖s. Fors≤ 0, we then define
Xs as the dual ofX−s with respect to the pivot spaceX and we endow it with its
natural dual norm.

We are then interested in the following equation:

y′ = Ay+Bv, t ≥ 0, y(0) = y0 ∈ X. (1.1)

Here,B is an operator inL(U,X−1), whereU an Hilbert space. This operator deter-
mines the action of the control functionv∈ L2

loc([0,∞);U) into the system.
The well-posedness of equation (1.1) can be guaranteed assuming that the oper-

atorB is admissible in the sense of [49, Def. 4.2.1]:

7



8 1 Numerical approximation of exact controls for waves

Definition 1.1. The operatorB∈ L(U,X−1) is said to be an admissible control op-
erator forT if for someτ > 0, the operatorRτ defined onL2(0,T;U) by

Rτv=
∫ τ

0
Tτ−sBv(s)ds

satisfies RanRτ ⊂ X, where RanRτ denotes the range of the mapRτ .
WhenB is an admissible control operator forT, system (1.1) is said to be admis-

sible.

Of course, ifB is bounded, i.e. ifB ∈ L(U,X), thenB is admissible forT. But
such assumption may also hold when the operatorB is not bounded, for instance
when considering the wave equation controlled from its Dirichlet boundary condi-
tions. There, the admissibility property follows from a suitable hidden regularity
result for the adjoint equation of (1.1), see [36].

To be more precise,B is an admissible control operator forT if and only if there
exist a timeT > 0 and a constantCad,T such that any solution of the adjoint equation

ϕ ′ = Aϕ , t ∈ (0,T), ϕ(0) = ϕ0 (1.2)

with dataϕ0 ∈ D(A) (and then inX by density) satisfies

∫ T

0
‖B∗ϕ(t)‖2

U dt ≤C2
ad,T ‖ϕ0‖2

X . (1.3)

Note that the semigroup property immediately implies that if the inequality (1.3)
holds for some timeT∗, it also holds for allT > 0.

In this work, we will always assume thatB is an admissible control operator
for T. As explained in [49, Prop. 4.2.5], this implies that for every y0 ∈ X andv ∈
L2

loc([0,∞);U), the solution of equation (1.1) has a unique mild solutiony which
belongs toC([0,∞);X).

Let us now focus on the exact controllability property of system (1.1) in time
T∗ > 0. To be more precise, we say that system (1.1) is exactly controllable in time
T∗ if for all y0 andyf in X, there exists a control functionv∈ L2(0,T∗;U) such that
the solutiony of (1.1) satisfiesy(T∗) = yf .

Since we assumed thatA is the generator of a strongly continuous group, using
the linearity and the reversibility of (1.1), one easily checks that the exact control-
lability property of (1.1) in timeT∗ is equivalent to thea priori weaker one, the
so-called null-controllability in timeT∗: system (1.1) is said to be null-controllable
in timeT∗ if for all y0 ∈ X, there exists a control functionv∈ L2(0,T∗;U) such that
the solutiony of (1.1) satisfiesy(T∗) = 0.

In the following, we will focus on the null-controllabilityproperty, i.e.yf ≡ 0,
and we shall refer to it simply as controllability.

In the sequel we assume that system (1.1) is controllable in some timeT∗ and
we focus on the controllability property in timeT > T∗. To be more precise, we are
looking for control functionsv such that the corresponding solution of (1.1) satisfies
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y(T) = 0. (1.4)

According to the so-called Hilbert Uniqueness Method introduced by Lions
[37, 36], the controllability property is equivalent, by duality, to an observability
inequality for the adjoint system (1.2) which consists in the existence of a constant
Cobs,T∗ such that for allϕ0 ∈ X, the solutionϕ of the adjoint equation (1.2) with
initial dataϕ0 satisfies

‖ϕ0‖2
X ≤C2

obs,T∗

∫ T∗

0
‖B∗ϕ(t)‖2

U dt. (1.5)

Now, let T > T∗ and introduceδ so that 2δ = T −T∗ and a smooth function
η = η(t) such that

η smooth, η : R→ [0,1], η(t) =
{

1 on[δ ,T − δ ],
0 onR\ (0,T). (1.6)

Of course, using (1.3), (1.5) and the fact thatA is skew-adjoint, one easily checks
the existence of some positive constantsCad > 0 andCobs> 0 such that for all initial
dataϕ0 ∈ X, the solutionϕ of (1.2) with initial dataϕ0 satisfies

∫ T

0
η(t)‖B∗ϕ(t)‖2

U dt ≤C2
ad‖ϕ0‖2

X , (1.7)

‖ϕ0‖2
X ≤C2

obs

∫ T

0
η(t)‖B∗ϕ(t)‖2

U dt. (1.8)

Based on these inequalities the Hilbert Uniqueness Method yields the control of
minimal norm (inL2((0,T),dt/η ;U)) by minimizing the functional

J(ϕ0) =
1
2

∫ T

0
η(t)‖B∗ϕ(t)‖2

U dt+ 〈y0,ϕ0〉X , (1.9)

for ϕ0 ∈ X, whereϕ denotes the solution of the adjoint equation (1.2) with dataϕ0.
Indeed, according to the inequalities (1.7)-(1.8), this functionalJ is well-defined,

strictly convex and coercive onX. Therefore, it has a unique minimizerΦ0 ∈ X.
Then, if Φ denotes the corresponding solution of (1.2) with dataΦ0, the function
V(t) = η(t)B∗Φ(t) is a control function for (1.1). Besides,V is the control of min-
imal L2(0,T;dt/η ;U)-norm among all possible controls for (1.1) (i.e. so that the
controlled system (1.1) fulfills the controllability requirement (1.4)).

In the sequel, we will focus on the computation of the minimizerΦ0 of J in (1.9),
which immediately gives the control function according to the formula

V(t) = η(t)B∗Φ(t). (1.10)
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1.1.2 Contents of Chapter 1

Based on this characterization ofΦ0 as the minimizer of the functionalJ in
(1.9), one can build an “algorithm” to approximate the minimizer in this infinite-
dimensional setting. For, it suffices to apply a steepest descent or conjugate gradient
iterative algorithm, for instance.

Of course, this procedure can be applied in the context of theexample above
in which the wave equation (0.1) in a bounded domainΩ with Dirichlet boundary
conditions is controlled in the energy spaceH1

0(Ω)×L2(Ω) by means ofL2 controls
localized in an open subsetω . This will be explained further in Section 1.7.

Once this iterative algorithm is built at the infinite-dimensional level one can
mimic it for suitable numerical approximation schemes. In this way, combining the
classical convergence properties of numerical schemes andthe convergence prop-
erties of the iterative algorithm for the search of the minimizer of J in the func-
tional setting above, one can get quantitative convergenceresults towards the con-
trol. Roughly speaking, this is thecontinuous approachto the numerical approxi-
mation of controls.

Recently, as mentioned above, a variant of this method has been developed and
applied in [9] in the particular case of the wave equation. Rather than considering
the HUM controls of minimal norm, characterized as the minimizers of a functional
of the formJ, the authors consider the control given by the classical Russell’s prin-
ciple, obtained as limit of an iterative process based on a stabilization property. This
iterative procedure, based on the contractivity of the semigroup for exponentially de-
caying stabilized wave problems, applied into a numerical approximation scheme,
leads to convergence rates, similar to those that the iterative methods for minimizing
the functionalsJ as above do. Thus, the method implemented in [9] can be viewed
as a particular instance of the continuous approach, see also item # 2 in Chapter 5.

The first goal of this paper is to fully develop the continuousapproach in a general
context of numerical approximation semigroups of the abstract evolution equation
(1.1) based on iterative algorithms for the minimization ofthe functionalJ. Explicit
convergence rates will be obtained. These results are of general application for nu-
merous examples, including the wave equation mentioned above, see Section 1.7.
As we shall see, these general results are similar to those stated in Theorem 1.3
obtained in [9] in the specific context of Russell’s principle for the wave equation.
However, the continuous approach we propose, based on the minimization of the
functionalJ has several advantages, and in particular the one of being applicable to
non-bounded (but still admissible) control operatorsB and in particular in the case
of boundary control for the wave equation.

The second goal of this paper is to compare these results withthose one can get
by means of the discrete approach which consists in controlling a finite-dimensional
numerical approximation scheme of the original semigroup,in the spirit of the sur-
vey article [52] and the references therein.

To be more precise, let us consider a semi-discrete approximation of the equation
(1.2). For allh> 0, we introduce the equations
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ϕ ′
h = Ahϕh, t ∈ (0,T), ϕh(0) = ϕ0h, (1.11)

whereAh is a skew-adjoint approximation of the operatorA in a finite-dimensional
Hilbert spaceVh embedded intoX. In practice one can think of finite-difference or
finite-element approximations of the PDE under consideration, for instance,h being
the characteristic length of the numerical mesh.

We shall also introduceB∗
h, an approximation of the operatorB∗, defined onVh

with values in some Hilbert spacesUh.
Here, we do not give yet a precise meaning to the sense in whichthe sequence

of operators(Ah,Bh) approximate(A,B) and converge to it ash→ 0. We will come
back to that issue later on when stating our main results in Section 1.2.

Once the finite-dimensional approximation (1.11) of (1.2) has been set, one then
introduces the discrete functional

Jh(ϕ0h) =
1
2

∫ T

0
η(t)‖B∗

hϕh(t)‖2
Uh

dt+ 〈y0h,ϕ0h〉Vh, (1.12)

whereϕh is the solution of (1.11) corresponding to dataϕ0h ∈ Vh and y0h is an
approximation inVh of y0 ∈ X.

Of course, the functionalJh is a natural approximation of the continuous func-
tionalJ defined by (1.9). One could then expect the minima ofJh to yield convergent
approximations of the minima of the continuous functionalJ. It turns out that,in
general, this is not the case. Even worse, it may even happen that, for some datay0

to be controlled, the minimizers of these discrete functionals are not even bounded,
and actually diverge exponentially ash→ 0, see [24, 52, 17, 18]. This is an evidence
of the lack ofΓ -convergence of the functionalsJh towardsJ.

This instability is due to spurious high-frequency numerical components that
make the discrete versions of the observability inequalities to blow up ash → 0,
see e.g. [48, 38].

However, once we have understood that these instabilities arise at high-frequen-
cies, one can develop filtering techniques which consist, essentially, in restricting
the functionalsJh to subspaces ofVh in which they are uniformly coercive and
so that these subspaces, ash → 0, cover the whole spaceX, thus ensuring theΓ -
convergence of the restricted functionals. These subspaces can be chosen in various
manners: we refer to [28, 51, 12, 41] for Fourier filtering techniques, [43] for bi-grid
methods, [42] for wavelet approximations and to [6, 7, 13, 10] for other discretiza-
tion methods designed to attenuate these high frequency pathologies. In this way
one can obtain the convergence of discrete controls toward the continuous one and
even convergence rates, based on the results in [15], see [17, 18].

But, it is important to note that the minimizers obtained by minimizing the
functionalsJh on strict subspaces ofVh do not yield exact controls of the finite-
dimensional dynamics but rather partial controls, in whichthe controllability re-
quirement at timet = T is relaxed so that a suitable projection of the solution is
controlled. In other words, relaxing the minimization process to a subspace of the
whole spaceVh yields a relaxation of the control requirement as well.
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This discrete analysis is based on a deep understanding of the finite-dimensional
dynamics of (1.11) in contrast with the continuous approachthat uses simply the
control results for the continuous system and the classicalresults on the convergence
of finite-dimensional approximations.

The third and last goal of this Chapter is to compare the convergence results ob-
tained by the continuous approach with those one gets applying the discrete one. As
we shall see, finally, the filtering methods developed in the discrete setting can also
be understood in the continuous context, as an efficient projection of the numerical
approximation of the gradient-like iteration procedures developed in the continuous
frame.

Our main results end up unifying, to a large extent, both the continuous and the
discrete approaches.

1.2 Main results

1.2.1 An “algorithm” in an infinite dimensional setting

In the abstract setting of the previous section, let us introduce the so-called Gramian
operatorΛT defined onX by

∀(ϕ0,ψ0) ∈ X2, 〈ΛTϕ0,ψ0〉X =

∫ T

0
η(t)〈B∗ϕ(t),B∗ψ(t)〉U dt, (1.13)

whereϕ(t),ψ(t) are the corresponding solutions of (1.2).
Obviously, this Gramian operator is nothing but the gradient of the quadratic

term entering in the functionalJ and therefore plays a key role when identifying the
Euler-Lagrange equations associated to the minimization of J and when building
gradient-like iterative algorithms. In particular,Φ0 ∈X is a critical point ofJ (hence
automatically a minimum sinceJ is strictly convex) if and only if

ΛTΦ0+ y0 = 0. (1.14)

Note that this Gramian operator can be written, at least formally, as

ΛT =
∫ T

0
η(t)e−tABB∗etAdt.

Under this form, one immediately sees thatΛT is a self-adjoint non-negative opera-
tor, and that it is bounded and positive definite when (1.7)-(1.8) hold.

Of course, estimates (1.7)-(1.8), that guarantee thatJ is well-defined, coercive
and strictly convex, and hence the uniqueness of the minimizer toJ, also imply the
existence and uniqueness of a solutionΦ0 ∈ X of (1.14).

Before going further, let us explain that, when assuming (1.7)-(1.8), if s≥ 0, for
y0 ∈ Xs the solutionΦ0 of (1.14) also belongs toXs and there exists a constantCs
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such that
‖Φ0‖s ≤Cs‖y0‖s . (1.15)

This is a consequence of the regularity results derived in [15] obtained for abstract
conservative systems in which the fact of having introducedthe time cut-off function
η in (1.6) within the definition of the GramianΛT plays a critical role. Otherwise,
if η ≡ 1 our analysis would have to be restricted to bounded controloperators such
thatBB∗ mapsXp to Xp for eachp∈ [0,⌈s⌉], see [15].

Note that the results in [15] can also be seen as an abstract counterpart of the re-
sults in [11], which state that, in the case of the wave equation with distributed con-
trols (hence corresponding to the case of bounded control operators), the Gramian
with this cut-off functionη = η(t) in time and a control operatorBB∗ ∈ ∩p>0L(Xp)
mapsXs to Xs for all s≥ 0. The results in [11] are even more precise when working
on a compact manifold without boundary, in which case it is proved that the inverse
of the Gramian is a pseudo-differential operator that preserves the regularity of the
data.

To fully develop the continuous approach to the numerical approximation of the
controls, we implement the steepest descent algorithm for the minimization of the
functionalJ in (1.9). But for doing that it is more convenient to have an alternate
representation of the Gramian.

Let ϕ0 ∈ X andϕ be the corresponding solution of (1.2). Then solve

ψ ′ = Aψ −ηBB∗ϕ , t ∈ (0,T), ψ(T) = 0. (1.16)

Then, as it can be easily seen,

ΛTϕ0 = ψ(0),

whereψ solves (1.16) andϕ is the solution of (1.2).
The steepest descent algorithm then reads as follows:

• Initialization: Define
ϕ0

0 = 0. (1.17)

• Iteration: Forϕk
0 ∈ X, defineϕk+1

0 by

ϕk+1
0 = ϕk

0 −ρ(ΛTϕk
0 + y0), (1.18)

whereρ > 0 is a fixed parameter, whose (small enough) value will be specified
later on.

We shall then show the following results:

Theorem 1.1.Let s≥ 0. Assume that the estimates(1.7)-(1.8)hold true. Let y0 ∈ Xs

andΦ0 ∈ X be the solution of(1.14).
Then settingρ0 > 0 as

ρ0 =
2

C4
adC

2
obs

, (1.19)
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for all ρ ∈ (0,ρ0), the sequenceϕk
0 defined by(1.17)-(1.18)satisfies, for some con-

stantδ ∈ (0,1) given by

δ (ρ) :=

√

1−2
ρ

C2
obs

+ρ2C4
ad, (1.20)

that for all k∈ N,
∥

∥

∥ϕk
0 −Φ0

∥

∥

∥

X
≤Cδ k‖y0‖X . (1.21)

Besides,Φ0 ∈ Xs and for all k∈N, the sequenceϕk
0 belongs to Xs. The sequence

ϕk
0 also strongly converges toΦ0 in Xs and satisfies, for some constant Cs indepen-

dent ofΦ0 ∈ Xs and k∈ N,
∥

∥

∥
ϕk

0 −Φ0

∥

∥

∥

s
≤Cs(1+ ks)δ k‖y0‖s , k∈N. (1.22)

The first statement (1.21) in Theorem 1.1 is nothing but the application of the
well known results on the convergence rate for the steepest-descent method when
minimizing quadratic coercive and continuous functionalsin Hilbert spaces ([8]).
However, the result (1.22) is new and relies in an essential manner on the fact that
the Gramian operator preserves the regularity properties of the data to be controlled,
a fact that was proved in [15] and for which the weight function η = η(t) plays a
key role.

Also note that the results in Theorem 1.1 are written in termsof the norms ofy0,
but we will rather prove the following stronger results (according to (1.15)):

∥

∥

∥ϕk
0 −Φ0

∥

∥

∥

X
≤ δ k‖Φ0‖X , (1.23)

and, ify0 ∈ Xs,
∥

∥

∥ϕk
0 −Φ0

∥

∥

∥

s
≤Cs(1+ ks)δ k‖Φ0‖s, k∈ N. (1.24)

Of course, these convergence results also imply that the sequencevk = ηB∗ϕk,
whereϕk is the solution of (1.2) with initial dataϕk

0, converge to the controlV given
by (1.10):

∥

∥

∥vk−V
∥

∥

∥

L2(0,T;dt/η;U)
≤Cδ k‖y0‖X . (1.25)

Note that, in general, (1.22) also gives estimates on the convergence ofvk towards
V in stronger norms when the datay0 to be controlled lies inXs for somes≥ 0.
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1.2.2 The continuous approach

Following the “algorithm” developed in Theorem 1.1, we now approximate the se-
quenceϕk

0 constructed in (1.17)-(1.18). A way of doing that is to introduce operators
Ah andBh as above and to define the discrete operator

ΛTh =

∫ T

0
η(t)e−tAhBhB∗

hetAh dt.

To be more precise, we shall assume that we have an extension mapEh : Vh → X
that induces an Hilbert structure onVh endowed by the norm‖·‖h = ‖Eh ·‖X . We
further assume that, for eachh > 0, Ah is skew-adjoint with respect to that scalar
product, so thatΛTh is self-adjoint inVh.

Classically, for the numerical method to be consistent, it is assumed that, for
smooth initial dataϕ ∈ ∩s>0Xs, (EhRh − Id)ϕ strongly converge to zero inX as
h→ 0, whereRh is a restriction operator fromX toVh. But for our purpose, we need
a slightly different version of it (though of course they arerelated), see Assumption
2 in (1.29) below.

Here, we shall rather assume the two following conditions:
Assumption 1.There exists> 0, θ > 0 andC> 0 so that for allh> 0

‖EhRhϕ0‖X ≤ C‖ϕ0‖X , ϕ ∈ X, (1.26)

‖(EhRh− IdX)ϕ0‖X ≤ Chθ ‖ϕ0‖s, ϕ ∈ Xs, (1.27)

‖EhΛThRhϕ0‖X ≤ C‖ϕ0‖X , ϕ ∈ X, (1.28)

‖(EhΛThRh−EhRhΛT)ϕ0‖X ≤ Chθ ‖ϕ0‖s, ϕ ∈ Xs. (1.29)

Assumption 2.The norms of the operatorsΛTh in L(Vh) are uniformly bounded
with respect toh> 0:

C
2
ad := sup

h≥0
‖ΛTh‖L(Vh)

< ∞, (1.30)

where, whenh= 0, we use the notationV0 = X andΛT0 = ΛT .
Before going further, let us emphasize that Assumption 2, though straightforward

when the observation operators are uniformly bounded with respect to theL(Xh,Uh)
norms, is not obvious when dealing with boundary controls, for instance. Indeed, in
that case, one should be careful and prove a uniform admissibility result (here and
in the following, “uniform” always refers to the dependenceon the discretization
parameter(s)). Also note that Assumption 2 together with (1.26) implies (1.28).

We now have the following result:

Theorem 1.2.Assume that Assumptions 1 and 2 hold. Defineρ1 by

ρ1 = min{ρ0,2/C
2
ad}, (1.31)

whereρ0 is given by Theorem 1.1.
Letρ ∈ (0,ρ1). Let y0 ∈ Xs and(y0h)h>0 be a sequence of functions such that for

all h > 0, y0h ∈Vh.
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For each h> 0, define the sequenceϕk
0h by induction, inspired in the statement

of Theorem 1.1, as follows:

ϕ0
0h = 0, ∀k∈ N, ϕk+1

0h = ϕk
0h−ρ

(

ΛThϕk
0h+ y0h

)

. (1.32)

Then consider the sequenceϕk
0 defined by induction by(1.17)-(1.18) with this

same parameterρ .
Then there exists a constant C> 0 independent of h> 0 such that for all k∈ N,

∥

∥

∥Ehϕk
0h−ϕk

0

∥

∥

∥

X
≤ kρ ‖Ehy0h− y0‖X +Ckhθ ‖y0‖s. (1.33)

Then, using Theorems 1.1 and 1.2 together, we get the following convergence
theorem.

Theorem 1.3.Assume that Assumptions 1 and 2 hold.
Let y0 ∈ Xs andρ ∈ (0,ρ1), ρ1 given by(1.31). Let (y0h)h>0 be a sequence such

that for all h> 0,
‖Ehy0h− y0‖X ≤Chθ ‖y0‖s. (1.34)

Then, for all h> 0, setting

Kc
h = ⌊θ

log(h)
log(δ )

⌋, (1.35)

whereδ is given by(1.20), we have, for some constant C independent of h,
∥

∥

∥EhϕKc
h

0h −Φ0

∥

∥

∥

X
≤C| log(h)|max{1,s}hθ ‖y0‖s , (1.36)

whereϕKc
h

0h is the Kc
h-iterate of the sequenceϕk

0h defined by(1.32).

This is the so-calledcontinuous approachfor building numerical approximations
of the controls.

At this level it is convenient to underline a number of issues:

• The approximate controls we obtain in this way do not controlthe discrete dy-
namics or some of its projections. They are simply obtained as approximations of
the continuous control by mimicking at the discrete level the iterative algorithm
of Theorem 1.1.

• The result above holds provided the number of iterations is limited by the thresh-
old given by (1.35). Indeed, in case the iterative algorithmwould be continued
after this step, the error estimate would deteriorate as thenumerical experiments
show, see Section 1.7.

As mentioned above, the algorithm above and the error estimates we obtain are
similar to those in [9] where the iterative process proposedby Russell to obtain con-
trollability out of stabilization results is mimicked at the discrete level. The number
of iterations in [9] is of the order of⌊θ | log(h)|m⌋, wherem is a constant that en-
ters in the continuous stabilization property of the dissipative operatorA−BB∗, and
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the error obtained that way ishθ | log(h)|2. But the results in [9] apply only in the
context of bounded control operators and they do not yield the control of minimal
L2-norm, whereas our approach applies under the weaker admissibility assumption
on the control operator and yields effective approximations of the minimal norm
controls (suitably weighted in time).

Note that estimates (1.36) also imply that the sequencevk
h = ηB∗

hϕk
h, defined

for k ≥ 0 with ϕk
h(t) = exp(tAh)ϕk

0h satisfies thatv
Kc

h
h is close toV in (1.10) with

some bounds (usually the same) on the error term. We do not state precisely the
corresponding results since it would require to introduce further assumptions on the
way the spacesUh approximateU .

1.2.3 The discrete approach

As we have mentioned above, the discrete approach is based onthe analysis and
use of the controllability properties of the approximated discrete dynamics to build
efficient numerical approximations of the controls.

The main difference when implementing it is that it requiresthe following uni-
form coercivity assumption on the Gramian operator:

Assumption 3.There exists a constantC such that for allh≥ 0 andϕ0h ∈Vh,

‖ϕ0h‖2
h ≤ C

2〈ΛThϕ0h,ϕ0h〉h, (1.37)

where, forh= 0, we use the notationV0 = X andΛT0 = ΛT .

Note that Assumption 3 states the uniform coercivity of the operatorsΛTh, or
equivalently, the uniform observability for the approximated semigroups. This as-
sumption often fails and is only guaranteed to hold in suitable subspaces ofVh,
after applying suitable filtering mechanisms (see [23, 17, 24]). Indeed, the classi-
cal numerical methods employed to approximateΛT by ΛTh that are usually based
on replacing the wave equation by a numerical approximationcounterpart, usually
provide discrete operatorsΛTh that violate this uniform observability assumption.
Hence providing a subspaceVh satisfying (1.37) requires of a careful analysis of the
observability properties of the discrete dynamics, a fact that is not necessary when
developing the continuous approach.

In any case, under Assumption 3, we can prove the following stronger version of
Theorem 1.2:

Theorem 1.4.Assume that Assumptions 1, 2 and 3 hold. Define

ρ2 =
2

C 4
adC

2
(1.38)

and considerρ ∈ (0,ρ2). Let y0 ∈ D(As) and (y0h)h>0 be a sequence of functions
such that for all h> 0, y0h ∈Vh.
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For each h> 0, define the sequenceϕk
0h by induction as in(1.32). Then consider

the sequenceϕk defined by induction by(1.17)-(1.18)with this same parameterρ .
Then there exists a constant C> 0 independent of h> 0 such that for all k∈ N,

∥

∥

∥
Ehϕk

0h−ϕk
0

∥

∥

∥

X
≤C

(

‖Ehy0h− y0‖X +hθ ‖y0‖s

)

. (1.39)

Then, using Theorems 1.1 and 1.4 together, we get the following counterpart of
Theorem 1.3:

Theorem 1.5.Let us suppose that Assumptions 1, 2 and 3 hold.
Let y0 ∈ Xs andρ ∈ (0,ρ2), ρ2 given by(1.38).
Let (y0h)h>0 be a sequence such that(1.34)holds.
Then, for all h> 0, setting

Kd
h = ⌊θ

log(h)
log(δ )

− (s+1)
log(| log(h)|)

log(δ )
⌋, (1.40)

whereδ is given by(1.20), we have, for some constant C independent of h and k,
∥

∥

∥Ehϕk
0h−Φ0

∥

∥

∥

X
≤Chθ ‖y0‖s , k≥ Kd

h , (1.41)

whereϕk
0h is the k-iterate of the sequenceϕk

0h defined by(1.32).

Note that, under Assumptions 1, 2 and 3, for ally0h ∈Vh, the equation

ΛThΦ0h+ y0h = 0 (1.42)

has a unique solutionΦ0h, on which we have a uniform bound:

‖Φ0h‖h ≤ C
2‖y0h‖h , (1.43)

whereC is the constant in Assumption 3.
Now, sincek can be made arbitrarily large in Theorem 1.5, ify0 ∈ Xs andy0h de-

notes an approximation ofy0 that satisfies (1.34), settingΦ0h the solution of (1.42),
we have

‖EhΦ0h−Φ0‖X ≤Chθ ‖y0‖s , (1.44)

whereΦ0 is the solution of (1.14). Indeed, in that case, it is very easy to check that
at h> 0 fixed, ask→ ∞, the sequenceφk

0h converges toΦ0,h given by (1.42) inVh,
see e.g. Theorem 1.6.

This is the convergence result obtained in [17], using another proof, directly
based on the smoothness of the trajectory of the minimizerΦ0 wheny0 ∈ Xs. We
refer to [17] for numerical evidences on the fact that the convergence rates (1.44)
are close to sharp. We will also illustrate this fact in Section 1.7.
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Outline of Chapter 1

Chapter 1 is organized as follows. In Section 1.3 we prove Theorem 1.1. In Section
1.4 we give the proofs of Theorems 1.2–1.3. In Section 1.5 we prove Theorems 1.4–
1.5. We shall then compare the two approaches in Section 1.6.In Section 1.7 we
present some applications of these abstract results, in particular to the wave equa-
tion. In Section 1.8 we show that some data assimilation problems can be treated by
the methods developed in this book.

1.3 Proof of the main result on the continuous setting

This subsection is devoted to the proof of Theorem 1.1. We shall then fix T > 0 so
that estimates (1.7)-(1.8) hold. Giveny0 ∈ Xs, Φ0 ∈ X is chosen to be the unique
solution of (1.14).

Let thenϕk
0 be the the sequence defined by the induction formula (1.17)-(1.18).

1.3.1 Classical convergence results

First we prove (1.23) which is classical and corresponds to the usual proof of con-
vergence of the steepest descent algorithm for quadratic convex functionals. We
provide it only for completeness and later use.

Proof (Proof of estimate(1.23)). Using (1.18), and subtracting to itΦ0, we get

ϕk+1
0 −Φ0 = ϕk

0 −Φ0−ρ(ΛTϕk
0 + y0) = ϕk

0 −Φ0−ρΛT(ϕk
0 −Φ0), (1.45)

where the last identity follows from the definition ofΦ0 in (1.14).
But, for anyψ ∈ X,

‖(I −ρΛT)ψ‖2
X = ‖ψ‖2

X −2ρ〈ΛTψ ,ψ〉X +ρ2‖ΛTψ‖2
X .

Hence, using that (1.7)-(1.8) can be rewritten as

1

C2
obs

‖ψ‖2
X ≤

∥

∥

∥Λ1/2
T ψ

∥

∥

∥

2

X
≤C2

ad‖ψ‖2
X ,

we get that

‖(I −ρΛT)ψ‖2
X ≤

(

1−2
ρ

C2
obs

+ρ2C4
ad

)

‖ψ‖2
X . (1.46)

Note that, according to (1.7)–(1.8),C2
obsC

2
ad ≥ 1 and thus for allρ > 0, the quadratic

form 1−2ρ/C2
obs+ρ2C4

ad is nonnegative.
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Thus, for anyρ > 0 such thatρ ∈ (0,ρ0) with ρ0 as in (1.19), and settingδ (ρ)
as in (1.20),δ (ρ) belongs to(0,1) and

‖(I −ρΛT)‖L(X) ≤ δ (ρ). (1.47)

From (1.45), we obtain
∥

∥

∥ϕk+1
0 −Φ0

∥

∥

∥

X
≤ δ

∥

∥

∥ϕk
0 −Φ0

∥

∥

∥

X
. (1.48)

Of course, (1.48) immediately implies (1.23). ⊓⊔

1.3.2 Convergence rates inXs

Here, our goal is to show the convergence of the sequenceϕk
0 constructed in (1.17)-

(1.18) in the spaceXs.

Proof (Proof of the convergence in Xs). Whens∈ R+, the convergence estimate
(1.24) is deduced by interpolation between the results obtained for ⌊s⌋ and ⌈s⌉.
Hence, in the following, we focus on the proof of (1.24) for integerss∈N. Besides,
the cases= 0 is already done in (1.23) so we will be interested in the cases∈ N

ands≥ 1.
Step 1. The Gramian operator mapsD(As) to D(As).
For ψ0 ∈ X, introduce the functionΨ0 ∈ D(A) defined byAΨ0 = ψ0. Then the

solutionsΨ andψ of (1.2) with corresponding initial dataΨ0 andψ0 satisfy, for all
t ∈ (0,T), Ψ ′(t) = AΨ(t) = ψ(t).

Hence, ifϕ0 ∈ D(A) andψ0 ∈ X, denoting byϕ the solution of (1.2) with data
ϕ0,

〈ΛTϕ0,ψ0〉X =
∫ T

0
η(t)〈B∗ϕ(t),B∗Ψ ′(t)〉U dt

= −
∫ T

0
η(t)〈B∗ϕ ′(t),B∗Ψ(t)〉U dt−

∫ T

0
η ′(t)〈B∗ϕ(t),B∗Ψ(t)〉U dt.

Of course, using (1.7) and (1.3), this implies that

|〈ΛTϕ0,ψ0〉X | ≤C2
ad‖Aϕ0‖X ‖Ψ0‖X +

∥

∥η ′∥
∥

L∞ C2
ad,T ‖ϕ0‖X ‖Ψ0‖X

≤ ‖Aϕ0‖X

∥

∥A−1ψ0
∥

∥

X

(

C2
ad+C2

ad,T

∥

∥η ′∥
∥

L∞

∥

∥A−1
∥

∥

L(X)

)

.

Therefore,ΛT mapsD(A) to itself.
Of course, the case of an integers∈ N strictly larger than 1 can be treated sim-

ilarly, and is left to the reader. Then, by interpolation, this also implies that for all
s≥ 0, ΛT mapsXs to Xs.

This step already indicates that for eachk ∈ N, ϕk
0 constructed by the induction

formula (1.17)-(1.18) belongs toXs provided thaty0 ∈ Xs.
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Step 2. First estimate on the commutator[ΛT ,A]. Takeϕ0 andψ0 in D(A). From the
previous step, we know that[ΛT ,A]ϕ0 ∈ X, and we can then take its scalar product
with ψ0 ∈ D(A):

〈[ΛT ,A]ϕ0,ψ0〉X = 〈ΛTAϕ0,ψ0〉X −〈AΛTϕ0,ψ0〉X

= 〈ΛTAϕ0,ψ0〉X + 〈ΛTϕ0,Aψ0〉X

=

∫ T

0
η(t)〈B∗ϕ ′(t),B∗ψ(t)〉U dt+

∫ T

0
η〈B∗ϕ(t),B∗ψ ′(t)〉U dt

= −
∫ T

0
η ′(t)〈B∗ϕ(t),B∗ψ(t)〉U dt,

whereϕ andψ are the solutions of (1.2) with dataϕ0 andψ0 respectively. Hence,
using (1.3), we obtain

|〈[ΛT ,A]ϕ0,ψ0〉X | ≤C2
ad,T

∥

∥η ′∥
∥

L∞ ‖ϕ0‖X ‖ψ0‖X , (1.49)

and the operator[ΛT ,A] can be extended as a continuous operator fromX to X and

‖[ΛT ,A]‖L(X) ≤C2
ad,T

∥

∥η ′∥
∥

L∞ . (1.50)

Step 3. Convergence inD(A). Apply A in the identity (1.45):

A
(

ϕk+1
0 −Φ0

)

= A
(

ϕk
0 −Φ0

)

−ρAΛT(ϕk
0 −Φ0)

= A
(

ϕk
0 −Φ0

)

−ρΛTA(ϕk
0 −Φ0)+ρ [ΛT,A](ϕk

0 −Φ0). (1.51)

Then, using (1.47) and (1.50), we obtain
∥

∥

∥A
(

ϕk+1
0 −Φ0

)∥

∥

∥

X
≤ δ

∥

∥

∥A
(

ϕk
0 −Φ0

)∥

∥

∥

X
+ρ ‖[ΛT ,A]‖L(X)

∥

∥

∥

(

ϕk
0 −Φ0

)∥

∥

∥

X
,

(1.52)
and, using (1.23),

∥

∥

∥A
(

ϕk+1
0 −Φ0

)∥

∥

∥

X
≤ δ

∥

∥

∥A
(

ϕk
0 −Φ0

)∥

∥

∥

X
+ρδ k‖[ΛT ,A]‖L(X) ‖Φ0‖X .

Therefore,

1
δ k+1

∥

∥

∥A
(

ϕk+1
0 −Φ0

)∥

∥

∥

X
− 1

δ k

∥

∥

∥A
(

ϕk
0 −Φ0

)∥

∥

∥

X
≤ ρ

δ
‖[ΛT ,A]‖L(X) ‖Φ0‖X .

Summing up these inequalities, we obtain, for allk∈ N,

∥

∥

∥A
(

ϕk
0 −Φ0

)∥

∥

∥

X
≤ δ k

(

‖AΦ0‖X +
ρk
δ

‖[ΛT ,A]‖L(X) ‖Φ0‖X

)

. (1.53)

Step 4. Higher order estimates(1.24). They are left to the reader as they are very
similar to those obtained in (1.53). They are obtained by induction fors∈ N.
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The idea is to write

As
(

ϕk+1
0 −Φ0

)

= (I −ρΛT)A
s
(

ϕk
0 −Φ0

)

+ρ [ΛT ,A
s]
(

ϕk
0 −Φ0

)

,

and use the fact that[ΛT ,As] is bounded as an operator fromD(As−1) to X, which
can be proved similarly as inStep 2. Then one easily gets that

∥

∥

∥As
(

ϕk+1
0 −Φ0

)∥

∥

∥

X
≤ δ

∥

∥

∥As
(

ϕk
0 −Φ0

)∥

∥

∥

X

+ρ ‖[ΛT ,A
s]‖

L(D(As−1),X)

∥

∥

∥
As−1

(

ϕk+1
0 −Φ0

)∥

∥

∥

X
.

An easy induction argument then yields (1.24) for alls∈ N.
To conclude (1.24) fors≥ 0, we interpolate (1.24) between the two consecutive

integers⌊s⌋ and⌈s⌉. ⊓⊔

Remark 1.1.Note that, actually, the smoothnessη ∈C∞(R) is not really needed to
get Theorem 1.1. The assumptionη ∈C⌈s⌉(R) would be enough.

Also note that, whenBB∗ mapsD(Ap) to D(Ap) for all p ∈ N, one can even
chooseη as being the step functionη(t) = 1 on(0,T∗) (whereT∗ is such that the
observability estimate (1.5) holds) and vanishing outside(0,T∗).

These remarks are of course related to the fact that in these two cases, the needed
integrations by parts run smoothly, similarly as in [15].

1.4 The continuous approach

In this section, we suppose that Assumptions 1 and 2 hold.

1.4.1 Proof of Theorem 1.2

Proof (Theorem 1.2).In the following, we use the notations introduced in Theorem
1.2. All the constants that will appear in the proof below, denoted by a genericC
that may change from line to line, are independent ofρ ∈ (0,ρ1), h> 0 andk∈N.

Subtracting (1.18) to (1.32), we obtain

ϕk+1
0h −Rhϕk+1

0 = ϕk
0h−Rhϕk

0 −ρ(y0h−Rhy0)−ρ
(

ΛThϕk
0h−RhΛTϕk

0

)

= (I −ρΛTh)
(

ϕk
0h−Rhϕk

0

)

−ρ(y0h−Rhy0)+ρ (RhΛT −ΛThRh)ϕk
0.

Hence,



1.4 The continuous approach 23

∥

∥

∥ϕk+1
0h −Rhϕk+1

0

∥

∥

∥

h
≤
∥

∥

∥(I −ρΛTh)
(

ϕk
0h−Rhϕk

0

)∥

∥

∥

h

+ρ ‖y0h−Rhy0‖h+ρ
∥

∥

∥(RhΛT −ΛThRh)ϕk
0

∥

∥

∥

h
. (1.54)

But, for ϕh ∈Vh,

‖(I −ρΛTh)ϕh‖2
h = ‖ϕh‖2

h−2ρ
∥

∥

∥Λ1/2
Th ϕh

∥

∥

∥

2

h
+ρ2‖ΛThϕh‖2

h

= ‖ϕh‖2
h−2ρ

∥

∥

∥
Λ1/2

Th ϕh

∥

∥

∥

2

h
+ρ2‖ΛThϕh‖2

h

≤ ‖ϕh‖2
X −2ρ

∥

∥

∥Λ1/2
Th ϕh

∥

∥

∥

2

h
+ρ2

∥

∥

∥Λ1/2
Th

∥

∥

∥

2

L(Vh)

∥

∥

∥Λ1/2
Th ϕh

∥

∥

∥

2

h
.

Hence, if we imposeρ ∈ (0,ρ1), whereρ1 = min{ρ0,2/C 2
ad} as in (1.31) (with

Cad given by Assumption 2),

−2+ρ
∥

∥

∥Λ1/2
Th

∥

∥

∥

2

L(Vh)
≤−2+ρC

2
ad ≤ 0,

and then for allϕh ∈Vh,

‖(I −ρΛTh)ϕh‖2
h ≤ ‖ϕh‖2

h . (1.55)

Accordingly, forρ ∈ (0,ρ1),
∥

∥

∥(I −ρΛTh)
(

ϕk
0h−Rhϕk

0

)∥

∥

∥

h
≤
∥

∥

∥

(

ϕk
0h−Rhϕk

0

)∥

∥

∥

h
. (1.56)

Equation (1.29) in Assumption 1 also yields
∥

∥

∥(RhΛT −ΛThRh)ϕk
0

∥

∥

∥

h
≤Chθ

∥

∥

∥ϕk
0

∥

∥

∥

s
. (1.57)

Using the fact that, according to estimates (1.15), (1.24),there is a constantC
independent ofk andh> 0 such that for allk∈N,

∥

∥

∥ϕk
0

∥

∥

∥

s
≤C‖y0‖s , (1.58)

we derive ∥

∥

∥(RhΛT −ΛThRh)ϕk
0

∥

∥

∥

h
≤Chθ ‖y0‖s. (1.59)

Thus, using (1.54), (1.56) and (1.59), we obtain
∥

∥

∥ϕk+1
0h −Rhϕk+1

0

∥

∥

∥

h
≤
∥

∥

∥ϕk
0h−Rhϕk

0

∥

∥

∥

h
+ρ ‖y0h−Rhy0‖h+Cρhθ ‖y0‖s, (1.60)

whereC is a constant independent ofk andh> 0.
Summing up (1.60), we obtain



24 1 Numerical approximation of exact controls for waves

∥

∥

∥Ehϕk
0h−EhRhϕk

0

∥

∥

∥

X
=
∥

∥

∥ϕk
0h−Rhϕk

0

∥

∥

∥

h
≤ kρ ‖y0h−Rhy0‖h+Ckρhθ ‖y0‖s.

Finally, according to (1.58), estimate (1.27) yields
∥

∥

∥(EhRh− IdX)ϕk
0

∥

∥

∥

X
≤Chθ ‖y0‖s, (1.61)

and thus (1.33) follows immediately. ⊓⊔

1.4.2 Proof of Theorem 1.3

Proof (Theorem 1.3).Using Theorems 1.1 and 1.2 and the estimate (1.34), we ob-
tain that, for some constantC> 0 independent ofh,

∥

∥

∥Ehϕk
0h−Φ0

∥

∥

∥

X
≤C‖y0‖s

(

(1+ ks)δ k+ kρhθ
)

. (1.62)

We then optimize the right hand-side of this estimate ink, thus yielding approxi-
matelyKc

h as in (1.35). Estimate (1.36) immediately follows from the definition of
Kc

h. ⊓⊔

1.5 Improved convergence rates: the discrete approach

In this section, we assume that Assumptions 1 and 2 hold, but also Assumption 3.
Let us recall that Assumption 3, that states a uniform coercivity result for the

discrete GramiansΛTh, is not a consequence of classical convergence results for
numerical methods. It rather consists in a very precise result on the dynamics of the
discrete equations (1.11) which is the key of the discrete approach.

1.5.1 Proof of Theorem 1.4

Proof (Theorem 1.4).It closely follows the proof of Theorem 1.2, except that now,
following the proof of (1.47), based on Assumption 3, we can prove that, forρ ∈
(0,ρ2) and

δd(ρ) =
√

1−2
ρ
C 2 +ρ2K 4, (1.63)

we have that
‖(I −ρΛTh)ϕh‖h ≤ δd ‖ϕh‖h . (1.64)

instead of (1.55).
Consequently, estimate (1.60) can be replaced by
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∥

∥

∥ϕk+1
0h −Rhϕk+1

0

∥

∥

∥

h
≤ δd

∥

∥

∥ϕk
0h−Rhϕk

0

∥

∥

∥

h

+ρ ‖y0h−Rhy0‖h+Cρhθ ‖y0‖s , k∈N, (1.65)

whereC is a constant independent ofk andh> 0.
Of course, this can be rewritten as

1

δ k+1
d

∥

∥

∥ϕk+1
0h −Rhϕk+1

0

∥

∥

∥

h
− 1

δ k
d

∥

∥

∥ϕk
0h−Rhϕk

0

∥

∥

∥

h

≤ 1

δ k+1
d

(

ρ ‖y0h−Rhy0‖h+Cρhθ ‖y0‖s

)

, (1.66)

so
1

δ k
d

∥

∥

∥ϕk
0h−Rhϕk

0

∥

∥

∥

h
≤
(

k

∑
j=1

1

δ j
d

)

(

ρ ‖y0h−Rhy0‖h+Cρhθ ‖y0‖s

)

.

Of course, sinceδd ∈ (0,1), by construction, this implies that for allk∈ N,

∥

∥

∥ϕk
0h−Rhϕk

0

∥

∥

∥

h
≤ 1

1− δd

(

ρ ‖y0h−Rhy0‖h+Cρhθ ‖y0‖s

)

.

Using then (1.61), estimate (1.39) immediately follows, similarly as in the proof of
Theorem 1.2. ⊓⊔

1.5.2 Proof of Theorem 1.5

Proof (Theorem 1.5).Using (1.39), one only needs to findk such that
∥

∥

∥ϕk
0 −Φ0

∥

∥

∥

X
≤Chθ ‖y0‖s.

Thus, we only have to check that this estimate holds for anyk ≥ Kd
h , Kd

h given by
(1.40). But this is an immediate consequence of Theorem 1.1.This concludes the
proof of Theorem 1.5. ⊓⊔

1.6 Advantages of the discrete approach

When comparing the results in Theorem 1.3 and Theorem 1.5, one may think that
the continuous approach, which applies with a lot of generality, yields essentially
the same convergence estimates as the discrete one, more intricate, making the latter
irrelevant. This is not the case, and we list below an important number of facts that
may be used to compare the two techniques.
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1.6.1 The number of iterations

A first look on the number of iterationsKc
h,K

d
h in (1.35) and (1.40) indicates that

they do not depend significantly, but only in a logarithmic manner, on the mesh size
h. They rather depend essentially onδ given by (1.20), which is close to 1.

To be more precise, formula (1.35) requires to have an estimate onδ (ρ), which
depends on the observability and admissibility constants in an intricate way, see
(1.20). However, these two constants are not easy to computein general situations
and, usually, one can only get some bounds on them.

Assume thatCobs is bounded byCobs,est andCad by Cad,est (here and below, the
index ‘est’ stands for estimated). Then, takingρ < 2/(C4

ad,estC
2
obs,est), Theorem 1.3

applies, andδ (ρ)≤ δest, whereδest is defined by

δest=

√

1− 2ρ
C2

obs,est

+ρ2C4
ad,est,

and therefore,
1

| log(δ )| ≤
1

| log(δest)|
,

which means thatKc
h in (1.35) can only be estimated from above

Kc
h ≤ Kc

est,h := ⌊θ
log(h)

log(δest)
⌋.

Of course, thisKc
est,h can be much larger thanKc

h, but according to (1.62), estimate
(1.36) also holds with that stopping timeKc

est,h instead ofKc
h.

Similarly, when applying Theorem 1.5, that is when Assumption 3 holds, one
can boundKd

h in (1.40) by

Kd
est,h := ⌊θ

log(h)
log(δest)

− (s+1)
log(| log(h)|)

log(δest)
⌋.

But here, the final iteration time can be any numberk larger thanKd
est,h, and in

particular it can be chosen to bek ≃ ∞. Hence, in the discrete approach, we do not
really care about the estimates we have onKd

h . This is in contrast with the behavior
of the continuous approach in which, taking the number of iterations beyond the
optimal threshold, can deteriorate the error estimate and actually makes the method
diverge, see Section 1.7.

Actually, in the discrete approach we prove aΓ -convergence result for the min-
imizers of the functionalsJh in (1.12) towards that ofJ in (1.9). Thus, one can use
more sophisticated and rapid algorithms to compute the minimum ofJh as, for in-
stance, conjugate gradient methods, see Section 1.6.3. Theconvergence will then be
faster, and the number of iterations smaller.
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1.6.2 Controlling non-smooth data

Here, we are interested in the case in whichy0 ∈X and we have some discrete initial
datay0h ∈ Vh such thatEhy0h converge toy0 strongly inX. Then, neither Theorem
1.3 nor Theorem 1.5 applies.

However, in the discrete approach, that is when supposing Assumption 3, simi-
larly as in Theorem 1.1, we have the following:

Theorem 1.6.Suppose that Assumptions 1, 2, 3 are satisfied. Let h> 0, y0h ∈ Vh

andΦ0h be the solution of(1.42).
For any ρ ∈ (0,2/C 4C 2) and δ (ρ) as in (1.63), the sequenceϕk

0h defined by
(1.32)satisfies:

∥

∥

∥ϕk
0h−Φ0h

∥

∥

∥

h
≤ δ k‖Φ0h‖h , k∈ N. (1.67)

Of course, the proof of Theorem 1.6 closely follows the one ofTheorem 1.1, and
is therefore omitted.

Note that, sinceΦ0h is the solution of (1.42), it coincides with the unique (be-
cause of Assumption 3) minimizer ofJh defined in (1.12), and the iteratesϕk

0h de-
fined by (1.32) simply are those of the steepest descent algorithm for Jh.

But, using Theorem 1.6, we can prove that, ify0 ∈ X andEhy0h converge toy0 in
X, the sequence ofEhΦ0h converges inX to Φ0:

Theorem 1.7.Suppose that Assumptions 1, 2 and 3 are satisfied. Let y0 ∈ X and
Φ0 ∈ X be the solution of(1.14). Let y0h ∈ Vh and Φ0h ∈ Vh be the solution of
(1.42).

If Ehy0h weakly (respectively, strongly) converges to y0 in X as h→ 0, EhΦ0h

weakly (respectively, strongly) converges toΦ0 in X.

Theorem 1.7 is actually well-known and is usually deduced bysuitable conver-
gence results, similarly as in [17].

Proof. SinceEhy0h weakly converges toy0 in X, it is bounded inX. Therefore, using
(1.43),EhΦ0h is bounded inX. Hence it weakly converges to someφ̃0 in X.

Using thatΦ0 andΦ0h solve respectively (1.14) and (1.42), for allψ0 andψ0h,
we have

〈ΛTΦ0,ψ0〉X + 〈ψ0,y0〉X = 0, 〈ΛThΦ0h,ψ0h〉h+ 〈ψ0h,y0h〉h = 0. (1.68)

In particular, using thatΛT andΛTh are self-adjoint inV andVh respectively,

〈Φ0,ΛT ψ0〉X + 〈ψ0,y0〉X = 0, 〈Φ0h,ΛThψ0h〉h+ 〈ψ0h,y0h〉h = 0. (1.69)

Let us then fixψ0 ∈ Xs andψ0h = Rhψ0. According to Assumption 1,

Ehψ0h −→
h→0

ψ0 in X, EhΛThψ0h −→
h→0

ΛTψ0 in X.

In particular,
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〈φ̃0,ΛTψ0〉X = lim
h→0

〈Φ0h,ΛThψ0h〉h =− lim〈ψ0h,y0h〉h

=−〈ψ0,y0〉X = 〈Φ0,ΛTψ0〉X .

Using thatΛT is an isomorphism onXs and the fact thatXs is dense inX, we thus
deduce that̃φ0 = Φ0, i.e.EhΦ0h weakly converges toΦ0 in X.

Let us now assume thatEhy0h strongly converges toy0 in X. SetΦ0h = Λ−1
Th y0h,

Φ0 =Λ−1
T y0. Letε > 0. Set ˜y0 ∈D(As) such that‖y0− ỹ0‖X ≤ ε. The observability

of the continuous model then implies that, settingΦ̃0 = Λ−1
T ỹ0,

∥

∥Φ̃0−Φ0
∥

∥

X ≤Cε.
Besides, applying Theorem 1.5 to ˜y0, there exists a sequence ˜y0h such that

‖Ehỹ0h− ỹ0‖X ≤Chθ ,
∥

∥EhΦ̃0h− Φ̃0
∥

∥

X ≤Chθ ,

whereΦ̃0h = Λ−1
Th ỹ0h.

Finally, sinceΛ−1
Th is uniformly bounded by Assumption 3,
∥

∥EhΦ̃0h−EhΦ0h

∥

∥

X ≤C‖Ehỹ0h−Ehy0h‖X .

But

‖Ehỹ0h−Ehy0h‖X ≤ ‖Ehỹ0h− ỹ0‖X + ‖ỹ0− y0‖X + ‖y0−Ehy0h‖X

≤ Chθ + ε + ‖y0−Ehy0h‖X ,

and thus

‖Φ0−EhΦ0h‖X ≤
∥

∥Φ0− Φ̃0
∥

∥

X +
∥

∥Φ̃0−EhΦ̃0h

∥

∥

X +
∥

∥EhΦ̃0h−EhΦ0h

∥

∥

X

≤ Chθ +Cε +C‖y0−Ehy0h‖X .

This last estimate proves that for allε > 0,

limsup
h→0

‖Φ0−EhΦ0h‖X ≤Cε.

This concludes the proof of the strong convergence ofEhΦ0h to Φ0 ash→ 0. ⊓⊔

Of course, one can go even further and analyze if Assumption 3is really needed
to get convergences of the discrete minimaΦ0h of Jh towards the continuous oneΦ0

of J. It turns out that Assumption 3 is indeed needed as numericalevidences show,
see Section 1.7 and [22, 23, 20] and [17, Theorem 8] for a theoretical proof.

To sum up, the discrete approach ensures the convergence of discrete controls
even when the initial data to be controlled are only inX, whereas the continuous
approach does not work under these low regularity assumptions.
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1.6.3 Other minimization algorithms

So far we have chosen to use the steepest descent algorithm for the minimization
of J in (1.9). Of course, many other choices yield better convergence results, in
particular the conjugate gradient algorithm, when dealingwith quadratic coercive
functionals.

However, if one uses the conjugate gradient algorithm to minimize the functional
J in (1.9), we do not know if, similarly as in Theorem 1.1, the iterations converge in
Xs when the initial data to be controlled are inXs. To our knowledge, this is an open
problem. This is related to the fact that the conjugate gradient algorithm strongly
uses orthogonality properties in the natural spaceX endowed with its natural scalar
product〈·, ·〉X and with the scalar product adapted to the minimization problem
〈ΛT ·, ·〉X .

This prevents us from using the conjugate gradient algorithm when following the
continuous approach.

However, when considering the discrete approach, since we proved (Theorem
1.5), that the minimizersΦ0h of Jh in (1.12) converge to the minimizerΦ0 of J
whenEhy0h converge inX, there is full flexibility in the choice of the algorithm to
effectively compute the minimizer ofJh. In particular, we can then use the conjugate
gradient algorithm, for which we know that the minimum ofJh is attained in at most
dim(Vh) iterations, and in general much faster than that.

As shown in the applications below, this makes the discrete approach more effi-
cient for numerics.

1.7 Application to the wave equation

Below, we focus on the emblematic example of the wave equation controlled from
the boundary or from an open subset.

In particular, we will focus on the case of the 1−d wave equation controlled from
the boundary, in which case we can easily illustrate our results with some numerical
simulations since the control function will simply be a function of time.

We then explain how our approach works in the context of distributed controls
so to compare it briefly with the results in [9].

1.7.1 Boundary control

1.7.1.1 The continuous case

Let us consider the 1−d wave equation controlled fromx= 1:
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





∂tty− ∂xxy= 0, (t,x) ∈ R+× (0,1),
y(t,0) = 0, y(t,1) = v(t) (t,x) ∈ R+,
(y(0,x),∂ty(0,x)) = (y0(x),y1(x)), x∈ (0,1).

(1.70)

Then, setX = L2(0,1)×H−1(0,1), A the operator defined by

A=

(

0 I
∂ D

xx 0

)

, D(A) = H1
0(0,1)×L2(0,1),

where∂ D
xx is the Laplace operator defined onH−1(0,1) with domainD(∂ D

xx) =
H1

0(0,1) (in other words,∂ D
xx is the Laplacian with Dirichlet boundary conditions)

andB the operator defined by

Bv=

(

0
−∂ D

xxỹ

)

, with ỹ solving

{

−∂xxỹ= 0, x∈ (0,1),
ỹ(0) = 0, ỹ(1) = v.

Here, endowingL2(0,1) with its usualL2-norm and the spaceH−1(0,1) with
the norm

∥

∥(−∂ D
xx)

−1/2 ·
∥

∥

L2, A is skew-adjoint onL2(0,1)×H−1(0,1) andB is an
admissible control operator. We refer to [49, Section 9.3] (see also [35, 33]) for the
proof of these facts.

We can then consider the adjoint equation






∂tt ϕ − ∂xxϕ = 0, (t,x) ∈ R+× (0,1),
ϕ(t,0) = 0= ϕ(t,1), (t,x) ∈ R+,
(ϕ(0,x),∂t ϕ(0,x)) = (ϕ0(x),ϕ1(x)), x∈ (0,1),

(1.71)

with (ϕ0,ϕ1) ∈ L2(0,1)×H−1(0,1). The corresponding admissibility and observ-
ability properties (1.3) and (1.5) we need read as follows (see [49, Proposition 9.3.3]
for the computation ofB∗):

1
C
‖(ϕ0,ϕ1)‖2

L2×H−1 ≤
∫ T

0
|∂x[(−∂ D

xx)
−1∂tϕ ](t,1)|2dt ≤C‖(ϕ0,ϕ1)‖2

L2×H−1 .

Of course, when considering these estimates, one easily understands that rather than
considering trajectoriesϕ of (1.71) for initial data(ϕ0,ϕ1) ∈ L2(0,1)×H−1(0,1),
it is easier to directly work on the set of trajectories(−∂ D

xx)
−1∂tϕ . But this set co-

incides with the set of trajectoriesϕ of (1.71) with initial conditions(ϕ0,ϕ1) ∈
H1

0(0,1)×L2(0,1).
Therefore, in the following, we shall only consider solutions ϕ of (1.71) with

initial data inH1
0(0,1)×L2(0,1).

Also note that this space is the natural one when identifyingL2(0,1) with its
dual since the control system (1.70) takes place inX = L2(0,1)×H−1(0,1), and
thereforeX∗ =H1

0(0,1)×L2(0,1). This is the usual duality setting in Lions [36], but
the above argument ensures that all the results of this article, that have been obtained
within the setting of abstract conservative systems on Hilbert spaces identified with
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their duals, can also be applied in the context of the usual duality pairing between
X = L2(0,1)×H−1(0,1) andX∗ = H1

0(0,1)×L2(0,1).
Also note that the duality then reads as follows:

〈(y0,y1),(ϕ0,ϕ1)〉(L2×H−1),(H1
0×L2) =−

∫ 1

0
y0ϕ1+

∫ 1

0
∂x(−∂ D

xx)
−1y1∂xϕ0.

In that context, the relevant counterparts of (1.3), (1.5) are then given by:

1
C
‖(ϕ0,ϕ1)‖2

H1
0×L2 ≤

∫ T

0
|∂xϕ(t,1)|2dt ≤C‖(ϕ0,ϕ1)‖2

H1
0×L2 . (1.72)

Such a result is well-known to hold if and only ifT ≥ 2, see [36]. This can
actually be proved very easily solving the wave equation (1.71) using Fourier series
and Parseval’s identity.

Therefore, in the sequel, we takeT > 2 andη as in (1.6) (withT∗ = 2. To be
more precise,η will be chosen such thatη isC1([0,T]) and satisfiesη(0) = η(T) =
η ′(0) = η ′(T) = 0.

The corresponding functional (1.9) is then defined onH1
0(0,1)×L2(0,1) as fol-

lows:

J(ϕ0,ϕ1) =
1
2

∫ T

0
η(t)|∂xϕ(t,1)|2dt+ 〈(y0,y1),(ϕ0,ϕ1)〉(L2×H−1),(H1

0×L2). (1.73)

The corresponding Gramian operatorΛT is then given as follows: For(ϕ0,ϕ1) ∈
H1

0(0,1)×L2(0,1), solve







∂ttϕ − ∂xxϕ = 0, (t,x) ∈ (0,T)× (0,1),
ϕ(t,0) = ϕ(t,1) = 0, t ∈ (0,T),
(ϕ(0, ·),∂tϕ(0, ·)) = (ϕ0,ϕ1), x∈ (0,1).

(1.74)

Then solve






∂tt ψ − ∂xxψ = 0, (t,x) ∈ (0,T)× (0,1),
ψ(t,0) = 0, ψ(t,1) =−η(t)∂xϕ(t,1), t ∈ (0,T),
(ψ(T, ·),∂t ψ(T, ·)) = (0,0), x∈ (0,1).

(1.75)

Then
ΛT(ϕ0,ϕ1) = ((−∂ D

xx)
−1∂tψ(0, ·),−ψ(0, ·)). (1.76)

Note that the solutionψ of (1.75) is a solution by transposition and belongs to
the spaceC0([0,T];L2(0,1))∩C1([0,T];H−1(0,1)) since its boundary data only
belongs toL2(0,T). Therefore, when computingΛT , we have to identifyL2(0,1)×
H−1(0,1) as the dual ofH1

0(0,1)×L2(0,1) as explained in the previous paragraph,
i. e. using the map

L2(0,1)×H−1(0,1)→ H1
0(0,1)×L2(0,1) : (ψ0,ψ1) 7→ ((−∂ D

xx)
−1ψ1,−ψ0).
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The continuous setting

We are then in position to write the algorithm of Theorem 1.1 in the continuous
setting:

Step 0:Set(ϕ0
0 ,ϕ

0
1) = (0,0).

The induction formula k→ k+1: Fork≥ 0, set(ϕk+1
0 ,ϕk+1

1 ) as:

(ϕk+1
0 ,ϕk+1

1 ) = (I −ρΛT)(ϕk
0,ϕ

k
1)−ρ((−∂ D

xx)
−1y1,−y0). (1.77)

Note that the control function is then approximated by the sequence

vk(t) = η(t)∂xϕk(t,1), t ∈ (0,T), (1.78)

whereϕk is the solution of (1.74) with initial data(ϕk
0,ϕ

k
1). Indeed, formula (1.10)

then reads as follows: If(Φ0,Φ1) denotes the minimum ofJ in (1.73), then the
control functionV that controls (1.70) and that minimizes theL2(0,T;dt/η)-norm
among all admissible controls is given by

V(t) = η(t)∂xΦ(t,1), t ∈ (0,T), (1.79)

whereΦ is the solution of (1.74) with initial data(Φ0,Φ1).

1.7.1.2 The continuous approach

Theoretical setting

Here, we discretize the wave equations (1.74)-(1.75) usingthe finite difference ap-
proximation of the Laplace operator on a uniform mesh of sizeh> 0,h= 1/(N+1)
with N ∈N. Below,ϕ j ,h,ψ j ,h are, respectively, the approximations ofϕ ,ψ solutions
of (1.74)–(1.75) at the pointjh. We shall also make use of the notationϕh,ψh to
denote respectively theN-component vectors with coordinatesϕ j ,h,ψ j ,h.

We shall thus introduce the following discrete version of the Gramian operator.
Given(ϕ0h,ϕ1h), compute the solutionϕh of the following system:














∂ttϕ j ,h−
1
h2

(

ϕ j+1,h−2ϕ j ,h+ϕ j−1,h
)

= 0, (t, j) ∈ (0,T)×{1, · · · ,N},
ϕ0,h(t) = ϕN+1,h(t) = 0, t ∈ (0,T),

(ϕh(0),∂tϕh(0)) = (ϕ0h,ϕ1h).

(1.80)

Then compute the solutionψh of the following approximation of (1.75):
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













∂tt ψ j ,h−
1
h2

(

ψ j+1,h−2ψ j ,h+ψ j−1,h
)

= 0, (t, j) ∈ (0,T)×{1, · · · ,N},
ψ0,h(t) = 0, ψN+1,h(t) = η(t)ϕN,h

h , t ∈ (0,T),

(ψh(T),∂tψh(T)) = (0,0).
(1.81)

Finally, setΛTh as

ΛTh(ϕ0h,ϕ1h) = ((−∆h)
−1∂tψh(0),−ψ(0)), (1.82)

whereuh = (−∆h)
−1 fh is the unique solution of the discrete elliptic problem

{

− 1
h2

(

u j+1,h−2u j ,h+u j−1,h
)

= f j ,h, j ∈ {1, · · · ,N},
u0,h = uN+1,h = 0.

The continuous approach then reads as follows:

Step 0:Set(ϕ0,c
0h ,ϕ

0,c
1h ) = (0,0).

The induction formula k→ k+1: Fork≥ 0, set(ϕk+1,c
0h ,ϕk+1,c

1h ) as:

(ϕk+1,c
0h ,ϕk+1,c

1h ) = (I −ρΛTh)(ϕk,c
0h ,ϕ

k,c
1h )−ρ((−∆h)

−1y1h,−y0h). (1.83)

The superscript c is here to emphasize that this is the sequence computed by the
continuous approach.

Let us check that this scheme fits the abstract setting of Theorem 1.3. In partic-
ular, to use Theorem 1.3,Vh, Eh, Rh need to be defined and Assumptions 1 and 2
verified.

• Vh = RN ×RN, where the firstN components correspond to the approximation
of the displacement and the lastN ones to the velocity.

• To a discrete vectorϕh ∈RN, there exists a unique family of Fourier coefficients
(âk[ϕh])k∈N such that

ϕ j ,h =
√

2
N

∑
k=1

âk[ϕh]sin(kπ jh), j ∈ {1, · · · ,N}.

This is due to the fact that the family of vectors

wk
h = (

√
2sin(kπ jh)) j∈{1,··· ,N}

forms a basis ofRN endowed with the scalar producth〈·, ·〉RN , see Chapter 2, Section
2.2.

Then we introduce the following continuous extension:

ehϕh(x) =
√

2
N

∑
k=1

âk[ϕh]sin(kπx), x∈ (0,1)
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and setEh = diag(eh,eh). This extension will be extensively studied in Section 3.2,
where it is denoted byFh.

The corresponding norm onVh is given by

∥

∥

∥

∥

(

ϕ0h

ϕ1h

)∥

∥

∥

∥

2

h
=

N

∑
k=1

(

k2π2|âk[ϕ0h]|2+ |âk[ϕ1h]|2
)

, (1.84)

which is equivalent (see Chapter 3, Section 3.2) to the classical discrete energy of
(1.80), given by

Eh[ϕh] = h
N

∑
j=0

(

ϕ j+1,0h−ϕ j ,0h

h

)2

+h
N

∑
j=1

|ϕ j ,1h|2. (1.85)

The operatorAh defined by

Ah =

(

0 IdRN

∆h 0

)

,

where∆h denotes theN×N matrix taking value−2/h2 on the diagonal and 1/h2

on the upper and lower diagonals is skew-adjoint with respect to the scalar product
of Vh. Of course, this operatorAh is the one corresponding to system (1.80) in the
sense thatϕh solves (1.80) if and only if

∂t

(

ϕh

∂tϕh

)

= Ah

(

ϕh

∂tϕh

)

, t ∈ (0,T).

Also note that the fact thatAh is skew-adjoint implies that solutionsϕh of (1.80)
have constant (with respect to time)Vh norms. This quantity is usually called the
discrete energy of the solutions of (1.80).

The operatorBhB∗
h is now simply given by

BhB∗
h

(

ϕ0h

ϕ1h

)

=

(

0
fh

)

,

where fh ∈ RN is such that itsN−1 first components vanish and whoseN-th com-
ponent is−ϕN,0h/h3.

The operatorRh on X = H1
0(0,1)× L2(0,1) has a diagonal form diag(rh, rh),

whererh : H−1(0,1)−→RN is defined as follows: forϕ ∈ H−1(0,1), expand it into
its Fourier series

ϕ(x) =
√

2
∞

∑
k=1

âk sin(kπx), x∈ (0,1),

and then setrhϕ ∈ RN as

(rhϕ) j =
√

2
N

∑
k=1

âk sin(kπ jh), j ∈ {1, · · · ,N}.
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Let us now check Assumptions 1 and 2.

Assumption 1.Estimates (1.26)–(1.27) are very classical withs= 1 andθ = 1 (see
e.g. [4]): There exists a constantC such that for all(ϕ0,ϕ1) ∈ H2 ∩ H1

0(0,1)×
H1

0(0,1),

‖(EhRh− Id)(ϕ0,ϕ1)‖H1
0×L2 ≤Ch‖(ϕ0,ϕ1)‖H2∩H1

0×H1
0
. (1.86)

As already mentioned, estimate (1.28) is a consequence of Assumption 2 with
(1.26).

To show (1.29) we take the initial data(ϕ0,ϕ1) ∈ H2 ∩ H1
0(0,1)× H1(0,1)

and denote byϕ the corresponding solution of (1.74). Then, taking(ϕ0h,ϕ1h) =
Rh(ϕ0,ϕ1) and ϕh the corresponding solution of (1.80), from Proposition 3.7in
Chapter 3, we get

∥

∥

∥∂xϕ(t,1)+
ϕN,h

h

∥

∥

∥

L2(0,T)
≤Ch2/3‖(ϕ0,ϕ1)‖H2∩H1

0×H1
0
. (1.87)

Thus, according to the convergence results of the numericalscheme (1.81) to (1.75)
in Proposition 4.8 in Chapter 4, settingψh the solution of (1.81) with boundary data
ηϕN,h/h andψ the solution of (1.75) with boundary data−η∂xϕ(1, t), we obtain

‖(eh(ψh(0)),eh(∂tψh(0)))− (ψ(0),∂tψ(0))‖L2×H−1 ≤Ch2/3‖(ϕ0,ϕ1)‖H2∩H1
0×H1

0
.

Then, since(ψ(0),∂tψ(0)) ∈ H1
0(0,1)×L2(0,1) because of the fact that(ϕ0,ϕ1) ∈

H2∩H1
0(0,1)×L2(0,1), see Section 4.2 in Chapter 4,

∥

∥(eh(∂tψh(0)),eh((−∆h)
−1ψh(0)))− (∂tψ(0),(−∂ D

xx)
−1∂tψ(0))

∥

∥

H1
0×L2

≤Ch2/3‖(ϕ0,ϕ1)‖H2∩H1
0×H1

0
,

which proves

‖(EhΛThRh−ΛT)(ϕ0,ϕ1)‖H1
0×L2 ≤Ch2/3‖(ϕ0,ϕ1)‖H2∩H1

0×H1
0
,

and then (1.29) withθ = 2/3 ands= 1 sinceΛT(ϕ0,ϕ1) ∈ H2∩H1
0 ×H1

0 and then
(1.86) applies.

Assumption 2.The uniform admissibility result is ensured by the fact thatthe
map(ϕ0h,ϕ1h) ∈ Vh 7→ −ϕN,h/h ∈ L2(0,T), whereϕh is the solution of (1.80), is
bounded, uniformly with respect toh> 0. This is a simple consequence of the mul-
tiplier identity given in Lemma 2.2 in [28], see also Chapter2, Theorem 2.1.

Besides, forbh ∈ L2(0,T), the solutionψh of
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





















∂tt ψ j ,h−
1
h2

(

ψ j+1,h−2ψ j ,h+ψ j−1,h
)

= 0,

(t, j) ∈ (0,T)×{1, · · · ,N},
ψ0,h(t) = 0, ψN+1,h(t) = bh, t ∈ (0,T),

(ψh(T),∂t ψh(T)) = (0,0),

is such that theL2(0,1)×H−1(0,1)-norm of(eh(ψh(0)),eh(∂t ψh(0))) is bounded,
uniformly with respect toh> 0, by theL2(0,T)-norm of its boundary termbh, see
Chapter 4, Theorem 4.6.

Finally, one easily checks that, for some constantsC independent ofh > 0, see
Chapter 4, Section 4.2,

∥

∥(eh(−∆h)
−1ψ1h,ehψ0h)

∥

∥

H1
0×L2 ≤C‖(eh(ψ0h),eh(ψ1h))‖L2×H−1 .

Assumption 3.Note that, in that setting, Assumption 3 does not hold. Indeed, the nu-
merical scheme under consideration generates spurious high-frequency waves that
travel at arbitrarily small velocity (see [48, 22, 28, 52, 17]) that cannot be observed.
Therefore, the discrete systems (1.80) are not uniformly observable, whateverT > 0
is.

We are thus in a situation in which Theorem 1.3 applies withs= 1 andθ = 2/3.
We now illustrate these results by some numerical experiments.

Remark 1.2.Using Proposition 3.7, Proposition 4.9 and Theorem 4.4, onecan prove
that Assumption 1 actually holds for anys∈ (0,3] with θ = 2s/3 and thus Theorem
1.3 applies for anys∈ (0,3].

Numerical simulations

To apply our numerical method, we need estimates onCobs andCad. In this 1− d
context, it is rather easy to get good approximations, sincefor any solutionϕ of
(1.74), using Fourier series and Parseval’s identity, we get

∫ 2

0
|∂xϕ(t,1)|2dt = 2‖(ϕ0,ϕ1)‖2

H1
0×L2 .

Therefore, we can takeT∗ = 2, and we chooseT = 4. We then have the estimates
C2

obs= 1/2 andC2
ad = 4. With ρ = 1/8, we haveδ (ρ) =

√
3/2≃ 0.86.

But ρ should also be smaller than 2/C 2
ad, whereC 2

ad is the uniform constant of ad-
missibility in Assumption 2. Using the multiplier method onthe discrete equations
(1.80) (see Chapter 2, Theorem 2.1) we haveC 2

ad ≤ 6 (actuallyC 2
ad(T) ≤ T + 2).

Since 1/8≤ 2/6, ρ1 in (1.31) is greater than 1/8 and thenρ = 1/8 is admissible.
In order to test our numerical method, we fix the initial data to be controlled as

y0 = 0 andy1 as follows
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y1(x) =







−1 on(0,1/4),
1 on(1/4,1/2),
2(x−1) on (1/2,1),

(1.88)

so that we obviously have(y0,y1) ∈ H1
0(0,1)×L2(0,1). In Figure 1.1, we plot the

graph of the initial velocityy1.
In the numerical simulations below, we represent the functionsvk,c

h given, for
k∈ N, by

vk,c
h (t) =−η

ϕk,c
N,h(t)

h
, t ∈ (0,4),

whereϕk,c
h is the solution of (1.80) with initial data(ϕk,c

0h ,ϕ
k,c
1h ), thek-th iterate of

the algorithm in the continuous approach.
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Fig. 1.1 The initial velocityy1 to be controlled.

Forh= 1/100, the number of iterations predicted by our method is 21. In Figure
1.2 left, we show the control this yields.

To compare the obtained result with the one that the discreteapproach yields, we
have computed a reference controlvre f , using the discrete approach, (see Figure 1.11
for further details) for a much smallerh= 1/300. The obtained reference control is
plotted in Figure 1.2, right.

To better illustrate how the iterative process evolves, we have run it during 50000
iterations and drawn the graph of the relative error

∥

∥

∥vk,c
h − vre f

∥

∥

∥

L2
/
∥

∥vre f
∥

∥

L2 .

This is represented in Figure 1.3. As we see, the error does not reach zero but rather
stays bounded from below.

When looking more closely at the evolution of the error, we see that it first decays
and then increases.

The smallest error (among the first thousand iterations) is achieved whenk= 13,
which is close to the predicted one. The control obtained fork = 13 is plotted in
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Fig. 1.2 Left, the control obtained by the continuous approach at thepredicted number of itera-
tions, 21, forh= 1/100,ρ = 1/8. Right, the reference controlvre f computed through the discrete

approach withh= 1/300. The relative error
∥

∥

∥vk=21,c
h −vre f

∥

∥

∥

L2
/
∥

∥vre f
∥

∥

L2 is 6.24.%
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Fig. 1.3 The relative error
∥

∥

∥
vk,c

h −vre f

∥

∥

∥

L2
/
∥

∥vre f
∥

∥

L2 for the continuous approach at each iteration

for h= 1/100,ρ = 1/8. Left: iterations from 0 to 50000. Right: zoom on the iterations between 0
and 50.

Figure 1.4, the corresponding error being 6.18%, to be compared with the error at
our predicted iteration number (k= 21), which is 6.24%.

The algorithm produces similar results for different values of ρ . For instance,
taking ρ = 0.01, the predicted iteration number isk = 156, and the best iteration
turns out to bek = 180, yielding a control that looks very much as the one before,
the relative error being 6.19%. This confirms, in particular, that the smallerρ is, the
larger is the number of iterations.

It is important to underline thatthe limit of the iterative process as the number
of iterations tends to infinity, k→ ∞, converges to the control of the semi-discrete
dynamics, minimizer of the corresponding functional Jh, defined by

Jh(ϕ0h,ϕ1h) =
1
2

∫ T

0
η
∣

∣

∣

ϕN,h

h

∣

∣

∣

2
dt−h

N

∑
j=1

y j ,0hϕ j ,1h+h
N

∑
j=1

y j ,1hϕ j ,1h,

whereϕh is the solution of (1.80) with initial data(ϕ0h,ϕ1h).
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Fig. 1.4 Left: the best control obtained by iterating the algorithm of the continuous ap-
proach with h = 1/100, ρ = 1/8 and k = 13. Right: the reference control. Relative error:
∥

∥

∥vk=13,c
h −vre f

∥

∥

∥

L2
/
∥

∥vre f
∥

∥

L2 = 6.18%.

The exact control of the semi-discrete dynamics is given by the minimizer
(Φc

0h,Φ
c
1h) of the functionalJh above through the formula

vc
∗,h =−η

Φc
N,h

h
, t ∈ (0,4),

whereΦc
h is the solution of (1.80) with initial data(Φc

0h,Φ
c
1h).

Note that the GramiansΛTh, defined by

〈ΛTh(ϕ0h,ϕ1h),(ϕ0h,ϕ1h)〉h =

∫ T

0
η
∣

∣

∣

ϕN,h

h

∣

∣

∣

2
dt,

are not uniformly coercive with respect toh> 0 and their conditioning number de-
generates as exp(c/h) (c> 0) ash→ 0 (see [39]) and thus the functionalsJh are very
ill-conditioned. Therefore, the conjugate gradient algorithm for the minimization of
Jh ends up diverging whenh is too small.

We takeN = 20 so that the conjugate gradient algorithm converges. Thismight
seem ridiculously small, but as we said, the conditioning number of the discrete
Gramian blows up as exp(c/h), and numerical experiments show that the conjugate
gradient algorithm completely diverges forN ≥ 30.

For N = 20, we can compute the minimizer of the functionalJh using the con-
jugate gradient algorithm. The corresponding discrete exact controlvc

∗,h = ηΦc
N,h/h

is plotted in Figure 1.5, right. As one sees, this exact control vc
∗,h has a strong spu-

rious oscillating behavior, see for instance the referencecontrol in Figure 1.4, right.
The relative errors between the iterated controlsvk

h and this limit oscillating control
vc
∗,h is plotted in Figure 1.5, left, exhibiting a slow convergence rate due to the bad

conditioning of the Gramian matrix.
These facts constitute a seriouswarning about the continuous algorithm.In par-

ticular, if the algorithm is employed for a too large number of iterationsk, something
that can easily happen since the threshold in the number of iterations may be hard
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Fig. 1.5 Left, the relative error
∥

∥

∥vk,c
h −vc

∗,h

∥

∥

∥/
∥

∥

∥vc
∗,h

∥

∥

∥ for the continuous approach at each iterationk

from k= 0 tok= 50000 forh= 1/20,ρ = 1/8. Right, the discrete exact controlvc
∗,h for h= 1/20.

to establish in practice, the corresponding control may be very far away from the
actual continuous one.

We conclude illustrating the convergence of the continuousalgorithm ash→ 0.

In Figure 1.6, we plot log
(∥

∥

∥v
Kc

h,c
h − vre f

∥

∥

∥

)

versus| log(h)|. By linear regression we

get the slope−1.01, which is better than the predicted one,−0.66. This is due to
the fact thaty1 is in H−1+s(0,1) for all s< 3/2, hence the convergence is expected
to be better thanh2s/3 for all s< 1/2 see Remark 1.2.
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Fig. 1.6 Convergence of the continuous approach ash→ 0: log
(∥

∥

∥
v

Kc
h,c

h −vre f

∥

∥

∥

)

versus| log(h)|,
with vre f as in Figure 1.11 right. The plot is done forh∈ (1/100,1/30), the slope being−1.01.

1.7.1.3 The discrete approach

The theoretical setting

To build numerical schemes satisfying Assumption 3, one should better understand
the dynamics of the solutions of the discrete numerical methods. Indeed, as observed
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in [28], and illustrated above, Assumption 3 does not hold asone can check since the
discrete exact controlvc

∗,h computed in Figure 1.5 is very far away from the control
of the continuous wave equation, for which a good approximation is given byvre f ,
see Figure 1.4, right.

This phenomenon is due to spurious high-frequency numerical waves. To avoid
these spurious oscillations one needs to work on filtered subspaces ofVh =RN×RN.

For instance, forγ ∈ (0,1), consider the filtered space

Vh(γ/h) =

{

(ϕ0h,ϕ1h), s.t. ϕ0h,ϕ1h ∈ Span
kh≤γ

{

(sin(kπ jh)) j∈{1,··· ,N}
}

}

.

Of course,Vh(γ/h) is a subspace ofVh. Since the functions(wk)k (defined bywk
j =√

2sin(kπ jh))) are eigenfunctions of the discrete Laplace operator (see Section 2.2),
we can introduce the orthogonal projectionPγ

h of Vh ontoVh(γ/h) (with respect to
the scalar product ofVh introduced in (1.84)) and the Gramian operator

Λ γ
Th = Pγ

hΛThP
γ
h . (1.89)

The filtering operatorPγ
h simply consists of doing a discrete Fourier transform

and then removing the coefficients corresponding to frequency numbersk larger
thanγ/h.

Assumptions 1 and 2 then hold for anyγ ∈ (0,1), with proofs similar to those in
the continuous approach. Furthermore, using the results of[28], it can be shown that
Assumption 3 also holds when the timeT is greater thanTγ := 2/cos(πγ/2). Note
that this is not a consequence of the convergence of the numerical schemes, and this
requires a thorough study of the discrete dynamics. The proof of [28] uses a spectral
decomposition of the solutions of the discrete wave equation (1.80) and the Ingham
inequality for nonharmonic Fourier series. We shall revisit and slightly improve
these results in Chapter 2, Theorem 2.1 to get better estimates on the observability
constant.

The algorithm that the discrete method yields can then be developed as follows:

Step 0:Set(ϕ0,d
0h ,ϕ0,d

1h ) = (0,0).

The induction formula k→ k+1: Fork≥ 0, set(ϕk+1
0h ,ϕk+1

1h ) as:

(ϕk+1,d
0h ,ϕk+1,d

1h ) = (I −ρΛ γ
Th)(ϕ

k,d
0h ,ϕk,d

1h )−ρPγ
h((−∆h)

−1y1h,−y0h). (1.90)

The new algorithm is very similar to the one that the continuous approach yields.
The only essential difference is that, now, we have introduced a filtered Gramian
matrix Λ γ

Th instead of the operatorΛTh used in the continuous approach, in which
no filtering appears. However, as we shall see below, this newalgorithm is much
better behaved.
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From now on, we set the filtering parameterγ = 1/3 andT = 4, which is larger
than the minimal required time 2/cos(πγ/2) = 2/cos(π/6) = 4/

√
3 to control the

semi-discrete dynamics. The controls that the discrete iterative algorithm yields are

vk,d
h (t) =−η(t)

ϕk,d
N,h(t)

h
, t ∈ (0,4). (1.91)

Numerical simulations

We first need an estimate on the constant of uniform observability. The most explicit
one we are aware of is the one given by the multiplier method, given hereafter in
Chapter 2, Theorem 2.1, which yields:

C
2
obs,T∗ =

(

T cos2
(γπ

2

)

−2cos
(πγ

2

)

− h0

2

)−1

, (1.92)

whereh0 is the largest mesh-size under consideration, and thus, since the function
η(t) equals to 1 on an interval of length close to 4, one can take theapproximation:

C
2(T = 4)≃ 1√

3(
√

3−1)
.

Of course,Cad can still be approximated as before byC 2
ad ≤ 6.

Therefore,ρ2 in (1.38) is greater than(2/62)×
√

3(
√

3− 1) ≃ 0.035. Observe
that this is much smaller than the value ofρ = 1/8 = 0.125 we employed in the
continuous approach.

We run the discrete algorithm with the initial data(y0h,y1h) given by the natural
approximations ofy0 = 0 andy1 as in (1.88).

Our first simulations are done with the choiceρ = 0.035 forh= 1/100. There,
the estimated optimal number of iterations is 95 (see (1.40)), which is much larger
than in the continuous approach (where it was 21) due to the fact thatρ is much
smaller. In Figure 1.7 left, we represent the controlvk=95,d

h . When compared with
the reference control computed forh= 1/300 by the discrete method (represented

in Figure 1.11), the relative error
∥

∥

∥vk=95,d
h − vre f

∥

∥

∥

L2
/
∥

∥vre f
∥

∥

L2 is 5.82%.

In Figure 1.8, we represent the relative error
∥

∥

∥vk,d
h − vre f

∥

∥

∥

L2
/
∥

∥vre f
∥

∥

L2 for k be-

tween 1 and 50000. The best iterate is the 54-th one, which corresponds to a relative
error of 5.80%. It is represented in Figure 1.7 right.

It might seem surprising that the sequencevk,d
h does not converge tovre f ask →

∞. This is actually due to the fact thatvre f corresponds to the control computed for

h= 1/300. Indeed, settingv∞,d
h the limit of vk,d

h ask goes to infinity, we represent the

relative error
∥

∥

∥vk,d
h − v∞,d

h

∥

∥

∥

L2
/
∥

∥

∥v∞,d
h

∥

∥

∥

L2
in Figure 1.9. We shall later explain how to

computev∞,d
h , represented in Figure 1.11 left.
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Fig. 1.7 Left, the controlvk=95,d
h obtained by the discrete approach at the predicted iteration num-

ber 95 forh= 1/100,ρ = 0.035. Right, the controlvk=54,d
h corresponding to the iteratek= 54 that

approximatesvre f at best.
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Fig. 1.8 The relative error
∥

∥

∥
vk,d

h −vre f

∥

∥

∥

L2
/
∥

∥vre f
∥

∥

L2 for the discrete approach at each iteration for

h= 1/100,ρ = 0.035. Left, for iterations from 0 to 50000. Right, a zoom on theiterations between
0 and 150.

Note that the previous computations are done forρ = 0.035, but as we said, this
is only an estimate on the parameterρ we can choose. In particular, one could also
try to takeρ = 1/8, which is admissible for the continuous wave equation, though it
is a priori out of the valid range ofρ for the semi-discrete equation according to our
estimates. Forh= 100, the estimated iteration is then 42. The corresponding control

vk=42,d
h is such that the relative error

∥

∥

∥
vk=42,d

h − vre f

∥

∥

∥

L2
/
∥

∥vre f
∥

∥

L2 is of 5.83%. The

best iterate is the 14-th one, for which the relative error
∥

∥

∥vk=14,d
h − vre f

∥

∥

∥

L2
/
∥

∥vre f
∥

∥

L2

is of 5.81%. The corresponding plots are very similar to those of thecaseρ =

0.035. We only plot the relative error
∥

∥

∥vk,d
h − vre f

∥

∥

∥

L2
/
∥

∥vre f
∥

∥

L2 versus the number

of iterations in Figure 1.10.
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Fig. 1.9 The relative error
∥

∥

∥vk,d
h −v∞,d

h
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∥

L2
/
∥

∥

∥v∞,d
h

∥

∥

∥

L2
for the discrete approach at each iteration for

h= 1/100,ρ = 0.035 and fork from 0 to 150. The relative error is of order 2.10−4 at the estimated
iterationk= 95.
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Fig. 1.10 The relative error
∥

∥

∥
vk,d

h −vre f

∥

∥

∥

L2
/
∥

∥vre f
∥

∥

L2 for the discrete approach at each iteration

for h= 1/100,ρ = 0.125 fork from 0 to 50.

The discrete approach: The conjugate gradient method

In previous paragraphs we underlined the difficulty of estimating the parameters
entering into the algorithm. But, as we have explained, in the discrete approach, we
also have (1.44), ensuring the convergence of the minimizerof the functionalJγ

h
overVh(γ/h):

Jγ
h(ϕ0h,ϕ1h) =

1
2

∫ T

0
η
∣

∣

∣

ϕN,h

h

∣

∣

∣

2
dt−h

N

∑
j=1

y j ,0hϕ j ,1h+h
N

∑
j=1

y j ,1hϕ j ,1h, (1.93)

whereϕh is the solution of (1.80) with initial data(ϕ0h,ϕ1h) ∈ Vh(γ/h). In other
words, the discrete approach consists in looking for the minimizer of Jγ

h over
Vh(γ/h).

Since the functionalJγ
h is quadratic and well-conditioned according to Assump-

tion 3, one can use the conjugate gradient algorithm to compute the minimum
(Φd

0h,Φ
d
1h) of Jγ

h over Vh(γ/h). Doing this, we do not need any estimate on the
admissibility and observability constants to run the algorithms. Besides, this algo-
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rithm is well-known to be much faster than the classical steepest descent one, but
with exactly the same complexity.

We therefore run the algorithms forh= 1/100 andh= 1/300,γ = 1/3, and the
initial data(y0,y1) with y0 = 0 andy1 as in (1.88). The algorithm converges very fast
and it requires only 10 and 9 iterations forh= 1/100 andh= 1/300, respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

t
0 0.5 1 1.5 2 2.5 3 3.5 4

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

t

Fig. 1.11 The controlsv∞,d
h for h= 1/100 (left) andh= 1/300 (right). We have setvre f = v∞,d

h for
h= 1/300.

In the previous simulations, the quantityvk=∞,d
h has been computed using the

conjugate gradient method as indicated above. The reference control is the one com-
puted forh= 1/300.

In Figure 1.12 we finally represent the rate of convergence ofthe discrete controls
(to be compared with Figure 1.6). Here again, the slope is−0.97, i.e. much less
than−0.67, the slope predicted by our theoretical results in Theorem 1.5. This is
again due to the fact thaty1 is more regular than simplyL2(0,1), almost lying in
H1/2(0,1), see Remark 1.2.

In higher dimension, there are a few results which prove uniform observability
estimates for the wave equation: we refer to [51] for the 2-d case on a uniform mesh,
which yields a sharp result. We refer to [41] for then-dimensional case under general
approximation conditions. To our knowledge, the result in [41] is the best one when
considering general meshes in any dimension. Still, a precise time estimate for the
uniform observability result is missing and whether the filtering scales obtained in
[41] are sharp is an open problem.

1.7.2 Distributed control

System (0.1) fits in the abstract setting of (1.1) withX = H1
0(Ω)×L2(Ω),

A=

(

0 I
∆ 0

)

, D(A) = H2∩H1
0(Ω)×H1

0(Ω)
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Fig. 1.12 Convergence of the discrete approach:
∥

∥

∥v∞,d
h −vre f

∥

∥

∥ versush in logarithmic scales. Here,

vre f is v∞,d
h for h= 1/300. The plot is done forh∈ (1/120,1/30), the slope being−0.97.

and

B=

(

0
χω

)

, U = L2(Ω).

Indeed,A is skew-adjoint with respect to the scalar product ofX = H1
0(Ω)×L2(Ω)

and system (0.1) is of course admissible sinceB is bounded fromL2(Ω) into L2(Ω).
Using the scalar product ofX, B∗ simply reads asB∗ = (0, χω).
Besides, it is well-known that when the GCC (see [3, 5] and theintroduction)

is satisfied for(ω ,Ω ,T∗), then the wave equation is observable in timeT∗. To be
more precise, there exists a constantCobs> 0 such that for allϕ solution of







∂tt ϕ −∆ϕ = 0, (t,x) ∈ (0,T)×Ω ,
ϕ = 0, (t,x) ∈ (0,T)× ∂Ω ,
(ϕ(0,x),∂t ϕ(0,x)) = (ϕ0(x),ϕ1(x)), x∈ Ω ,

(1.94)

we have

‖(ϕ0,ϕ1)‖2
H1

0 (Ω)×L2(Ω) ≤C2
obs

∫ T∗

0

∫

Ω
χ2

ω |∂tϕ |2. (1.95)

This is the so-called observability inequality, corresponding to (1.5) in the abstract
setting.

In the following, we assume that (1.95) holds (or, equivalently, that the Geometric
Control Condition holds), and we chooseT > T∗ and introduceη as in (1.6).

Note that we made the choice of identifyingH1
0(Ω)×L2(Ω) with its dual. Do-

ing this, we are thus precisely in the abstract setting of Theorems 1.1, 1.2 and 1.3.
However, in applications, one usually identifiesL2(Ω) with its dual, thus making
impossible the identification ofH1

0(Ω)× L2(Ω) as a reflexive Hilbert space. We
shall comment this later on in Remark 1.3.

We are then in position to develop the algorithm in (1.17)–(1.18).
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The continuous setting

We divide it in several steps:

Step 0:Set(ϕ0
0 ,ϕ

0
1) = (0,0).

The induction formula: Computeϕk, the solution of






∂tt ϕk−∆ϕk = 0, (t,x) ∈ (0,T)×Ω ,
ϕk = 0, (t,x) ∈ (0,T)× ∂Ω ,
(ϕk(0,x),∂tϕk(0,x)) = (ϕk

0(x),ϕ
k
1(x)), x∈ Ω .

(1.96)

Then computeψk solution of






∂tt ψk−∆ψk =−η(t)χ2
ω∂tϕk, (t,x) ∈ (0,T)×Ω ,

ψk = 0, (t,x) ∈ (0,T)× ∂Ω ,
(ψk(T,x),∂tψk(T,x)) = (0,0), x∈ Ω .

(1.97)

Finally, set

(ϕk+1
0 ,ϕk+1

1 ) = (ϕk
0,ϕ

k
1)−ρ

(

(ψk(0),∂t ψk(0))+ (y0,y1)
)

. (1.98)

Note that the map(ϕk
0,ϕ

k
1) 7→ (ψk(0),∂tψk(0)) defined above is precisely the

mapΛT in (1.13).

Remark 1.3.As we have said, here, we identifiedX = H1
0(Ω)×L2(Ω) with its dual.

This allows us to work precisely in the abstract setting of Section 1.2.
But our approach also works when identifyingL2(Ω) with its dual. In that case,

we should introduceX∗ = L2(Ω)×H−1(Ω) and, thoughA is still skew-adjoint
with respect to theX-scalar product, we shall introduceA∗ the operator defined on
X∗ = L2(Ω)×H−1(Ω) by

A∗ =

(

0 I
∆ 0

)

, D(A∗) = H1
0(Ω)×L2(Ω).

The duality product betweenX andX∗ is then

〈
(

y0

y1

)

,

(

ϕ0

ϕ1

)

〉X×X∗ =

∫

Ω
y1ϕ0−

∫

Ω
∇y0 ·∇(−∆)−1ϕ1.

Also, the operatorB∗ now reads as

B∗ = (χω , 0).

The corresponding algorithm then is as follows:
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Step 0:Set(ϕ̃0
0 , ϕ̃

0
1) = (0,0).

The induction formula: Computeϕ̃k, the solution of






∂tt ϕ̃k−∆ϕ̃k = 0, (t,x) ∈ (0,T)×Ω ,
ϕ̃k = 0, (t,x) ∈ (0,T)× ∂Ω ,
(ϕ̃k(0,x),∂t ϕ̃k(0,x)) = (ϕ̃k

0(x), ϕ̃
k
1(x)), x∈ Ω .

(1.99)

Then computeψk solution of






∂tt ψ̃k−∆ψ̃k =−η(t)χ2
ω ϕ̃k, (t,x) ∈ (0,T)×Ω ,

ψ̃k = 0, (t,x) ∈ (0,T)× ∂Ω ,
(ψ̃k(T,x),∂t ψ̃k(T,x)) = (0,0), x∈ Ω .

(1.100)

Finally set

(ϕ̃k+1
0 , ϕ̃k+1

1 ) = (ϕ̃k
0, ϕ̃

k
1)−ρ

(

∂tψ̃k(0)+ y1,∆(ψ̃k(0)+ y0)
)

. (1.101)

Of course, the two algorithms (1.96)–(1.98) and (1.99)–(1.101) correspond one
to another. Indeed, for allk∈ N,

ϕ̃k = ∂tϕk, ψ̃k = ψk,

and so for allk∈N, (ϕ̃k
0, ϕ̃

k
1) = (ϕk

1,∆ϕk
0). Hence, of course, the convergence prop-

erties of the sequence(ϕk
0,ϕ

k
1) proved in Theorem 1.1 have their counterpart for the

sequence(ϕ̃k
0, ϕ̃

k
1) (they are basically the same except for a shift in the regularity

spaces).

The continuous approach

Here we introduce the finite element discretization of the wave equation. The setting
we present below is very close to the one in [9] in order to helpthe readers to see
the similarities between the work [9] and our results.

We thus assume that there exists a family(Ṽh)h>0 of finite-dimensional subspaces
of H1

0(Ω) with the property that there existθ > 0 andC> 0 so that

‖(πhϕ −ϕ)‖H1
0 (Ω) ≤Chθ ‖ϕ‖H2∩H1

0 (Ω) , ∀ϕ ∈ H2∩H1
0(Ω),

‖(πhϕ −ϕ)‖L2(Ω) ≤Chθ ‖ϕ‖H1
0 (Ω) , ∀ϕ ∈ H1

0(Ω),
(1.102)

whereπh is the orthogonal projector fromH1
0(Ω) ontoṼh.

Note that, on a quasi uniform triangulationTh, see e.g. [4], one can takeθ = 1
in (1.102).

We then endow̃Vh with theL2(Ω) scalar product.
We then define the discrete Laplace operator∆h as follows:
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∀(ϕh,ψh) ∈V2
h , 〈−∆hϕh,ψh〉L2(Ω) = 〈ϕh,ψh〉H1

0 (Ω).

The operator−∆h is then symmetric and positive definite.
We then setB0 the operator corresponding to the multiplication by the character-

istic functionχω and setUh = B∗
0Ṽh, which is of course a subset ofU = L2(Ω). We

then define the operatorsB0h by B0hu= π̃hB0u, whereπ̃h is the orthogonal projector
of L2(Ω) ontoṼh.

The adjoint ofB0h is then given byB∗
0hϕ = B∗

0π̃hϕ for ϕ ∈ L2(Ω), which easily
implies that the operator norms

∥

∥B0hB∗
0h

∥

∥

L(L2(Ω))
are uniformly bounded.

To fit into our setting, we thus introduce

Ah =

(

0 Id
∆h 0

)

, Bh =

(

0
B0h

)

, Vh = (Ṽh)
2,

with Eh = Id and

Rh =

(

πh 0
0 πh

)

.

Assumption 2 immediately follows from the stability of the scheme and the fact
that the norms

∥

∥B0hB∗
0h

∥

∥

L(L2(Ω))
are uniformly bounded.

Then, to prove Assumption 1, we refer to [2, 9]: Assumption 2 holds with θ
as in (1.102) ands= 2. Remark that this corresponds to a choice of initial data
in H3

(0)(Ω)×H2∩H1
0(Ω), whereH3

(0)(Ω) is the set of the functionsϕ of H3(Ω)

satisfyingϕ = 0 and∆ϕ = 0 on the boundary∂Ω .
Theorem 1.3 then applies and yields the same convergence results as the one in

[9, Theorem 1.1].
To develop the continuous method we need to compute the iteration numberKc

h
in (1.35), and this turns out to be a delicate issue. As explained in Section 1.6.1,
this requires the knowledge of an approximation of the observability and admissi-
bility constants. Here, the admissibility constant can be taken to be simplyT. But
evaluating the observability one is a difficult problem.

Certainly, when(ω ,Ω ,T) satisfies the multiplier condition (requiring thatω is
a neighborhood of a part of the boundaryΓ of Ω such that{x∈ ∂Ω , (x− x0) ·n>
0} ⊂ Γ andT > 2supΩ{|x− x0|} for somex0), one can get a reasonable bound on
the observability constant. Note however that, even in thatcase, the observability
constant is not explicit since the arguments use a multiplier technique and then a
compactness argument, see [36, 31]. Otherwise, if only the GCC is satisfied (see
[3]), such bounds on the observability constant are so far unknown.

Let us also emphasize that Assumption 3 does not hold in general, see [17]. This
is even the case in 1−d on uniform meshes. However, by suitably filtering the class
of initial data, variants of Assumption 3 can be proved. We refer the interested reader
to [51, 44, 12, 41] for some non-trivial geometric settings in which Assumption 3 is
proved. We shall not develop this point extensively here.
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1.8 A data assimilation problem

In this section, we discuss a data assimilation problem thatcan be treated by the
techniques developed in this paper.

1.8.1 The setting

Under the same notations as before, we consider a system driven by the equation

Φ ′ = AΦ, t ≥ 0, Φ(0) = Φ0, m(t) = B∗Φ(t). (1.103)

We assume thatΦ0 is not knowna priori but, instead, we have partial measure-
ments on the solution through the measurem(t) = B∗Φ(t). The question then is the
following: Givenm∈ L2(0,T;U), can we reconstructΦ0?

This problem is of course very much related to the study of theobservation map:

O :

{

X −→ L2(0,T;U)
ϕ0 7→ B∗ϕ , (1.104)

whereϕ is the solution of (1.2) with initial dataϕ0.
Note that this mapO is well-defined in these spaces under the condition (1.3).

Also note that the observability inequality (1.5) for (1.2)is completely equivalent to
the fact that the mapO has continuous inverse fromL2(0,T;U)∩Ran(O) to X.

Therefore, in the following, we will assume the admissibility and observability
estimates (1.3)–(1.5) so to guarantee thatO is well-defined and invertible on its
range.

Of course, this is not enough to obtain an efficient reconstruction algorithm, that
is an efficient way to compute the mapO−1.

In order to do this, the most natural idea is to introduce the functional

J̃(ϕ0) =
1
2

∫ T

0
η ‖B∗ϕ −m‖2

U dt, (1.105)

whereη is as in (1.6), or, what is equivalent at the minimization level, sincem is
assumed to be known,

J̃(ϕ0) =
1
2

∫ T

0
η ‖B∗ϕ −m‖2

U dt− 1
2

∫ T

0
η ‖m‖2

U dt, (1.106)

whereϕ is the solution of (1.2) with initial dataϕ0.
ThenJ̃ can be rewritten as
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J̃(ϕ0) =
1
2

∫ T

0
η ‖B∗ϕ‖2

U dt−
∫ T

0
η〈B∗ϕ ,m〉U dt (1.107)

=
1
2

∫ T

0
η ‖B∗ϕ‖2

U dt+ 〈ϕ0,y(0)〉X , (1.108)

wherey(0) is given by

y′ = Ay+ηBm, t ∈ (0,T), y(T) = 0. (1.109)

Under the form (1.108), the functionalJ̃ appears as a particular case of the functional
J in (1.9), and therefore, Theorem 1.1 applies.

In order to write our results in a satisfactory way, we only have to check that the
degree of smoothness ofy0, m andΦ0 are all the same.

Indeed, ifϕ0 ∈ D(A), applying (1.3) and (1.5) toAϕ0, we obtain

∫ T∗

0

∥

∥B∗ϕ ′(t)
∥

∥

2
U dt ≤C2

ad,T∗ ‖Aϕ0‖2
X ,

‖Aϕ0‖2
X ≤C2

obs,T∗

∫ T∗

0

∥

∥B∗ϕ ′(t)
∥

∥

2
U dt.

Therefore, repeating this argument forϕ0 ∈ D(Ak) and interpolating fors≥ 0, we
obtain

‖B∗ϕ‖Hs(0,T∗;U) ≤Cad,T∗ ‖ϕ0‖s, ϕ0 ∈ Xs, (1.110)

‖ϕ0‖s ≤Cobs,T∗ ‖B∗ϕ‖Hs(0,T∗;U) , ϕ0 ∈ Xs. (1.111)

These estimates indicate the following fact: for alls≥ 0, the mapO mapsXs in
Ran(O)∩Hs(0,T∗;U) and has a continuous inverse within these spaces. Equiva-
lently, for all s≥ 0, there exists a constantCs > 0 such that

1
Cs

‖ϕ0‖s ≤ ‖B∗ϕ‖Hs(0,T∗;U) ≤Cs‖ϕ0‖s , ϕ0 ∈ Xs.

Of course, this in particular implies that, ifm∈ Hs(0,T;U),

‖Φ0‖s ≤Cs‖m‖Hs(0,T;U) . (1.112)

Let us now explain the fact that, whenm∈ Hs(0,T;U), y(0) belongs toXs. If
m∈ H1(0,T;U), we differentiate in time the equation (1.109) ofy:

(y′)′ = A(y′)+ηBm′+η ′Bm, t ∈ (0,T), y′(T) = 0.

Therefore, sinceB is admissible andηm′ + η ′m∈ L2(0,T;U), y′ belongs to the
spaceC([0,T];X). Thus, from the equation (1.109) ofy and the fact thatη vanishes
at t = 0, Ay(0) = y′(0) ∈ X and theny(0) ∈ D(A). This argument can easily be
extended to anys∈N by induction and then to anys≥ 0 by interpolation.

We have thus obtained that for alls≥ 0, there exists a constantCs > 0 such that
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‖y(0)‖s ≤Cs‖m‖Hs(0,T;U) . (1.113)

According to this, Theorem 1.1 implies the following:

Theorem 1.8.Let s≥ 0 and m∈ Hs(0,T;U). Let y0 = y(0), where y denotes the
solution of (1.109)and the sequenceϕk

0 be defined by(1.17)–(1.18).
Denote byΦ0 the minimizer ofJ̃ in (1.106). ThenΦ0 ∈ Xs.
Besides, for allρ ∈ (0,ρ0), whereρ0 is as in(1.19), the sequenceϕk

0 converges
to Φ0 in X and in Xs with the convergence rates(1.23)–(1.24), whereδ is given by
(1.20).

Of course, using (1.113), (1.24) implies:
∥

∥

∥ϕk
0 −Φ0

∥

∥

∥

s
≤Cδ k(1+ |k|s)‖m‖Hs(0,T;U) , k∈ N. (1.114)

We can then apply the same ideas as the ones used for computingdiscrete con-
trols.

1.8.2 Numerical approximation methods

Let mh ∈ L2(0,T;Uh) and introduce a functiony0h = yh(0), whereyh is the solution
of

y′h = Ahyh+ηBhmh, t ∈ (0,T), yh(T) = 0. (1.115)

Then the functionals̃Jh defined by

J̃h(ϕ0h) =
1
2

∫ T

0
η ‖B∗

hϕh−mh‖2
Uh

dt− 1
2

∫ T

0
η ‖mh‖2

Uh
dt, (1.116)

whereϕh is the solution of (1.11) with initial dataϕ0h, can be rewritten as follows:

J̃h(ϕ0h) =
1
2

∫ T

0
η ‖B∗

hϕh‖2
Uh

dt+ 〈ϕ0h,y0h〉h. (1.117)

The continuous approach

Here, we only suppose that Assumptions 1–2 are fulfilled.
Under Assumptions 1–2, using (1.113), Theorem 1.2 applies and yields the fol-

lowing version of (1.33): for allk∈N,
∥

∥

∥Ehϕk
0h−ϕk

0

∥

∥

∥

X
≤Ck‖Ehy0h− y0‖X +Ckhθ ‖m‖Hs(0,T;U) . (1.118)

Therefore, using (1.114) and (1.118) and optimizing ink, settingKc
h as in (1.35),

we obtain, for some constant independent ofh,
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∥

∥

∥EhϕKc
h

0h −Φ0

∥

∥

∥

X
≤C| logh|max{1,s}hθ ‖m‖Hs(0,T;U)

+C| logh|‖Ehy0h− y0‖X . (1.119)

In particular, if‖Ehy0h− y0‖X tends to zero ash→ 0 faster than 1/| log(h)|, we
have a convergence estimate for this data assimilation problem. Of course, a discrete
sequencey0h such thatEhy0h converges toy0 in X can be built by assuming suitable
convergence assumptions ofmh toward m and the convergence of the numerical
scheme (1.115) toward the continuous equation (1.109).

Note that it can be necessary to consider the regularity of the measurem= B∗Φ
in the space variable. Let us give a precise example corresponding to the case of
distributed observation, see Section 1.7.2, corresponding to

B∗ =

(

0 0
0 χω

)

on X = H1
0(Ω)×L2(Ω). There,B= B∗ andU can be taken to coincide withX. If

furthermore the functionχω that localizes the effect of the control inω is smooth,
B (and thusB∗) mapsXs to itself for anys≥ 0 (these assumptions are very close
to the ones in [9, 25] on the control/observation operator).Therefore, in that case,
if Φ0 ∈ Xk (k∈ N), m= B∗Φ belongs toCk([0,T];X)∩C0([0,T];Xk). Note that the
Hk(0,T;X)-norm ofm is then equivalent to itsCk([0,T];X)∩C0([0,T];Xk)-norm by
(1.112) together with classical energy estimates for solutions of (1.103). Therefore,
a natural space for the measurem would rather beCs([0,T];X)∩C0([0,T];Xs) and
one could therefore simply take the approximate measuremh = Rhm.

The obtained algorithm is actually very close to the one derived in [25] from
the continuous “algorithm” in [29] and suffers from the samedeficiencies and in
particular from the the difficulty of computing the stoppingtime.

The discrete approach

In this paragraph, we suppose that Assumptions 1, 2 and 3 hold.
Using Theorem 1.4 and (1.113), one can obtain the following version of (1.39):

for all k∈ N,
∥

∥

∥Ehϕk
0h−ϕk

0

∥

∥

∥

X
≤ kρ

(

‖Ehy0h− y0‖X +Chθ ‖m‖Hs(0,T;U)

)

. (1.120)

In particular, based on this estimate and (1.114), we obtainthat for some constant
C independent ofk andh, for all k≥ Kd

h (given by (1.40)),

∥

∥

∥Ehϕk
0h−Φ0

∥

∥

∥

X
≤Chθ ‖m‖Hs(0,T;U)+C‖Ehy0h− y0‖X . (1.121)

In particular, similarly as in (1.44),

‖EhΦ0h−Φ0‖X ≤Chθ ‖m‖Hs(0,T;U)+C‖Ehy0h− y0‖X , (1.122)
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whereΦ0h is the minimizer ofJ̃h in (1.116).
Remark also that, similarly as in Section 1.6.2, if one can guarantee thaty0 given

by (1.109) andy0h given by (1.115) are such thatEhy0h strongly converge inX to y0,
one can guarantee thatEhΦ0h strongly converge toΦ0. Such convergences for the
sequenceEhy0h are very natural for sequences of observationsmh that strongly con-
verge tom in L2(0,T;U) (this statement has to be made more precise by explaining
howmh ∈ L2(0,T;Uh) is identified as an element ofL2(0,T;U)).

Of course, this implies that, similarly as in Section 1.6.3,J̃h can be minimized
using faster algorithms than the steepest descent one, and in particular the conjugate
gradient method.



Chapter 2
Observability for the 1−d finite difference wave
equation

2.1 Objectives

In this chapter, we discuss the observability properties for the 1−d finite-difference
wave equation.

For the convenience of the reader, let us recall the equations, already introduced
in (1.80).

Let N ∈ N, h = 1/(N+ 1). Given (ϕ0h,ϕ1h), compute the solutionϕh of the
following system:














∂ttϕ j ,h−
1
h2

(

ϕ j+1,h−2ϕ j ,h+ϕ j−1,h
)

= 0, (t, j) ∈ (0,T)×{1, · · · ,N},
ϕ0,h(t) = ϕN+1,h(t) = 0, t ∈ (0,T),

(ϕh(0),∂tϕh(0)) = (ϕ0h,ϕ1h).

(2.1)

Here, we will not be interested in any convergence process, but rather try to prove
some estimates uniformly with respect toh > 0, and in particular uniform admis-
sibility and observability results. Before going further,let us also emphasize that
this uniform admissibility result will be an important stepin the proof of the con-
vergence of the discrete waves towards the continuous ones when working with
boundary data inL2(0,T).

Note that the discrete equation (2.1), as its continuous counterpart, is conserva-
tive in the sense that its energy

Eh[ϕh](t) = h
N

∑
j=1

|∂tϕ j(t)|2+h
N

∑
j=0

(

ϕ j+1(t)−ϕ j(t)

h

)2

, (2.2)

sometimes simply denoted byEh(t) when no confusion may occur, is constant in
time:

∀t ≥ 0, Eh(t) = Eh(0). (2.3)

55
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2.2 Spectral decomposition of the discrete laplacian

In this section, we briefly recall the spectral decomposition of the discrete laplacian.
To be more precise, we consider the eigenvalue problem associated with the 3-

point finite-difference scheme for the 1−d Laplacian:






−wj+1+wj−1−2wj

h2 = λwj , j = 0, · · · ,N+1,

w0 = wN+1 = 0.
(2.4)

A simple iteration process shows that ifw1 = 0 andw solves (2.4), thenwj = 0
for all j ∈ {0, · · · ,N+1}. Hence all the eigenvalues are simple.

Furthermore the spectrum of the discrete Laplacian is givenby the sequence of
eigenvalues

0< λ1(h)< λ2(h)< · · ·< λN(h),

which can be computed explicitly

λk(h) =
4
h2 sin2

(

πkh
2

)

, k= 1, · · · ,N. (2.5)

The eigenvectorwk =
(

wk
1, · · · ,wk

N

)

associated to the eigenvalueλk(h) can also be
computed explicitly:

wk
j =

√
2sin(πk jh) , j = 1, · · · ,N. (2.6)

Observe in particular that the eigenvectors of the discretesystem do not depend
onh> 0 and coincide with the restriction of the continuous eigenfunctionswk(x) =√

2sin(kπx) of the Laplace operator on(0,1) to the discrete mesh.
Let us now compare the eigenvalues of the discrete Laplace operator∆h and the

continuous one∂xx:

• For fixedk, limh→0 λk(h) = π2k2, which is thek-th eigenvalue of the continuous
Laplace operator−∂xx on (0,1).

• We have the following bounds:

4
π2 k2π2 ≤ λk(h)≤ k2π2 for all 0< h< 1, 1≤ k≤ N. (2.7)

• The discrete eigenvalues
√

λk(h) uniformly converge to the corresponding con-
tinuous oneskπ whenk= o(1/h2/3) since, at first order,

∣

∣

∣

√

λk(h)− kπ
∣

∣

∣∼Ck3h2. (2.8)

Let us now recall some orthogonality properties of the eigenvectors, that can be
found e.g. in [28]:
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Lemma 2.1.For any eigenvector w with eigenvalueλ of (2.4)the following identity
holds:

h
N

∑
j=0

∣

∣

∣

∣

wj+1−wj

h

∣

∣

∣

∣

2

= λh
N

∑
j=1

|wj |2. (2.9)

If wk and wℓ are normalized (i.e. with h∑ j |wk
j |2 = h∑ j |wℓ

j |2 = 1) eigenvectors of
∆h, then

h
N

∑
j=1

wk
j w

ℓ
j = δkℓ, (2.10)

and

h
N

∑
j=0

(

wk
j+1−wk

j

h

)(

wℓ
j+1−wℓ

j

h

)

= λkδkℓ, (2.11)

whereδkℓ is the Kronecker symbol.

2.3 Uniform admissibility of discrete waves

For convenience and later use, we begin by stating a uniform admissibility result,
which can also be found in [28] and will be useful for studyingthe convergence of
the discrete normal derivatives of the solutions of (2.1) towards the continuous ones.

Theorem 2.1.For all time T > 0 there exists a finite positive constant C(T) > 0
such that

∫ T

0

∣

∣

∣

∣

ϕN(t)
h

∣

∣

∣

∣

2

dt ≤C(T)Eh(0), (2.12)

for all solutionϕh of the adjoint equation(2.1) and for all h> 0. Besides, we can
take C(T) = T +2.

The proof of Theorem 2.1 is briefly given in Section 2.3.2. It is based on a mul-
tiplier identity given in the next section.

2.3.1 The multiplier identity

Our results are based on the following multiplier identity,that can be found in [28]:

Theorem 2.2.For all h > 0 and T> 0 any solutionϕh of (2.1)satisfies

TEh(0)+Xh(t)
∣

∣

∣

T

0
=

∫ T

0

∣

∣

∣

∣

ϕN(t)
h

∣

∣

∣

∣

2

dt+
h3

2

N

∑
j=0

∫ T

0

∣

∣

∣

∣

∂tϕ j+1− ∂tϕ j

h

∣

∣

∣

∣

2

dt, (2.13)

with
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Xh(t) = 2h
N

∑
j=1

jh

(

ϕ j+1−ϕ j−1

2h

)

∂tϕ j . (2.14)

The proof of Theorem 2.2 uses the multiplierj(ϕ j+1−ϕ j−1), which is the dis-
crete counterpart ofx∂xϕ . Integrating by parts in space (in a discrete manner) and
time, we obtain (2.13). We refer to [28] for the details of thecomputations. We only
sketch it below since it will be useful later on in Chapter 4.

Proof (Sketch).Multiplying the equation (2.1) byjh(ϕ j+1−ϕ j−1)/h, we have

h
N

∑
j=1

∫ T

0
∂tt ϕ j jh

(

ϕ j+1−ϕ j−1

h

)

dt

= h
N

∑
j=1

∫ T

0

1
h2

(

ϕ j+1−2ϕ j +ϕ j−1
)

jh

(

ϕ j+1−ϕ j−1

h

)

dt.

After tedious computations, one shows (cf [28]):

h
N

∑
j=1

∫ T

0
∂tt ϕ j jh

(

ϕ j+1−ϕ j−1

h

)

dt = Xh(t)
∣

∣

∣

T

0
+h

N

∑
j=1

∫ T

0
|∂tϕ j |2dt

− h3

2

N

∑
j=0

∫ T

0

∣

∣

∣

∣

∂tϕ j+1− ∂tϕ j

h

∣

∣

∣

∣

2

dt

and

h
N

∑
j=1

∫ T

0

1
h2

(

ϕ j+1−2ϕ j +ϕ j−1
)

jh

(

ϕ j+1−ϕ j−1

h

)

dt =
∫ T

0

∣

∣

∣

∣

ϕN(t)
h

∣

∣

∣

∣

2

dt

−h
N

∑
j=0

∫ T

0

(

ϕ j+1−ϕ j

h

)2

dt.

Putting these identities together yields (2.13). ⊓⊔

2.3.2 Proof of the uniform hidden regularity result

Proof (Theorem 2.1).This is an immediate consequence of Theorem 2.2. It suffices
to bound the time boundary termsXh(T)−Xh(0) by the energyEh to get the result:
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|Xh| ≤ 2

[

h
N

∑
j=1

∣

∣∂tϕ j
∣

∣

2

]1/2[

h
N

∑
j=1

∣

∣

∣

∣

jh

(

ϕ j+1−ϕ j−1

2h

)∣

∣

∣

∣

2
]1/2

≤ 2

[

h
N

∑
j=1

∣

∣∂tϕ j
∣

∣

2

]1/2[

h
N

∑
j=1

(

ϕ j+1−ϕ j−1

2h

)2
]1/2

≤ Eh. (2.15)

This concludes the proof of Theorem 2.1. ⊓⊔

2.4 An observability result

The goal of this section is to show the following result:

Theorem 2.3.Assume thatγ < 1. Then for all T such that

T > T(γ) = 2/cos(πγ/2), (2.16)

for every solutionϕh of (1.80)in the class

Vh(γ/h) = Span
{

wk, kh≤ γ
}

uniformly as h→ 0, we have
(

T cos2
( γπ

2

)

−2cos
(πγ

2

)

− h
2

)

Eh(0)≤
∫ T

0

∣

∣

∣

ϕN

h

∣

∣

∣

2
dt, (2.17)

where Eh is the discrete energy of solutions of(2.1)defined in(2.2).

The proof of Theorem 2.3 is based on the discrete multiplier identity in Theo-
rem 2.2 (and developed in [28]). However, the estimates we explain below yield a
sharp result on the uniform time of observability for discrete waves with an explicit
uniform observability constant, thus improving the estimates in [28].

2.4.1 Equipartition of the energy

We also recall the following proof of the so-called propertyof equipartition of the
energy for discrete waves:

Lemma 2.2 (Equipartition of the energy).For h> 0 andϕh solution of (2.1),

−h
N

∑
j=1

∫ T

0
|∂tt ϕ j |2dt+h

N

∑
j=0

∫ T

0

∣

∣

∣

∣

∂tϕ j+1− ∂tϕ j

h

∣

∣

∣

∣

2

dt+Yh(t)
∣

∣

∣

T

0
= 0, (2.18)

where
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Yh(t) = h
N

∑
j=1

∂tt ϕ j∂tϕ j . (2.19)

Again, for the proof of Lemma 2.2, we refer to [28].

2.4.2 The multiplier identity revisited

From now on, we do not follow anymore the proofs of [28] but rather try to optimize
them to improve the obtained estimates.

We introduce a modified energỹEh for solutionsϕh or (2.1). First, remark that
anyϕh solution of (2.1) can be developed on the basis of eigenfunctions of−∆h as
follows

ϕh(t) = ∑
|k|≤N

ϕ̂ke
iµk(h)tw|k| (2.20)

with µk(h) =
√

λk(h) for k> 0 andµ−k(h) =−µk(h).
According to Lemma 2.1, its energy reads as

Eh[ϕh] = 2 ∑
|k|≤N

|ϕ̂k|2λk(h). (2.21)

Similarly, the energy of∂tϕh, which is also a solution of (2.1), and that we shall
denote byEh[∂tϕh] to avoid confusion, can be rewritten as

Eh[∂tϕh] = 2 ∑
|k|≤N

|ϕ̂k|2λk(h)
2.

Note that, of course,Eh[ϕh] andEh[∂tϕh] are independent of time sinceϕh and∂tϕh

are solutions of (2.1).
We then introduce

Ẽh[ϕh] = Eh[ϕh]−
h2

4
Eh[∂tϕh]. (2.22)

This modified energy is thus constant in time and satisfies

Ẽh[ϕh] = 2 ∑
|k|≤N

|ϕ̂k|2λ|k|(h)cos2
(

kπh
2

)

. (2.23)

We are now in position to state the following multiplier identity:

Theorem 2.4.For all h > 0 and T> 0, any solutionϕh of (2.1)satisfies

TẼh[ϕh]+Zh(t)
∣

∣

∣

T

0
=

∫ T

0

∣

∣

∣

∣

ϕN(t)
h

∣

∣

∣

∣

2

dt (2.24)

with
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Zh(t) = Xh(t)+
h2

4
Yh(t), with Yh(t) = h

N

∑
j=1

∂tϕ j∂ttϕ j . (2.25)

Proof. To simplify the notations, we do not make explicit the dependence inh> 0,
which is assumed to be fixed along the computations.

According to Lemma 2.2, since∂tϕh is a solution of (2.1), the following identity
holds:

h
N

∑
j=0

∫ T

0

∣

∣

∣

∣

∂tϕ j+1− ∂tϕ j

h

∣

∣

∣

∣

2

dt =
h
2

N

∑
j=1

∫ T

0
|∂tt ϕ j |2dt

+
h
2

N

∑
j=0

∫ T

0

∣

∣

∣

∣

∂tϕ j+1− ∂tϕ j

h

∣

∣

∣

∣

2

dt− Yh(t)
2

∣

∣

∣

T

0
, (2.26)

whereYh is as in (2.25).
Of course,

h
N

∑
j=1

∫ T

0
|∂tϕ j |2dt+h

N

∑
j=0

∫ T

0

∣

∣

∣

∣

∂tϕ j+1− ∂tϕ j

h

∣

∣

∣

∣

2

dt = TEh[∂tϕh],

and then (2.24) follows from (2.26) and (2.13). ⊓⊔

2.4.3 Uniform observability for filtered solutions

We now focus on the proof of Theorem 2.3. It mainly consists inestimating the
terms in (2.24), and in particularZh(t).

2.4.3.1 Estimates onYh(t)

Let us begin with the following bound onYh:

Lemma 2.3.For all h > 0 and t≥ 0, for any solutionϕh of (2.1),

h2|Yh(t)| ≤ hEh[ϕh]. (2.27)

Proof. Computingh2Yh we get
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h2Yh(t) = h
N

∑
j=1

∂tϕ j(h
2∂tt ϕ j)

= h
N

∑
j=1

∂tϕ j(ϕ j+1−2ϕ j +ϕ j−1)

= h2
N

∑
j=1

∂tϕ j

(

ϕ j+1−ϕ j

h

)

−h2
N

∑
j=1

∂tϕ j

(

ϕ j −ϕ j−1

h

)

.

But

2

∣

∣

∣

∣

∣

h
N

∑
j=1

∂tϕ j

(

ϕ j+1−ϕ j

h

)

∣

∣

∣

∣

∣

≤ Eh(t),

and thus estimate (2.27) follows immediately. ⊓⊔

2.4.3.2 Estimates onXh(t)

This is the most technical step of our proof. The idea is to usethe Fourier decompo-
sition of solutionsϕh of (2.1) to boundXh conveniently.

Proposition 2.1.For all h > 0, t ≥ 0 and γ ∈ (0,1), any solutionϕh of (2.1) with
data inVh(γ/h) satisfies:

|Xh(t)| ≤
Ẽh[ϕh]

cos
( γπ

2

) . (2.28)

Proof. Let us begin by computing̃Eh[ϕh] at some timet, for instancet = 0, in terms
of the Fourier coefficients ofϕh(t),∂t ϕh(t). If

ϕ0
h =

N

∑
k=1

âkw
k, ϕ1

h =
N

∑
ℓ=1

b̂ℓw
ℓ,

thenẼh can be written as

Ẽh =
N

∑
k=1

|âk|2λk(h)cos2
(

kπh
2

)

+
N

∑
ℓ=1

|b̂ℓ|2cos2
(

ℓπh
2

)

. (2.29)

Proposition 2.1 is then a direct consequence of the following lemma:

Lemma 2.4.Let ah and bh be two discrete functions which can be written as

ah =
N

∑
k=1

âkw
k, bh =

N

∑
ℓ=1

b̂ℓw
ℓ.

Then, setting
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Xh(ah,bh) = 2h
N

∑
j=1

jh

(

a j+1−a j−1

2h

)

b j ,

we have

|Xh(ah,bh)| ≤ 2

(

N

∑
k=1

|âk|2λk(h)cos2
(

kπh
2

)

)1/2( N

∑
ℓ=1

|b̂ℓ|2
)1/2

. (2.30)

In particular, if we assume that, for someγ ∈ (0,1),

âk = b̂ℓ = 0, ∀k, ℓ ≥ γ(N+1), (2.31)

then

|Xh(ah,bh)| ≤
1

cos
( γπ

2

)

[

N

∑
k=1

|âk|2λk(h)cos2
(

kπh
2

)

+
N

∑
ℓ=1

|b̂ℓ|2cos2
(

ℓπh
2

)

]

. (2.32)

Of course, Lemma 2.4 and in particular estimate (2.32), proved hereafter, imme-
diately yield (2.28). ⊓⊔

Proof (Lemma 2.4).For all j ∈ {1, · · · ,N},

a j+1−a j−1

2h
=
√

2
N

∑
k=1

âk cos(kπ jh)
sin(kπh)

h
.

Thus,

Xh(ah,bh) = 4h
N

∑
j=1

jh

(

N

∑
k=1

âk cos(kπ jh)
sin(kπh)

h

)(

N

∑
ℓ=1

b̂ℓsin(ℓπ jh)

)

.

Therefore, by orthogonality properties of the discrete cosine functions (the counter-
part of Lemma 2.1 with the cosine functions),

|Xh(ah,bh)|2

≤ 4



2h
N

∑
j=1

(

N

∑
k=1

âk cos(kπ jh)
sin(kπh)

h

)2






2h
N

∑
j=1

(

N

∑
ℓ=1

b̂ℓsin(ℓπ jh)

)2




≤ 4

(

N

∑
k=1

|âk|2
(

sin(kπh)
h

)2
)(

N

∑
ℓ=1

|b̂ℓ|2
)

,

where we used that, for all sequence(αk)1≤k≤N,
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2h
N

∑
j=1

(

N

∑
k=1

αk cos(kπ jh)

)2

=
N

∑
k=1

|αk|2.

Note then that
(

sin(kπh)
h

)2

=
4
h2 sin2

(

kπh
2

)

cos2
(

kπh
2

)

= λk(h)cos2
(

kπh
2

)

.

The bound (2.30) immediately follows.
If we assume (2.31), then by Cauchy-Schwarz inequality, (2.30) implies

|Xh(ah,bh)| ≤
1

cos
( γπ

2

)

N

∑
k=1

|âk|2λk(h)cos2
(

kπh
2

)

+ cos
( γπ

2

) N

∑
ℓ=1

|b̂ℓ|2,

and the last term satisfies:

cos
( γπ

2

) N

∑
ℓ=1

|b̂ℓ|2 ≤
1

cos
( γπ

2

)

N

∑
ℓ=1

|b̂ℓ|2cos2
(

ℓπh
2

)

,

and estimate (2.32) follows immediately. ⊓⊔

2.4.4 Proof of Theorem 2.3

Proof (Theorem 2.3).Identity (2.24), estimates (2.27) and (2.28) imply that any
solutionϕh of (2.1) in the classVh(γ/h) satisfies

∣

∣

∣

∣

TẼh[ϕh]−
∫ T

0

∣

∣

∣

ϕN

h

∣

∣

∣

2
dt

∣

∣

∣

∣

≤ 2

cos
( γπ

2

) Ẽh(ϕh)+
h
2

Eh(ϕh). (2.33)

Therefore,


T − 2

cos
( γπ

2

)



 Ẽh[ϕh]−
h
2

Eh[ϕh]≤
∫ T

0

∣

∣

∣

ϕN

h

∣

∣

∣

2
dt.

But, sinceϕh belongs to the classVh(γ/h), the Fourier expressions of the energy
Eh[ϕh] in (2.21) andẼh[ϕh] in (2.23) yield

cos
(γπ

2

)2
Eh[ϕh]≤ Ẽh[ϕh], (2.34)

which concludes the proof of Theorem 2.3. ⊓⊔



Chapter 3
Convergence of the finite difference method for
the 1−d wave equation with homogeneous
Dirichlet boundary conditions

3.1 Objectives

This chapter of the book is devoted to the study of the convergence of the numerical
scheme























∂tt ϕ j ,h−
1
h2

(

ϕ j+1,h−2ϕ j ,h+ϕ j−1,h
)

= 0,

(t, j) ∈ (0,T)×{1, · · · ,N},
ϕ0,h(t) = ϕN+1,h(t) = 0, t ∈ (0,T),

(ϕh(0),∂tϕh(0)) = (ϕ0h,ϕ1h),

(3.1)

towards the continuous wave equation







∂tt ϕ − ∂xxϕ = 0, (t,x) ∈ (0,T)× (0,1),
ϕ(t,0) = ϕ(t,1) = 0, t ∈ (0,T),

(ϕ(0),∂tϕ(0)) = (ϕ0,ϕ1).

(3.2)

Of course, first of all, one needs to explain how discrete and continuous solutions
can be compared. This will be done in Section 3.2. In Section 3.3, we will present
our main convergence result. We shall then present some further convergence results
in Section 3.4 and illustrate them in Section 3.5.

3.2 Extension operators

We first describe the extension operators we shall use. We will then explain how the
obtained results can be interpreted in terms of the more classical extension operators.

65
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3.2.1 The Fourier extension

For h > 0, given a discrete functionah = (a j ,h) j∈{1,·,N} (with N+ 1= 1/h), since
the sequencewk

h is an orthonormal basis for theh〈 ·, ·〉ℓ2(RN)-norm due to Lemma
2.1, there exist coefficients ˆak such that

ah =
N

∑
k=1

âkw
k
h, ( recall thatwk

j ,h =
√

2sin(kπ jh) ) (3.3)

in the sense that, for allj ∈ {1, · · · ,N},

a j ,h =
N

∑
k=1

âk

√
2sin(kπ jh). (3.4)

Of course, this yields a natural Fourier extension denoted by Fh for discrete func-
tionsah given by (3.3):

Fh(ah)(x) =
N

∑
k=1

âk

√
2sin(kπx), x∈ (0,1). (3.5)

The advantage of this definition is that nowFh(ah) is a smooth function ofx.
The energy of a solutionϕh of (3.1) at timet, given by (2.2), is then equivalent,

uniformly with respect toh> 0, to theH1
0(0,1)×L2(0,1)-norm of(Fh(ϕh),Fh(ϕ ′

h)).
This issue will be discussed in Proposition 3.3 below.

Another interesting feature of this Fourier extension is that, due to the discrete
orthogonality properties of the eigenvectorswk proved in Lemma 2.1 and their usual
L2(0,1)-orthogonality, i.e.

∫ 1
0 wk(x)wℓ(x)dx= δk,ℓ for all k, ℓ ∈ N, for all discrete

functionsah,bh, we have

h
N

∑
j=1

a j ,hb j ,h =

∫ 1

0
Fh(ah)Fh(bh)dx.

This fact will be used to simplify some expressions.

3.2.2 Other extension operators

When using finite difference (or finite element) methods, theFourier extension is
not the most natural one. Given a discrete functionah = (a j ,h) j∈{1,·,N} (with N+1=
1/h), consider the classical extension operatorsPh andQh defined by
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Ph(ah)(x) = a j ,h+

(

a j+1,h−a j ,h

h

)

(x− jh), (3.6)

for x∈ [ jh,( j +1)h), j ∈ {0, · · · ,N},

Qh(ah)(x) =

{

a j ,h for x∈ [( j −1/2)h,( j +1/2)h), j ∈ {1, · · · ,N},
0 for x∈ [0,h/2)∪ [(N+1/2)h,1],

(3.7)

with the conventionsa0,h = aN+1,h = 0.
The range of the extension operatorPh is the set of continuous, piecewise affine

functions with (C1) singularities in the pointsjh, and vanishing on the boundary.
This corresponds to the most natural approximation leadingto H1

0(0,1) functions
and to the point of view of theP1 finite element method. By the contrary,Qh pro-
vides the simplest piecewise constant extension of the discrete function which, ob-
viously, lies inL2(0,1) but not inH1

0(0,1).
Note that the extensionsFh(ah) obtained using the Fourier representation (3.5)

andPh(ah) do not coincide. However, they are closely related as follows:

Proposition 3.1.For each h= 1/(N+1)> 0, let ah be a sequence of discrete func-
tions.

Then, for s∈ {0,1}, the sequence of Fourier extensions(Fh(ah))h>0 converges
strongly (respectively weakly) in Hs(0,1) if and only if the sequence(Ph(ah))h>0
converges strongly (respectively weakly) in Hs(0,1). Besides, if one of these se-
quences converge, then they have the same limit.

Moreover, there exists a constant C independent of h> 0 such that

1
C
‖Fh(ah)‖L2 ≤ ‖Ph(ah)‖L2 ≤ C‖Fh(ah)‖L2 , (3.8)

1
C
‖Fh(ah)‖H1

0
≤ ‖Ph(ah)‖H1

0
≤ C‖Fh(ah)‖H1

0
. (3.9)

Proof. Let us begin with the cases= 0.
Let us first compare theL2(0,1)-norms of the functionsFh(ah) andPh(ah).

From the orthogonality properties ofwk (see Lemma 2.1), we have

‖Fh(ah)‖2
L2(0,1) =

N

∑
k=1

|âk,h|2 = h
N

∑
j=1

|a j ,h|2. (3.10)

Computing theL2(0,1)-norm ofPh(ah) is slightly more technical:
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∫ 1

0
|Ph(ah)(x)|2 dx=

N

∑
j=0

∫ h

0

∣

∣

∣

∣

a j ,h+ x

(

a j+1,h−a j ,h

h

)∣

∣

∣

∣

2

dx

= h
N

∑
j=0

[

a2
j ,h+a j ,h(a j+1,h−a j ,h)+

1
3
(a j+1,h−a j ,h)

2
]

=
h
3

N

∑
j=0

(a2
j ,h+a2

j+1,h+a j ,ha j+1,h)

=
h
6

N

∑
j=0

(a2
j ,h+a2

j+1,h+2a j ,ha j+1,h)+
h
6

N

∑
j=0

(a2
j ,h+a2

j+1,h)

=
h
6

N

∑
j=0

(a j ,h+a j+1,h)
2+

h
3

N

∑
j=1

|a j ,h|2. (3.11)

It follows that theL2(0,1)-norms ofFh(ah) andPh(ah) are equivalent, hence
implying (3.8), and then the boundedness properties for these sequences are equiv-
alent.

This also implies that the sequence(Fh(ah))h>0 is a Cauchy sequence inL2(0,1)
if and only if the sequence(Ph(ah)) is a Cauchy sequence inL2(0,1), and then one
of these sequences converges strongly if and only if the other one does.

To guarantee that these sequences have the same limit when they converge, we
have to check that their difference, if uniformly bounded, weakly converges to zero
whenh→ 0.

Let ψ denote a smooth test function. On one hand, we have

∫ 1

0
Fh(ah)(x)ψ(x)dx=

N

∑
k=1

âk,h

∫ 1

0
wk(x)ψ(x)dx.

On the other one, we have

∫ 1

0
Ph(ah)(x)ψ(x)dx =

N

∑
j=1

∫ ( j+1)h

jh

(

a j ,h+
a j+1,h−a j ,h

h
(x− jh)

)

ψ(x) dx

= h
N

∑
j=1

a j ,hψ̃ j ,h,

with

ψ̃ j ,h =
1
h

∫ jh

( j−1)h
ψ(x)

(

x− ( j −1)h
h

)

dx+
1
h

∫ ( j+1)h

jh
ψ(x)

(

1− x− jh
h

)

dx

=
1
h

∫ ( j+1)h

( j−1)h
ψ(x)

(

1− |x− jh|
h

)

dx.

Using (3.4), we obtain
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∫ 1

0
Ph(ah)(x)ψ(x)dx=

N

∑
k=1

âk,h

(

h
N

∑
j=1

wk
j ψ̃ j ,h

)

. (3.12)

Therefore,

∫ 1

0
(Ph(ah)(x)−Fh(ah)(x)) ψ(x)dx

=
N

∑
k=1

âk,h

(

h
N

∑
j=1

wk
j ψ̃ j ,h−

∫ 1

0
wk(x)ψ(x)dx

)

. (3.13)

Now, fix ℓ∈N, and chooseψ(x) =wℓ(x) =
√

2sin(ℓπx). In this case, using Taylor’s
formula, we easily check that

sup
j∈{1,··· ,N}

|ψ̃ j ,h−ψ( jh)| ≤ ℓhπ .

Since, forℓ≤ N, see Lemma 2.1,

∫ 1

0
wk(x)wℓ(x)dx= h

N

∑
j=1

wk
j w

ℓ( jh) = δ ℓ
k ,

we then obtain from (3.13) that for allℓ ∈N,

∫ 1

0
(Ph(ah)(x)−Fh(ah)(x)) wℓ(x)dx−→

h→0
0.

Since the set{wℓ}l∈N spans the whole spaceL2(0,1), if one of the sequences
(Fh(ah)) or (Ph(ah)) converges weakly inL2(0,1), then the other one also con-
verges weakly inL2(0,1) and has the same limit.

This completes the proof in the cases= 0.

We now deal with the cases= 1. First remark that

∫ 1

0
|∂xFh(ah)|2dx=

N

∑
k=1

|âk,h|2k2π2 (3.14)

from the Fourier orthogonality properties, and, using Lemma 2.1,

∫ 1

0
|∂xPh(ah)(x)|2dx= h

N

∑
j=0

(

a j+1,h−a j ,h

h

)2

=
N

∑
k=1

λk(h)|âk,h|2. (3.15)

Sincec1k2 ≤ λk(h) ≤ c2k2, these two norms are equivalent, hence implying (3.9),
and therefore theH1

0(0,1)-boundedness properties of the sequences(Fh(ah)) and
(Ph(ah)) are equivalent.
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If one of these sequences weakly converges inH1
0(0,1), then the other one is

bounded inH1
0(0,1) and weakly converges inL2(0,1) to the same limit from the

previous result, and then also weakly converges inH1
0(0,1).

Besides, if one of these sequences strongly converges inH1
0(0,1), it is a Cauchy

sequence inH1
0(0,1), and then the other one also is a Cauchy sequence inH1

0(0,1),
and therefore also strongly converges. ⊓⊔

Similarly, one can prove the following:

Proposition 3.2.For each h= 1/(N+1)> 0, let ah be a sequence of discrete func-
tions.

Then the sequence of Fourier extensions(Fh(ah))h>0 converges strongly (respec-
tively weakly) in L2(0,1) if and only if the sequence(Qh(ah))h>0 converges strongly
(respectively weakly) in L2(0,1). Besides, when they converge, they have the same
limit.

Moreover, there exists a constant C independent of h> 0 such that

1
C
‖Fh(ah)‖L2 ≤ ‖Qh(ah)‖L2 ≤C‖Fh(ah)‖L2 . (3.16)

The proof is very similar to the previous one and is left to thereader.

The above propositions show that the Fourier extension plays the same role as
the classical extensions by continuous piecewise affine functions or by piecewise
constant functions when considering convergence issues. We make the choice of
considering this Fourier extension, rather than the usual ones, since it has the ad-
vantage of being smooth.

The following result is also relevant:

Proposition 3.3.There exists a constant C independent of h> 0 such that for all
solutionsϕh of (3.1):

1
C
‖(Fh(ϕh),Fh(∂tϕh)‖H1

0×L2 ≤ Eh[ϕh]≤C‖(Fh(ϕh),Fh(∂tϕh)‖H1
0×L2 (3.17)

Proof. The discrete energy of a solutionϕh of (3.1) at timet exactly coincides with
theH1

0(0,1)×L2(0,1)-norm of(Ph(ϕh),Qh(∂tϕh)) at timet. Using the equivalences
(3.9) and (3.16), we immediately obtain (3.17). ⊓⊔

In the following, we will often omit the operatorFh from explicit notations
and directly identify the discrete functionah = (a j ,h) j∈{1,··· ,N} with its continuous
Fourier extensionFh(ah).

3.3 Orders of convergence for smooth initial data

In this section, we consider a solutionϕ of (3.2) with initial data(ϕ0,ϕ1) ∈ H2∩
H1

0(0,1)×H1
0(0,1). The solutionϕ of (3.2) then belongs to the space
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ϕ ∈C([0,T];H2∩H1
0(0,1))∩C1([0,T];H1

0(0,1))∩C2([0,T];L2(0,1)).

In order to prove it, one can remark that the energy

E[ϕ ](t) =
∫ 1

0

(

|∂tϕ(t,x)|2+ |∂xϕ(t,x)|2
)

dx

is constant in time for solutions of (3.2) with initial data in H1
0(0,1)× L2(0,1).

We then apply it to∂tϕ , which is a solution of (3.2) with initial data(ϕ1,∂xxϕ0) ∈
H1

0(0,1)×L2(0,1).
The goal of this section is to prove the following result:

Proposition 3.4.Let (ϕ0,ϕ1) ∈ H2 ∩H1
0(0,1)×H1

0(0,1). Then there exist a con-
stant C=C(T) independent of(ϕ0,ϕ1) and a sequence(ϕ0

h ,ϕ
1
h) of discrete initial

data such that for all h> 0,
∥

∥(ϕ0
h ,ϕ

1
h)− (ϕ0,ϕ1)

∥

∥

H1
0×L2 ≤Ch2/3

∥

∥(ϕ0,ϕ1)
∥

∥

H2∩H1
0×H1

0
(3.18)

and the solutionsϕ of (3.2) with initial data (ϕ0,ϕ1) and ϕh of (3.1) with initial
data(ϕ0

h ,ϕ
1
h) satisfy, for all h> 0 and t∈ [0,T],

‖(ϕh(t),∂tϕh(t))− (ϕ(t),∂tϕ(t))‖H1
0×L2 ≤Ch2/3

∥

∥(ϕ0,ϕ1)
∥

∥

H2∩H1
0×H1

0
, (3.19)

and
∥

∥

∥

∥

ϕN,h(·)
h

+ ∂xϕ(·,1)
∥

∥

∥

∥

L2(0,T)
≤Ch2/3

∥

∥(ϕ0,ϕ1)
∥

∥

H2∩H1
0×H1

0
. (3.20)

Remark 3.1.The result in (3.18) may appear somewhat surprising since, when ap-
proximating(ϕ0,ϕ1) ∈ H2∩H1

0(0,1)×H1
0(0,1) by the classical continuous piece-

wise affine approximations or truncated Fourier series, theapproximations(ϕ0
h ,ϕ

1
h)

satisfy
∥

∥(ϕ0
h ,ϕ

1
h)− (ϕ0,ϕ1)

∥

∥

H1
0×L2 ≤Ch

∥

∥(ϕ0,ϕ1)
∥

∥

H2∩H1
0×H1

0
(3.21)

instead of (3.18).
However, the result in [45] indicates that, even if the convergence of the initial

data is as in (3.21), one cannot obtain a better result than (3.19). This is due to
the distance between the continuous and space semi-discrete semigroups generated
by (3.2) and (3.1), respectively, and their purely conservative nature. To be more
precise, when looking at the dispersion diagram, the eigenvalues of the semi-discrete
wave equation (3.1) are of the form

√

λk(h) =
2
h

sin

(

kπh
2

)

whereas the ones of the continuous equation (3.2) are
√

λk = kπ . In particular, for
anyε > 0,
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sup
k≤h−2/3+ε

{∣

∣

∣

√

λk(h)− kπ
∣

∣

∣

}

= 0, while sup
k≥h−2/3−ε

{∣

∣

∣

√

λk(h)− kπ
∣

∣

∣

}

= ∞.

Remark 3.2.The main issue in Proposition 3.4 is the estimate (3.20). Estimates
(3.19) are rather classical in the context of finite element methods, see e.g. [2] and
the references therein.

Proof. Let (ϕ0,ϕ1) ∈ H2∩H1
0(0,1)×H1

0(0,1). Expanding these initial data on the
Fourier basis (recall thatwk(x) =

√
2sin(kπx)), we have

ϕ0 =
∞

∑
k=1

âkw
k, ϕ1 =

∞

∑
k=1

b̂kw
k.

The solutionϕ of (3.2) can then be computed explicitly in Fourier:

ϕ(t,x) =
∞

∑
|k|=1

ϕ̂k exp(iµkt)w
|k|, µk = kπ , ϕ̂k =

1
2

(

â|k|+
ib̂|k|
µk

)

.

And the condition(ϕ0,ϕ1) ∈ H2∩H1
0(0,1)×H1

0(0,1) can be written as

∞

∑
k=1

(

k4
∣

∣ϕ̂0
k

∣

∣

2
+ k2

∣

∣ϕ̂1
k

∣

∣

2
)

< ∞, or, equivalently,
∞

∑
|k|=1

k4|ϕ̂k|2 < ∞, (3.22)

and both these quantities are equivalent to theH2∩H1
0(0,1)×H1

0(0,1)-norm of the
initial data(ϕ0,ϕ1).

We now look for a solutionϕh of (3.1) on the Fourier basis. Using that the func-
tionswk correspond to eigensolutions of the discrete Laplace operator fork≤N, one
easily checks that any solution of (3.1) can be written as∑N

|k|=1 akw|k| exp(iµk(h)t)
with µk(h) = 2sin(kπh/2)/h. Keeping this in mind, we take

ϕh(t) =
n(h)

∑
|k|=1

ϕ̂k exp(iµk(h)t)w
|k|, (3.23)

wheren(h) is an integer smaller thanN that will be fixed later on.
We now compute how this solution approximatesϕ :

‖ϕh(t)−ϕ(t)‖2
H1

0

=
∞

∑
|k|=n(h)+1

k2π2 |ϕ̂k|2+
n(h)

∑
|k|=1

k2π2 |ϕ̂k|24sin2
(

(µk(h)− µk)t
2

)

≤ C
n(h)2

∞

∑
|k|=n(h)+1

k4π4 |ϕ̂k|2+C
n(h)

∑
|k|=1

(k4h4)k4π4 |ϕ̂k|2

≤C

(

n(h)4h4+
1

n(h)2

)

∥

∥(ϕ0,ϕ1)
∥

∥

2
H2∩H1

0×H1
0
, (3.24)
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where we have used that, for some constantC independent ofh > 0 and k ∈
{1, · · · ,N},

|µk(h)− µk|=
∣

∣

∣

∣

2
h

sin

(

kπh
2

)

− kπ
∣

∣

∣

∣

≤Ck3h2,

and
∣

∣

∣

∣

sin

(

(µk(h)− µk)t
2

)∣

∣

∣

∣

≤CT|µk(h)− µk|.

The same can be done for∂tϕh:

‖∂tϕh(t)− ∂tϕ(t)‖2
L2

=
∞

∑
|k|=n(h)+1

k2π2 |ϕ̂k|2+
n(h)

∑
|k|=1

|ϕ̂k|2
∣

∣

∣µk(h)e
iµk(h)t − µke

iµkt
∣

∣

∣

2

≤C

(

n(h)4h4+
1

n(h)2

)

∥

∥(ϕ0,ϕ1)
∥

∥

2
H2∩H1

0×H1
0
, (3.25)

where we used that

∣

∣

∣
µk(h)e

iµk(h)t − µke
iµkt
∣

∣

∣
≤
∣

∣

∣

∣

2kπ sin

(

(µk(h)− µk)t
2

)∣

∣

∣

∣

+ |µk(h)− µk| ≤Ck4h2.

Estimates (3.24) and (3.25) then imply (3.18) and (3.19) when choosingn(h) ≃
h−2/3, a choice that, as we will see below, also optimizes the convergence of the
normal derivatives.

We shall now prove (3.20). This will be done in two main steps,computing sep-
arately the integrals

I1=
∫ T

0

∣

∣

∣

∣

∂xϕh(t,1)+
ϕN,h(t)

h

∣

∣

∣

∣

2

dt, andI2 =
∫ T

0
|∂xϕ(t,1)− ∂xϕh(t,1)|2 dt. (3.26)

Estimates on I1. We shall first write the admissibility inequality proved in Theo-
rem 2.1 in terms of Fourier series.

Consider a solutionφh of (3.1) and write it as

φh(t) =
N

∑
|k|=1

φ̂k,heiµk(h)tw|k|,

where

φ̂k,h =
1
2

(

φ̂0
k,h+

φ̂1
k,h

iµk(h)

)

.

The energy of the solution is then given by

Eh = 2
N

∑
|k|=1

λ|k|(h)
∣

∣φ̂k,h
∣

∣

2
.
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Hence the admissibility result in Theorem 2.1 reads as follows: For any sequence
(φ̂k,h),

∫ T

0

∣

∣

∣

∣

∣

N

∑
|k|=1

φ̂k,heiµk(h)t
w|k|

N

h

∣

∣

∣

∣

∣

2

dt ≤C
N

∑
|k|=1

λ|k|(h)
∣

∣φ̂k,h

∣

∣

2
. (3.27)

But the difference∂xϕh(t,1)+ϕN,h/h reads as

∂xϕh(t,1)+
ϕN,h

h
(t) =

n(h)

∑
|k|=1

ϕ̂ke
iµk(h)t

(

∂xw
|k|(1)+

w|k|
N

h

)

=
n(h)

∑
|k|=1

ϕ̂k

(

1+
h∂xw|k|(1)

w|k|
N

)

eiµk(h)t
w|k|

N

h
.

Thus, applying (3.27), we get

∫ T

0

∣

∣

∣

∣

∂xϕh(t,1)+
ϕN,h(t)

h

∣

∣

∣

∣

2

dt ≤C
n(h)

∑
|k|=1

λ|k|(h) |ϕ̂k|2
(

1+
h∂xw|k|(1)

w|k|
N

)2

. (3.28)

But for all k∈ {1, · · · ,N},

h∂xwk(1)

wk
N

=− kπhcos(kπ)
sin(kπh)cos(kπ)

=− kπh
sin(kπh)

,

and we thus have, for some explicit constantC independent ofh andk, that for all
h> 0 andk∈ {1, · · · ,N},

∣

∣

∣

∣

1+
h∂xwk(1)

wk
N

∣

∣

∣

∣

≤C(kπh)2.

Plugging this last estimate into (3.28) and usingλk(h)≤Ck2, we obtain

I1 =
∫ T

0

∣

∣

∣

∣

∂xϕh(t,1)+
ϕN,h(t)

h

∣

∣

∣

∣

2

dt ≤ C
n(h)

∑
|k|=1

|ϕ̂k|2k6h4

≤ Cn(h)2h4
n(h)

∑
|k|=1

k4 |ϕ̂k|2

≤ Cn(h)2h4
∥

∥(ϕ0,ϕ1)
∥

∥

2
H2∩H1

0×H1
0
. (3.29)

Estimates on I2. The idea now is to seeϕh as a solution of (3.1) up to a perturbation.
Note that this is a classical technique in numerical analysis and more particularly in
a posteriorierror analysis.

Indeed, recall that
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ϕh =
n(h)

∑
|k|=1

ϕ̂ke
iµk(h)tw|k|(x).

This implies that
∂tt ϕh− ∂xxϕh = fh, (t,x) ∈R× (0,1)

with

fh(x, t) =
n(h)

∑
|k|=1

ϕ̂ke
iµk(h)tw|k|(x)

(

−λ|k|(h)+ k2π2) .

In particular, for allt ∈R,

‖ fh(t)‖2
L2(0,1) ≤

n(h)

∑
|k|=1

k4π4 |ϕ̂k|2
(

1− 4
k2π2h2 sin2

(

kπh
2

))2

≤ C
n(h)

∑
|k|=1

k4π4 |ϕ̂k|2 (kπh)4

≤ Cn(h)4h4
n(h)

∑
|k|=1

k4π4 |ϕ̂k|2

≤ Cn(h)4h4
∥

∥(ϕ0,ϕ1)
∥

∥

2
H2∩H1

0×H1
0
,

where the constantC is independent ofh> 0.
Now, considerzh = ϕh−ϕ . Thenzh satisfies the following system of equations







∂ttzh− ∂xxzh = fh, t ∈ R,x∈ (0,1)
zh(t,0) = zh(t,1) = 0, t ∈ R,
zh(0,x) = z0

h(x), ∂tzh(0,x) = z1(x), 0< x< 1,
(3.30)

with (z0
h,z

1
h) = (ϕ0

h ,ϕ
1
h)− (ϕ0,ϕ1), which satisfies, according to (3.24) and (3.25)

for t = 0,

∥

∥(z0
h,z

1
h)
∥

∥

2
H1

0×L2 ≤C

(

1
n(h)2 +n(h)4h4

)

∥

∥(ϕ0,ϕ1)
∥

∥

2
H2∩H1

0×H1
0
.

But this is now the continuous wave equation and one can easily check that the
normal derivative ofzh then satisfies the following admissibility result: for some
constantC independent ofh> 0,

∫ T

0
|∂xzh(t,1)|2dt ≤C

(

‖ fh‖2
L1(0,T;L2(0,1))+

∥

∥(z0
h,z

1
h)
∥

∥

2
H1

0×L2

)

.

For a proof of that fact we refer to the book of Lions [36] and the article [32].
This gives
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I2 =

∫ T

0
|∂xϕ(t,1)− ∂xϕh(t,1)|2 dt

≤ C

(

1
n(h)2 +n(h)4h4

)

∥

∥(ϕ0,ϕ1)
∥

∥

2
H2∩H1

0×H1
0
. (3.31)

Combining the estimates (3.29) and (3.31), we obtain

∫ T

0

∣

∣

∣

∣

∂xϕ(t,1)+
ϕN,h(t)

h

∣

∣

∣

∣

2

dt ≤C

(

1
n(h)2 +n(h)4h4

)

∥

∥(ϕ0,ϕ1)
∥

∥

2
H2∩H1

0×H1
0
.

The choicen(h)≃ h−2/3 optimizes this estimate and yields (3.20). This choice also
optimizes estimates (3.24) and (3.25) and implies (3.18) and (3.19) and thus com-
pletes the proof. ⊓⊔

3.4 Further convergence results

3.4.1 Strongly convergent initial data

As a corollary to Proposition 3.4, we can give convergence results foranysequence
of discrete initial data(ϕ0

h ,ϕ
1
h) satisfying

lim
h→0

∥

∥(ϕ0
h ,ϕ

1
h)− (ϕ0,ϕ1)

∥

∥

H1
0×L2 = 0. (3.32)

Proposition 3.5.Let (ϕ0,ϕ1) ∈ H1
0(0,1)×L2(0,1) and consider a sequence of dis-

crete initial data(ϕ0
h ,ϕ

1
h) satisfying(3.32). Then the solutionsϕh of (3.1)with initial

data(ϕ0
h ,ϕ

1
h) converge strongly in C([0,T];H1

0(0,1))∩C1([0,T];L2(0,1)) towards
the solutionϕ of (3.2)with initial data (ϕ0,ϕ1) as h→ 0. Moreover, we have

lim
h→0

∫ T

0

∣

∣

∣∂xϕ(t,1)+
ϕN,h

h

∣

∣

∣

2
dt = 0. (3.33)

Proof. Let (ϕ0,ϕ1)∈ H1
0(0,1)×L2(0,1) and, givenε > 0, choose(ψ0,ψ1) ∈H2∩

H1
0(0,1)×H1

0(0,1) so that

∥

∥(ϕ0,ϕ1)− (ψ0,ψ1)
∥

∥

H1
0×L2 ≤ ε.

We now use the discrete initial data(ψ0
h ,ψ

1
h) provided by Proposition 3.4. The so-

lutionsψh of (3.1) with initial data(ψ0
h ,ψ

1
h) thus converge to the solutionψ of (3.2)

with initial data(ψ0,ψ1) in the sense of (3.19)–(3.20).
We now denote byϕh the solutions of (3.1) with initial data(ϕ0

h ,ϕ
1
h) andϕ the

solution of (3.2) with initial data(ϕ0,ϕ1).
Sinceϕh−ψh is a solution of (3.1), the conservation of the energy and theuni-

form admissibility property (2.12) yield
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sup
t∈[0,T ]

‖(ϕh,∂tϕh)(t)− (ψh,∂tψh)(t)‖H1
0×L2 +

∥

∥

∥

∥

ϕN,h−ψN,h

h

∥

∥

∥

∥

L2(0,T)

≤ C
∥

∥(ϕ0
h ,ϕ

1
h)− (ψ0

h,ψ
1
h)
∥

∥

H1
0×L2

≤ C(
∥

∥(ϕ0
h ,ϕ

1
h)− (ϕ0,ϕ1)

∥

∥

H1
0×L2 +

∥

∥(ϕ0,ϕ1)− (ψ0,ψ1)
∥

∥

H1
0×L2

+
∥

∥(ψ0,ψ1)− (ψ0
h,ψ

1
h)
∥

∥

H1
0×L2)

≤ C(
∥

∥(ϕ0
h ,ϕ

1
h)− (ϕ0,ϕ1)

∥

∥

H1
0×L2 + ε +Cεh2/3

∥

∥(ψ0,ψ1)
∥

∥

H2∩H1
0×H1

0
).

Besides, recalling thatψh converge toψ in the sense of (3.19)–(3.20), we have

lim
h→0

sup
t∈[0,T]

‖(ψh,∂tψh)(t)− (ψ ,∂tψ)(t)‖H1
0×L2 +

∥

∥

∥∂xψ(t,1)+
ψN,h

h

∥

∥

∥

L2(0,T)
= 0.

We also use that the energy of the continuous wave equation (3.2) is constant in time
and the admissibility result of the continuous wave equation and apply it toϕ −ψ :

sup
t∈[0,T ]

‖(ϕ ,∂t ϕ)(t)− (ψ ,∂tψ)(t)‖H1
0×L2 + ‖∂xϕ(t,1)− ∂xψ(t,1)‖L2(0,T) ≤Cε.

Combining these three estimates and taking the limsup ash→ 0, for all ε > 0,
we get

limsup
h→0

(

sup
t∈[0,T ]

‖(ϕh,∂tϕh)(t)− (ϕ ,∂tϕ)(t)‖H1
0×L2

+

∥

∥

∥

∥

ϕN,h(t)

h
+ ∂xϕ(t,1)

∥

∥

∥

∥

L2(0,T)

)

≤Cε.

This concludes the proof of Proposition 3.5 sinceε > 0 was arbitrary. ⊓⊔

3.4.2 Smooth initial data

In this section, we derive higher convergence rates when theinitial data are smoother.
In order to do that, we introduce, forℓ ∈ R, the functional spaceHℓ

(0) defined by

Hℓ
(0)(0,1) =

{

ϕ =
∞

∑
k=1

ϕ̂kw
k, with

∞

∑
k=1

k2ℓ|ϕ̂k|2 < ∞

}

endowed with the norm‖ϕ‖2
Hℓ
(0)

=
∞

∑
k=1

k2ℓ|ϕ̂k|2. (3.34)
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These functional spaces correspond to the domainsD((−∆d)
ℓ/2) of the fractional

powers of the Dirichlet Laplace operator−∆d. In particular, we haveH0
(0)(0,1) =

L2(0,1), H1
(0)(0,1) = H1

0(0,1) andH−1
(0) (0,1) = H−1(0,1).

As an extension of Proposition 3.4, we obtain:

Proposition 3.6.Let ℓ ∈ (0,3] and(ϕ0,ϕ1) ∈ Hℓ+1
(0) (0,1)×Hℓ

(0)(0,1). Denote byϕ
the solution of(3.2) with initial data (ϕ0,ϕ1). Then there exists a constant C=
C(T, ℓ) independent of(ϕ0,ϕ1) such that the sequenceϕh of solutions of(3.1)with
initial data (ϕ0

h ,ϕ
1
h) constructed in Proposition 3.4 satisfies, for all h> 0,

sup
t∈[0,T ]

‖(ϕh(t),∂tϕh(t))− (ϕ(t),∂tϕ(t))‖H1
0×L2

≤Ch2ℓ/3
∥

∥(ϕ0,ϕ1)
∥

∥

Hℓ+1
(0) ×Hℓ

(0)
, (3.35)

and
∥

∥

∥

∥

ϕN,h(·)
h

+ ∂xϕ(·,1)
∥

∥

∥

∥

L2(0,T)
≤Ch2ℓ/3

∥

∥(ϕ0,ϕ1)
∥

∥

Hℓ+1
(0) ×Hℓ

(0)
. (3.36)

In particular, forℓ = 3, this result reads as follows: If(ϕ0,ϕ1) ∈ H4
(0)(0,1)×

H3
(0)(0,1), the sequenceϕh constructed in Proposition 3.4 satisfies the following

convergence results:

sup
t∈[0,T ]

‖(ϕh(t),∂tϕh(t))− (ϕ(t),∂tϕ(t))‖H1
0×L2 ≤Ch2

∥

∥(ϕ0,ϕ1)
∥

∥

H4
(0)×H3

(0)
, (3.37)

and
∥

∥

∥

∥

ϕN,h(·)
h

+ ∂xϕ(·,1)
∥

∥

∥

∥

L2(0,T)
≤Ch2

∥

∥(ϕ0,ϕ1)
∥

∥

H4
(0)×H3

(0)
. (3.38)

Note that we cannot expect to go beyond the rateh2 since the consistency of the
method is of order 2.

Proof (Sketch).The proof of these convergence results follows line to line the one
of Proposition 3.4.

Let us for instance explain how it has to be modified to get (3.37). First remark
that (3.22) now reads

∞

∑
|k|=1

k2ℓ+2|ϕ̂k|2 ≃
∥

∥(ϕ0,ϕ1)
∥

∥

2
Hℓ+1
(0) ×Hℓ

(0)
.

Estimates (3.24)–(3.25) can then be modified into

‖ϕh(t)−ϕ(t)‖2
H1

0
+ ‖∂tϕh(t)− ∂tϕ(t)‖2

L2

≤C

(

h4n(h)6−2ℓ+
1

n(h)2ℓ

)

∥

∥(ϕ0,ϕ1)
∥

∥

2
Hℓ+1
(0) ×Hℓ

(0)
,
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thus implying (3.35) immediately when takingn(h)≃ h−2/3.
The proof of the strong convergence (3.36) also relies upon the estimate

I1+ I2 ≤C

(

h4n(h)6−2ℓ+
1

n(h)2ℓ

)

∥

∥(ϕ0,ϕ1)
∥

∥

2
Hℓ+1
(0) ×Hℓ

(0)
,

whereI1 and I2 are respectively given as above by (3.26). Details are left to the
reader. ⊓⊔

3.4.3 General initial data

In Propositions 3.4 and 3.6, the discrete initial data are very special ones constructed
during the proof. In this section, we explain how this yieldsconvergence rates even
for other initial data.

Proposition 3.7.Let ℓ ∈ (0,3] and(ϕ0,ϕ1) ∈ Hℓ+1
(0) (0,1)×Hℓ

(0)(0,1) and consider

a sequence(φ0
h ,φ

1
h ) satisfying, for some constants C0 > 0 andθ > 0 independent of

h> 0,
∥

∥(φ0
h ,φ

1
h )− (ϕ0,ϕ1)

∥

∥

H1
0×L2 ≤C0hθ . (3.39)

Denote byφh (respectivelyϕ) the solution of(3.1) (resp.(3.2)) with initial data
(φ0

h ,φ
1
h ) (resp.(ϕ0,ϕ1)).

Then the following estimates hold:

sup
t∈[0,T ]

‖(φh(t),∂tφh(t))− (ϕ(t),∂tϕ(t))‖H1
0×L2

≤C

(

h2ℓ/3
∥

∥(ϕ0,ϕ1)
∥

∥

Hℓ+1
(0) ×Hℓ

(0)
+C0hθ

)

, (3.40)

and
∥

∥

∥

∥

φN,h(·)
h

+ϕx(·,1)
∥

∥

∥

∥

L2(0,T)
≤C

(

h2ℓ/3
∥

∥(ϕ0,ϕ1)
∥

∥

Hℓ+1
(0) ×Hℓ

(0)
+C0hθ

)

. (3.41)

Proof. The proof easily follows from Proposition 3.6 since it simply consists in
comparingϕh, the solution of (3.1) given by Proposition 3.4, andφh, the solution
of (3.1) with initial data(φ0

h ,φ
1
h ). But ϕh − φh solves (3.1) with an initial data of

H1
0(0,1)×L2(0,1)-norm less thanC0hθ .
The first estimate (3.40) then follows immediately from the fact that the discrete

energy is constant for solutions of (3.1), whereas estimate(3.41) is based on the
uniform admissibility results proved in Theorem 2.1. ⊓⊔
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3.4.4 Convergence rates in weaker norms

For later use, we also give the following result:

Proposition 3.8.Let (ϕ0,ϕ1) ∈ H2
(0)(0,1)× H1

(0)(0,1). Denote byϕ the solution

of (3.2) with initial data (ϕ0,ϕ1). Then for allℓ ∈ (0,3], there exists a constant
C=C(T, ℓ) independent of(ϕ0,ϕ1) such that the sequenceϕh of solutions of(3.1)
with initial data (ϕ0

h ,ϕ
1
h) constructed in Proposition 3.4 satisfies, for all h> 0

sup
t∈[0,T ]

‖(ϕh(t),∂tϕh(t),∂tt ϕh(t))− (ϕ(t),∂tϕ(t),∂ttϕ(t))‖H2−ℓ
(0) ×H1−ℓ

(0) ×H−ℓ
(0)

≤Ch2ℓ/3
∥

∥(ϕ0,ϕ1)
∥

∥

H2
(0)×H1

(0)
. (3.42)

In particular, if (φ0
h ,φ

1
h ) are discrete functions such that for someℓ0 ∈ (0,3], C0

independent of h> 0 andθ > 0,
∥

∥(φ0
h ,φ

1
h )− (ϕ0,ϕ1)

∥

∥

H
2−ℓ0
(0) ×H

1−ℓ0
(0)

≤C0hθ , (3.43)

then denoting byφh the corresponding solution of(3.1), we have

sup
t∈[0,T ]

‖(φh(t),∂tφh(t),∂tt φh(t))− (ϕ(t),∂tϕ(t),∂tt ϕ(t))‖H
2−ℓ0
(0) ×H

1−ℓ0
(0) ×H

−ℓ0
(0)

≤C

(

h2ℓ0/3
∥

∥(ϕ0,ϕ1)
∥

∥

H2
(0)×H1

(0)
+C0hθ

)

. (3.44)

Proof. The proof of (3.42) again follows the one of Proposition 3.4.This time,
following (3.24)–(3.25), we get

‖ϕh(t)−ϕ(t)‖2
H2−ℓ
(0)

+ ‖∂tϕh(t)− ∂tϕ(t)‖2
H1−ℓ
(0)

≤C

(

n(h)6−2ℓh4+
1

n(h)2ℓ

)

∥

∥(ϕ0,ϕ1)
∥

∥

2
H2
(0)×H1

(0)
.

The proof of the estimate

sup
t∈[0,T]

‖∂tt ϕh(t)− ∂ttϕ(t)‖H−ℓ
(0)

≤Ch2ℓ/3
∥

∥(ϕ0,ϕ1)
∥

∥

H2
(0)×H1

(0)

can be done by writing

∂ttϕh(t)− ∂ttϕ(t) =
n(h)

∑
|k|=1

ϕ̂kw
|k|
(

−µk(h)
2eiµk(h)t + µ2

keiµkt
)

+
∞

∑
n(h)+1

ϕ̂kw
|k|µ2

k eiµkt

and by using the estimate
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∣

∣

∣−µk(h)
2eiµk(h)t + µ2

k eiµkt
∣

∣

∣≤Ck5h2.

The complete proof of (3.42) is left to the reader.
The proof of (3.44) for initial data satisfying (3.43) is very similar to the one of

Proposition 3.7 and is based on the following facts:
• For anyψh solution of the discrete wave equation (3.1), for allℓ ∈ Z, the

H2−ℓ
(0) (0,1)×H1−ℓ

(0) (0,1)-norm of (ψh(t),∂tψh(t)) is independent of the timet ≥ 0,
as one easily checks by writing the solutions under the form

ψh(t) =
N

∑
k=1

wk
(

ψ̂ke
iµk(h)t + ψ̂−ke

−iµk(h)t
)

.

Applying this remark to(ψh,∂t ψh) and to(∂tψh,∂tt ψh) for ψh = φh−ϕh, we get

sup
t∈[0,T ]

‖(φh(t),∂tφh(t),∂tt φh(t))− (ϕ(t),∂tϕ(t),∂tt ϕ(t))‖H
2−ℓ0
(0) ×H

1−ℓ0
(0) ×H

−ℓ0
(0)

≤C

(

h2ℓ0/3
∥

∥(ϕ0,ϕ1)
∥

∥

H2
(0)×H1

(0)

+
∥

∥(φ0
h ,φ

1
h ,∆hφ0

h )− (ϕ0
h,ϕ

1
h ,∆hϕ0

h)
∥

∥

H
2−ℓ0
(0) ×H

1−ℓ0
(0) ×H

−ℓ0
(0)

)

.

• By construction,
∥

∥∆hφ0
h −∆hϕ0

h

∥

∥

H
−ℓ0
(0)

≤C
∥

∥φ0
h −ϕ0

h

∥

∥

H
2−ℓ0
(0)

,

hence

∥

∥(φ0
h ,φ

1
h ,∆hφ0

h )− (ϕ0
h,ϕ

1
h ,∆hϕ0

h)
∥

∥

H
2−ℓ0
(0) ×H

1−ℓ0
(0) ×H

−ℓ0
(0)

≤C
∥

∥(φ0
h ,φ

1
h )− (ϕ0

h,ϕ
1
h)
∥

∥

H
2−ℓ0
(0) ×H

1−ℓ0
(0)

.

• We finally conclude (3.44) by using (3.43) and the estimate (3.42) fort = 0. ⊓⊔

3.5 Numerics

In this section, we briefly illustrate the above convergenceresults on the normal
derivatives. The rate of convergence of the discrete trajectories toward the continu-
ous ones is well-known and well-illustrated in the literature.

We thus choose an initial data(ϕ0,ϕ1) ∈ H1
0(0,1)×L2(0,1).

For N ∈ N, we seth = 1/(N+ 1) and take(ϕ0
h ,ϕ

1
h) defined byϕ0

j ,h = ϕ0( jh)

andϕ1
j ,h =

∫

(( j−1/2)h,( j+1/2)hϕ1( jh) for all j ∈ {1, · · · ,N}. We then computeϕh the
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corresponding solution of (3.1) and the corresponding discrete derivative atx = 1,
i.e.−ϕN,h(t)/h.

Note that, actually, this discrete solution should rather be denoted asϕh,∆ t since
we also discretize in time using an explicit scheme. More precisely, if ϕk

h,∆ t denotes
the approximation ofϕh at timek∆ t, we solve

ϕk+1
h = 2ϕk

h −ϕk−1
h − (∆ t)2∆hϕk

h. (3.45)

The CFL condition is chosen such that∆ t/h = 0.2 so that the convergence of the
scheme (in what concurs solving the boundary-initial valueproblem) is ensured.

Since our goal is to estimate rates of convergence, we also need a reference data.
In order to do that, we expand the initial data(ϕ0,ϕ1) in Fourier:

ϕ0 =
∞

∑
k=1

âkw
k, ϕ1 =

∞

∑
k=1

b̂kw
k.

The corresponding solutionϕ of (3.2) is then explicitly given by

ϕ(t) =
∞

∑
k=1

(

âk cos(kπt)+ b̂k
sin(kπt)

kπ

)

wk,

so that

∂xϕ(t,1) =
∞

∑
k=1

(

âk cos(kπt)+ b̂k
sin(kπt)

kπ

)√
2(−1)kkπ . (3.46)

Of course, we cannot compute numerically these Fourier series for the continuous
solutions of (3.2) since they involve infinite sums. So we take a reference number
Nre f large enough and replace the infinite sum in formula (3.46) bya truncated ver-
sion up toNre f . Nre f is taken to be large compared toN, the number of nodes in the
space discretization involved in the computations ofϕN,h(t)/h. We thus approximate
the normal derivative by

(∂xϕ(t,1))re f =

Nre f

∑
k=1

(

âk cos(kπt)+ b̂k
sin(kπt)

kπ

)√
2(−1)kkπ .

In the computations below, we takeNre f = 1000 forN varying between 200 and
400.

In Figure 3.1 left, we have chosen(ϕ0,ϕ1) as follows:

ϕ0(x) = sin(πx), ϕ1(x) = 0. (3.47)

In this particular case, the continuous solution involves one single Fourier mode.
So, we could have takenNre f = 1. Figure 3.1 left represents theL2(0,T)-norm of
(∂xϕ(t,1))re f +ϕN,h(t)/h for T = 1 versusN in logarithmic scales. The slope of the
linear regression is−1.99, thus very close to−2, the rate predicted by Proposition
3.7.

We then test the initial data
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ϕ0(x) = 0, ϕ1(x) =

{

−x if x< 1/2,
−x+1 if x> 1/2,

(3.48)

and plot the error in Figure 3.1, middle. The initial data velocity only belongs to

∩ε>0H1/2−ε
(0) (0,1), so the predicted rate of convergence given by Proposition 3.7 is

−(1/3)−. This is indeed very close to the slope−0.31 observed in Figure 3.1 right.

5.3 5.4 5.5 5.6 5.7 5.8 5.9
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5.3 5.4 5.5 5.6 5.7 5.8 5.9
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−2.75

−2.7

−2.65

−2.6

5.3 5.4 5.5 5.6 5.7 5.8 5.9
−3.5

−3.45

−3.4

−3.35

−3.3

−3.25

−3.2

−3.15

−3.1

−3.05

−3

Fig. 3.1 Plot of |(∂xϕ(t,1))re f +ϕN,h(t)/h|L2(0,T) vs log(N) for N ∈ {200, · · · ,400}, Nre f = 1000

and T = 1. Left: for the initial data(ϕ0,ϕ1) in (3.47), slope of the linear regression= −1.99.
Middle: for the initial data(ϕ0,ϕ1) in (3.48), slope=−0.31. Right: for the initial data(ϕ0,ϕ1)
in (3.49), with(∂xϕ(t,1))re f =−1+ t in this case, slope=−0.5.

These numerical experiments both confirm the accuracy of therates of conver-
gence derived in Proposition 3.7.

We then test the initial data

ϕ0(x) = 0, ϕ1(x) = x. (3.49)

These data are smooth butϕ1(1) 6= 0. Henceϕ1 only belongs to∩ε>0H1/2−ε
(0) (0,1)

and we thus expect a convergence rate of orderh1/3. Note that in this case, the
normal derivative of the solution atx= 1 can be computed explicitly using Fourier
series and∂xϕ(t,1) = −1+ t (recall the formula (3.46)). Of course, we are thus
going to use this explicit expression to compute(∂xϕ(t,1))re f =−1+ t in this case.

Note that the numerical simulations yield the slope−0.5 for the linear regres-
sion, see Figure 3.1 right. This error term mainly comes fromthe fact that the
continuous solutionϕ of (3.2) does not satisfy∂xϕ0(x) = −1 as the computation
(∂xϕ(t,1))re f = −1+ t would imply for t = 0. This creates a layer close tot = 0
that the numerical method has some difficulties to handle. InFigure 3.2, we rep-
resent the normal derivative computed numerically forN = 300 and compare it
with the continuous normal derivative∂xϕ(t,1) =−1+ t. As one can see, there is a
boundary layer close tot = 0.

This last example illustrates the fact that the boundary conditions play an im-
portant role for the regularity properties of the trajectory of the continuous model
(3.2) and therefore also have an influence on the rates of convergence of the corre-
sponding approximations given by (3.1). The above example also confirms the good
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t

Fig. 3.2 Plot of−ϕN,h(t)/h computed forN= 300 (black solid line) and of(∂xϕ(t,1))re f =−1+t
(red dash dot line) for(ϕ0,ϕ1) in (3.49). Left: On the time interval(0,1). Right: A zoom on the
time interval(0,0.03).

accuracy of the rates of convergence given in Proposition 3.7 when the regularity
properties are limited by the boundary conditions.



Chapter 4
Convergence with non homogeneous boundary
conditions

4.1 The setting

In this chapter, we consider the continuous wave equation






∂tty− ∂xxy= 0, (t,x) ∈ (0,T)× (0,1),
y(t,0) = 0, y(t,1) = v(t), t ∈ (0,T),
(y(0, ·),∂ty(0, ·)) = (y0,y1),

(4.1)

with
(y0,y1) ∈ L2(0,1)×H−1(0,1), v∈ L2(0,T). (4.2)

Following [36] (see also [35, 33]), system (4.1) can be solved uniquely in the
sense of transposition and the solutiony belongs to

C([0,T];L2(0,1))×C1([0,T];H−1(0,1)).

Let us briefly recall the main ingredients of this definition of solution in the sense
of transposition and this result.

The key idea is the following. Given smooth functionsf , the solutionsϕ of






∂tt ϕ − ∂xxϕ = f , (t,x) ∈ (0,T)× (0,1),
ϕ(t,0) = ϕ(t,1) = 0, t ∈ (0,T),
(ϕ(T, ·),∂t ϕ(T, ·)) = (0,0),

(4.3)

which are smooth for smoothf , should satisfy

∫ T

0

∫ 1

0
y f dxdt=−

∫ T

0
v(t)∂xϕ(t,1)dt

−
∫ 1

0
y0(x)∂tϕ(0,x)dx+ 〈y1,ϕ(0, ·)〉H−1,H1

0
. (4.4)

85
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Thus one should first check that iff ∈ L1(0,T;L2(0,1)), then the solutionϕ
of (4.3) belongs to the energy spaceC([0,T];H1

0(0,1))∩C1([0,T];L2(0,1)) and is
such that∂xϕ(t,1) ∈ L2(0,T) with the following continuity estimate:

‖(ϕ ,∂t ϕ)‖L∞(0,T;H1
0 (0,1)×L2(0,1))+ ‖∂xϕ(t,1)‖L2(0,T) ≤C‖ f‖L1(0,T;L2(0,1)) . (4.5)

Of course, there, the first term can be estimated easily through the energy identity,
whereas the estimate on the normal derivative ofϕ at x = 1 is a hidden regularity
result that can be easily proved using multiplier techniques.

Assuming (4.5), the map

L ( f ) =−
∫ T

0
v(t)∂xϕ(t,1)dt−

∫ 1

0
y0(x)∂tϕ(0,x)dx+ 〈y1,ϕ(0, ·)〉H−1,H1

0

is continuous onL1(0,T;L2(0,1)) and thus there is a unique functiony in the
spaceL∞(0,T;L2(0,1)) that representsL , which is by definition the solutiony
of (4.1) in the sense of transposition. The solutiony actually belongs to the space
C([0,T];L2(0,1)) since it can be approximated inL∞(0,T;L2(0,1)) by smooth func-
tions by taking smooth approximations ofv, y0 andy1.

A similar duality argument shows that∂ty belongs toC([0,T];H−1(0,1)).
Let us finally mention the following regularity result (see [32]): if (y0,y1) ∈

H1
0(0,1)×L2(0,1) andv∈ H1(0,T) satisfiesv(0) = 0, then the solutiony of (4.1)

satisfies

y∈C([0,T];H1(0,1))∩C1([0,T];L2(0,1)) and∆y∈C([0,T];H−1(0,1)). (4.6)

Now, the goal of this Chapter is to study the convergence of the solutions of











∂tty j ,h−
1
h2 (y j+1,h−2y j ,h+ y j−1,h) = 0, (t, j) ∈ (0,T)×{1, · · · ,N},

y0,h = 0, yN+1,h(t) = vh(t), t ∈ (0,T),
(yh(0),∂tyh(0)) = (y0

h,y
1
h),

(4.7)

towards the solutiony of (4.1), under suitable convergence assumptions on the data
(y0

h,y
1
h) andvh to (y0,y1) andv.

As in Chapter 3,yh will be identified with its Fourier extensionFh(yh). This will
allow us to identify theH−1(0,1)-norm of fh as

‖ fh‖H−1(0,1) = ‖zh‖H1
0 (0,1)

,

wherezh solves− ∂xxzh = fh on (0,1), zh(0) = zh(1).

Note that, expanding these discrete functions on the Fourier basis, one can check
(see Proposition 4.1 below) that this norm is equivalent to‖z̃h‖H1

0 (0,1)
, wherez̃h

solves

− 1
h2

(

z̃j+1,h+ z̃j−1,h−2z̃j ,h
)

= f j ,h, j ∈ {1, · · · ,N}, z̃0,h = z̃N+1,h = 0.
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The outline of this Chapter 4 is as follows. Since we are working with the
H−1(0,1)-norm, it will be convenient to present some further convergence results
for the discrete Laplace operator. In Section 4.3 we give some uniform bounds on
the solutionsyh of (4.7). In Section 4.4 we derive explicit rates of convergence for
smooth solutions. In Section 4.5 we explain how these results yield various con-
vergence results. In Section 4.6, we illustrate our theoretical results by numerical
experiments.

4.2 The Laplace operator

In this section, we focus on the convergence of the discrete Laplace operator∆h,
defined for discrete functionszh = (zj ,h) j∈{1,··· ,N} by

(∆hzh) j =
1
h2 (zj+1,h−2zj ,h+ zj−1,h), j ∈ {1, · · · ,N},

with z0,h = zN+1,h = 0. (4.8)

In particular, we give various results that will be used afterwards.
Let us first recall that the operator−∆h is self-adjoint positive definite onRN ac-

cording to the analysis done in Section 2.2. Besides, its eigenvectorswk and eigen-
valuesλk(h) = µk(h)2 are explicit, thek-th eigenvectorwk(x) =

√
2sin(kπx) is in-

dependent ofh> 0 andµk(h) = 2sin(kπh/2)/h.

4.2.1 Natural functional spaces

In this section, we focus on the case of “natural” functionalspaces, i.e. in our case
H1

0(0,1), L2(0,1) andH−1(0,1).
As already mentioned, we have the following:

Proposition 4.1.If fh is a discrete function, then there exists a constant C indepen-
dent of h∈ (0,1) such that

1
C
‖ fh‖H−1 ≤

∥

∥(−∆h)
−1 fh

∥

∥

H1
0
≤C‖ fh‖H−1 . (4.9)

To simplify notations, forf ∈ H−1(0,1), we shall often denote by(−∂xx)
−1 f the

solutionz∈ H1
0(0,1) of

−∂xxz= f on (0,1), z(0) = z(1) = 0.

Proof. Since fh is a discrete function, it can be expanded in Fourier series as fol-
lows:
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fh =
N

∑
k=1

fkw
k.

Then the expansions ofz= (−∂xx)
−1 fh andzh = (−∆h)

−1 fh are known:

z=
N

∑
k=1

fk
µ2

k

wk, zh =
N

∑
k=1

fk
µk(h)2 wk.

Hence

‖z‖2
H1

0
=

N

∑
k=1

| fk|2
µ2

k

, ‖zh‖2
H1

0
=

N

∑
k=1

| fk|2
µ2

k

µ4
k

µk(h)4 .

Since for allk∈ {1, · · · ,N},

1≤ µ4
k

µk(h)4 ≤ π4

16
,

we easily get Proposition 4.1. ⊓⊔

We now prove the following convergence result:

Theorem 4.1.Let f ∈ L2(0,1) and expand it in Fourier series as

f =
∞

∑
k=1

fkw
k, (4.10)

and set

fh =
N

∑
k=1

fkw
k. (4.11)

Let then z be the solution of

− ∂xxz= f , on (0,1), z(0) = z(1) = 0, (4.12)

and zh of
− (∆hzh) j = f j ,h, j ∈ {1, · · · ,N}. (4.13)

Then

‖ f − fh‖H−1 + ‖z− zh‖H1
0
≤ Ch‖ f‖L2 (4.14)

‖z− zh‖L2 ≤ Ch2‖ f‖L2 . (4.15)

Remark 4.1.Of course, Theorem 4.1 is very classical and can be found for many
different discretization schemes and in particular for finite element methods, see for
instance the textbook [46].

Proof. Our proof is of course based on the fact that the functionswk are eigenvectors
of both the continuous and discrete Laplace operator. Note that it is straightforward
to check that
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‖ f − fh‖H−1 ≤Ch‖ f‖L2 .

We thus focus on the comparison betweenz andzh. Again, we use the fact that
the expansions ofzandzh in Fourier are explicit:

z=
∞

∑
k=1

fk
µ2

k

wk, zh =
N

∑
k=1

fk
µk(h)2 wk. (4.16)

Now, computing theH1
0 -norm ofz− zh is easy:

‖z− zh‖2
H1

0
=

N

∑
k=1

| fk|2
µ2

k

(

1− µ2
k

µk(h)2

)2

+
∞

∑
k=N+1

| fk|2
µ2

k

≤ C
N

∑
k=1

| fk|2k2h4+
1

N2

∞

∑
k=N+1

| fk|2,

where we have used that

1

µ2
k

(

1− µ2
k

µk(h)2

)2

≤Ck2h4, ∀k∈ {1, · · · ,N}. (4.17)

Hence

‖z− zh‖2
H1

0
≤C

(

N2h4+
1

N2

)

‖ f‖2
L2 .

SinceN+1= 1/h, this concludes the proof of (4.14).
Similarly, one derives

‖z− zh‖2
L2 ≤C

(

h4+
1

N4

)

‖ f‖2
L2 ,

which immediately implies (4.15). ⊓⊔

From Proposition 4.1 and Theorem 4.1 we deduce:

Theorem 4.2.Let f ∈ H−1(0,1) and fh be a sequence of discrete functions such
that

lim
h→0

‖ f − fh‖H−1 = 0.

Then
lim
h→0

∥

∥(−∂xx)
−1 f − (−∆h)

−1 fh
∥

∥

H1
0
= 0. (4.18)

Besides, if f∈ L2(0,1) and fh satisfies, for someθ > 0,

‖ f − fh‖H−1 ≤C0hθ ,

then
∥

∥(−∂xx)
−1 f − (−∆h)

−1 fh
∥

∥

H1
0
≤C

(

h‖ f‖L2 +C0hθ
)

. (4.19)
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Proof. The first part of Theorem 4.2 easily follows by the density ofL2(0,1) func-
tions in H−1(0,1), the uniform stability result of Proposition 4.1 and the conver-
gence result of Theorem 4.1, similarly as in the proof of Proposition 3.5. The details
are left to the reader.

The second part of Theorem 4.2 consists of takingf̃h as in (4.11), for which we
have
∥

∥ f − f̃h
∥

∥

H−1 ≤Ch‖ f‖L2 and
∥

∥(−∆h)
−1 f̃h− (−∂xx)

−1 f
∥

∥

H1
0
≤Ch‖ f‖L2 .

Then Proposition 4.1 implies that
∥

∥(−∆h)
−1 fh− (−∆h)

−1 f̃h
∥

∥

H1
0
≤C

∥

∥ fh− f̃h
∥

∥

H−1 .

Of course, these three last estimates imply (4.19). ⊓⊔

Finally, we mention this last result:

Theorem 4.3.Let f ∈ L2(0,1) and z= (−∂xx)
−1 f . Then there exists C such that

|∂xz(1)|2 ≤C‖ f‖L2 ‖ f‖H−1 . (4.20)

Similarly, there exists C> 0 such that for all h∈ (0,1), if fh is a discrete function
and zh = (−∆h)

−1 fh, we have

∣

∣

∣

zN,h

h

∣

∣

∣

2
≤C‖ fh‖L2 ‖ fh‖H−1 . (4.21)

Besides, taking fh as in(4.11), we have
∣

∣

∣∂xz(1)+
zN,h

h

∣

∣

∣≤C
√

h‖ f‖L2 . (4.22)

Proof. We prove this result using the multiplier technique. Since−∂xxz= f , multi-
plying the equation byx∂xz, easy integrations by parts show

|∂xz(1)|2 =−2
∫ 1

0
f x∂xz+

∫ 1

0
|∂xz|2.

Of course, this implies (4.20) from the fact that‖z‖H1
0
= ‖ f‖H−1.

In order to prove estimate (4.21), we develop a similar multiplier argument.
Namely, we multiply the equation

−(∆hzh) j = f j ,h, j ∈ {1, · · · ,N},

by j(zj+1,h− zj−1,h). We thus obtain

∣

∣

∣

zN,h

h

∣

∣

∣

2
=−2h

N

∑
j=1

jh

(

zj+1,h− zj−1,h

h

)

f j ,h+h
N

∑
j=0

(

zj+1,h− zj ,h

h

)2

.
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Hence
∣

∣

∣

zN,h

h

∣

∣

∣

2
≤C‖ fh‖L2 ‖zh‖H1

0
+C‖zh‖2

H1
0
≤C‖ fh‖L2 ‖ fh‖H−1 +C‖ fh‖2

H−1 ,

which yields estimate (4.21).
We now aim at proving (4.22). First remark thatzh also solves

−∂xxzh = f̃h, on (0,1), zh(0) = zh(1) = 0,

where

f̃h =
N

∑
j=1

fk

(

µk

µk(h)

)2

wk. (4.23)

But one easily has
∥

∥ f̃h
∥

∥

L2 ≤C‖ f‖L2 ,
∥

∥ f̃h− f
∥

∥

H−1 ≤Ch‖ f‖L2 . (4.24)

Indeed, from (4.17),

∥

∥ f̃h− fh
∥

∥

2
H−1 =

N

∑
k=1

| fk|2
µ2

k

(

1−
(

µk

µk(h)

)2
)2

≤Ch2‖ f‖2
L2 ,

and thus (4.14) yields (4.24).
Therefore, using (4.21),

|∂xz(1)− ∂xzh(1)| ≤C
(∥

∥ f − f̃h
∥

∥

L2

∥

∥ f − f̃h
∥

∥

H−1

)1/2 ≤C
√

h‖ f‖L2 . (4.25)

Besides,

∂xzh(1)+
zN,h

h
=

N

∑
k=1

fk
µk(h)2 (−1)k

(

1− sin(kπh)
kπh

)

kπ .

Note that this last expression coincides with the continuous normal derivative∂xz̃(1)
of the solution ˜z of the continuous problem










−∂xxz̃= g̃h, on (0,1), whereg̃h =
N

∑
k=1

fk
µ2

k

µk(h)2

(

1− sin(kπh)
kπh

)

wk,

z̃(0) = z̃(1) = 0.

(4.26)

Using that for some constantC independent ofh andk∈ {1, · · · ,N},

∣

∣

∣

∣

µ2
k

µk(h)2

∣

∣

∣

∣

≤C,

∣

∣

∣

∣

1− sin(kπh)
kπh

∣

∣

∣

∣

≤Ck2h2,

we easily compute
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‖g̃h‖L2 ≤C‖ f‖L2 , ‖g̃h‖H−1 ≤Ch‖ f‖L2 . (4.27)

Hence, from (4.20),
∣

∣

∣
∂xzh(1)+

zN,h

h

∣

∣

∣
= |∂xz̃(1)| ≤C

√
h‖ f‖L2 .

Together with (4.25), this concludes the proof of Theorem 4.3. ⊓⊔

4.2.2 Stronger norms

Recalling the definition of the functional spacesHℓ
(0)(0,1) in (3.34), we prove the

counterparts of the above theorem within these spaces.
First, Proposition 4.1 can be modified into:

Proposition 4.2.Let ℓ ∈ R. If fh is a discrete function, then there exists a constant
C=C(ℓ) independent of h∈ (0,1) such that

1
C
‖ fh‖Hℓ

(0)
≤
∥

∥(−∆h)
−1 fh

∥

∥

Hℓ−2
(0)

≤C‖ fh‖Hℓ
(0)
. (4.28)

The proof of Proposition 4.2 follows line to line the one of Proposition 4.1 and
is left to the reader.

The convergence results of Theorem 4.1 can be extended as follows:

Theorem 4.4.Letℓ∈R and f∈Hℓ
(0)(0,1) and z=(−∂xx)

−1 f be the corresponding
solution of the Laplace equation(4.12). With the notations of Theorem 4.1, setting
fh as in(4.11)and zh = (−∆h)

−1 fh, we have

‖ f − fh‖Hℓ−1
(0)

+ ‖z− zh‖Hℓ+1
(0)

≤ Ch‖ f‖Hℓ
(0)
, (4.29)

‖z− zh‖Hℓ
(0)

≤ Ch2‖ f‖Hℓ
(0)
. (4.30)

Here again, the proof of Theorem 4.4 is very similar to the oneof Theorem 4.1
and is left to the reader.

We now focus on the convergence of the normal derivatives:

Theorem 4.5.Letℓ≥ 0 and f∈Hℓ
(0)(0,1) and z= (−∂xx)

−1 f be the corresponding
solution of the Laplace equation(4.12). With the notations of Theorem 4.1, setting
fh as in(4.11)and zh = (−∆h)

−1 fh, we have
∣

∣

∣∂xz(1)+
zN,h

h

∣

∣

∣≤Chmin{ℓ+1/2,ℓ/2+1,2}‖ f‖Hℓ
(0)
. (4.31)

Proof. The proof of (4.31) follows the one of (4.22), except for the estimates (4.24)
on f̃h in (4.23) and (4.27) on ˜gh defined in (4.26).

Using that for allh> 0 andk∈ {1, · · · ,N},
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(

1−
(

µk

µk(h)

)2
)2

≤Ck4h4,

we easily derive that

∥

∥ f − f̃h
∥

∥

2
L2 ≤C

(

1
N2ℓ +Ch4max{1,N4−2ℓ}

)

‖ f‖2
Hℓ
(0)
.

In particular, if ℓ ∈ (0,2],
∥

∥ f − f̃h
∥

∥

L2 ≤ Chℓ‖ f‖Hℓ
(0)

and if ℓ ≥ 2,
∥

∥ f − f̃h
∥

∥

L2 ≤
Ch2‖ f‖Hℓ

(0)
, thus yielding

∥

∥ f − f̃h
∥

∥

L2 ≤Chmin{ℓ,2}‖ f‖Hℓ
(0)
.

Similarly,
∥

∥ f − f̃h
∥

∥

H−1 ≤Chmin{ℓ+1,2}‖ f‖Hℓ
(0)
.

We thus obtain, instead of (4.25),

|∂xz(1)− ∂xzh(1)| ≤Chmin{ℓ+1/2,ℓ/2+1,2}‖ f‖Hℓ
(0)
.

Estimates on∂xzh(1)+ zN,h/h can be deduced similarly from estimates on ˜gh (de-
fined in (4.26)) and are left to the reader. ⊓⊔

Remark 4.2.Very likely, estimate (4.31) can be improved forℓ >−1/2 into
∣

∣

∣
∂xz(1)+

zN,h

h

∣

∣

∣
≤Chmin{ℓ+1/2,2}‖ f‖Hℓ

(0)
. (4.32)

For instance, using that, iff = ∑k fkwk, the solutionzof (4.12) can be expanded
asz= ∑k fk/µ2

k wk and we get

∂xz(1) = ∑
k

fk
∂xwk(1)

µ2
k

,

provided the sum converges. Since for allk∈ N,

∣

∣

∣

∣

∂xwk(1)

µ2
k

∣

∣

∣

∣

≤ C
µk

,

by Cauchy Schwarz, for anyℓ0 >−1/2, we obtain

|∂xz(1)| ≤Cℓ0 ‖ f‖
H
ℓ0
(0)

instead of (4.20).
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Of course, we can get similar estimates for the discrete solutionszh = (−∆h)
−1 fh

and obtain, for allℓ(0) >−1/2, a constantCℓ0 independent ofh> 0 such that for all
discrete functionfh andzh = (−∆h)

−1 fh,
∣

∣

∣

zN,h

h

∣

∣

∣≤Cℓ0 ‖ fh‖H
ℓ0
(0)

.

instead of (4.21).
Using these two estimates instead of (4.20) and (4.21), and following the proof

of Theorem 4.5, we can obtain the following result: For allℓ > −1/2 andε > 0,
there exists a constantCℓ,ε =C(ℓ,ε) such thatf ∈ Hℓ

(0),

∣

∣

∣
∂xz(1)+

zN,h

h

∣

∣

∣
≤Cℓ,εhmin{ℓ+1/2−ε,2}‖ f‖Hℓ

(0)
. (4.33)

This last estimate is better than (4.31) whenℓ ∈ (−1/2,0) and whenℓ ∈ (1,2).

4.2.3 Numerical results

This section aims at giving numerical simulations and evidences of the convergence
results (4.31) for the normal derivatives of solutions of the discrete Laplace equa-
tion. We do not present a systematic study of the convergenceof the solution in
L2(0,1) nor in H1

0(0,1) since these results are classical and can be found in many
textbooks of numerical analysis, see e.g. [4, 46].

In order to do that, we choose continuous functionsf andz solving (4.12).
ForN ∈N, we then discretize the source termf into fh simply by takingfh( j) =

f ( jh) for j ∈ {1, · · · ,N} and computezh the solution of−∆hzh = fh with z0,h =
zN+1,h = 0. We then compute∂xz(1)+ zN,h/h.

Our first test function is

f (x) =−sin(2πx)+3sin(πx), for z(x) =
sin(2πx)

4π2 − 3sin(πx)
π

. (4.34)

The plot of
∣

∣∂xz(1)+ zN,h/h
∣

∣ versusN is represented in logarithmic scales in Figure
4.1, left. Here, we have chosenN ∈ [100,300]. The slope of the linear regression is
−1.99 and completely corresponds to the result of Theorem 4.5.

We then test

f (x) =
1

(x+1)3 , corresponding toz(x) =− 1
2(x+1)

+
1
2
− x

4
. (4.35)

Numerical simulations are represented in Figure 4.1, right.
This functionf is smooth, but it does not satisfyf (0) = f (1) = 0. Thus it is only

in ∩ε>0H1/2−ε
(0) (0,1) and the slope predicted by Theorem 4.5 is−1− and completely

agrees with the slope observed in Figure 4.1 right.
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Fig. 4.1 Plot of
∣

∣∂xz(1)+zN,h/h
∣

∣ versusN in logarithmic scales. Left, forf as in (4.34): the slope
is−1.99. Right, for f as in (4.35): the slope is−1.00.

These two examples indicate that the rates of convergence ofthe normal deriva-
tives obtained in Theorem 4.5 are accurate.

4.3 Uniform bounds onyh

The goal of this section is to obtain uniform bounds onyh in the natural space for the
wave equation with non-homogeneous Dirichlet control, that isC([0,T];L2(0,1))∩
C1([0,T];H−1(0,1)):

Theorem 4.6.There exists a constant C independent of h> 0 such that any solution
yh of (4.7)with initial data (y0

h,y
1
h) and source term vh ∈ L2(0,T) satisfies

sup
t∈[0,T ]

‖(yh(t),∂tyh(t))‖L2(0,1)×H−1(0,1)

≤C
(

∥

∥(y0
h,y

1
h)
∥

∥

L2(0,1)×H−1(0,1)+ ‖vh‖L2(0,T)

)

. (4.36)

The proof of Theorem 4.6 is done in two steps, one focusing on the estimate
on yh, the other one on∂tyh, respectively, corresponding to Proposition 4.3 and
Proposition 4.4.

As we will see, each one of these propositions is based on a suitable duality
argument for solutions of the adjoint system.

4.3.1 Estimates inC([0,T];L2(0,1))

We have the following:

Proposition 4.3.There exists a constant C independent of h> 0 such that any solu-
tion yh of (4.7)satisfies
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‖yh‖L∞(0,T;L2(0,1)) ≤C
(

∥

∥y0
h

∥

∥

L2(0,1)+
∥

∥y1
h

∥

∥

H−1(0,1)+ ‖vh‖L2(0,T)

)

. (4.37)

We postpone the proof to the end of the section. As in the continuous case, Propo-
sition 4.3 will be a consequence of a suitable duality argument.

Namely, letfh ∈ L1(0,T;L2(0,1)) and defineφh as being the solution of






















∂ttφ j ,h−
1
h2

[

φ j+1,h+φ j−1,h−2φ j ,h
]

= f j ,h,

(t, j) ∈ (0,T)×{1, · · · ,N},
φ0,h(t) = φN+1,h(t) = 0, t ∈ (0,T),
φ j ,h(T) = 0, ∂tφ j ,h(T) = 0, j = 1, . . . ,N.

(4.38)

Then, multiplying (4.7) byφh solution of (4.38), we obtain

0 = h
N

∑
j=1

∫ T

0
∂tty j ,hφ j ,hdt−h

N

∑
j=1

∫ T

0

1
h2 [y j+1,h+ y j−1,h−2y j ,h]φ j ,hdt

= h
N

∑
j=1

∫ T

0
y j ,h∂tt φ j ,hdt−h

N

∑
j=1

∫ T

0

1
h2y j ,h[φ j+1,h+φ j−1,h−2φ j ,h]dt

+h
N

∑
j=1

(∂ty j ,hφ j ,h− y j ,h∂tφ j ,h)
∣

∣

∣

T

0
−
∫ T

0
yN+1,h

φN,h

h
dt

= h
N

∑
j=1

∫ T

0
y j ,h f j ,h dt+h

N

∑
j=1

(y0
j ,h∂tφ j ,h(0)− y1

j ,hφ j ,h(0)) (4.39)

−
∫ T

0
vh(t)

φN,h(t)

h
dt.

Note that identity (4.39) is a discrete counterpart of the continuous identity (4.4).
Remark that this can be used as a definition of solutions of (4.7) by transposition,
even if in that case, solutions of (4.7) obviously exist due to the finite dimensional
nature of system (4.7).

Formulation (4.39) will be used to derive estimates on solutionsyh by duality.
But we shall first prove the following lemma:

Lemma 4.1.For φh solution of(4.38), there exists a constantC independent of h>0
such that

‖φh‖L∞(0,T;H1
0 (0,1))

+ ‖∂tφh‖L∞(0,T;L2(0,1)) ≤C‖ fh‖L1(0,T;L2(0,1)) (4.40)

and
∥

∥

∥

∥

φN,h

h

∥

∥

∥

∥

L2(0,T)
≤C‖ fh‖L1(0,T;L2(0,1)) . (4.41)

Proof. The first inequality (4.40) is an energy estimate, whereas (4.41) is a hidden
regularity property.

Multiplying (4.38) by∂tφ j ,h and summing overj, we obtain
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h
N

∑
j=1

∂tt φ j ,h∂tφ j ,h−h
N

∑
j=1

1
h2

[

φ j+1,h+φ j−1,h−2φ j ,h
]

∂tφ j ,h

= h
N

∑
j=1

f j ,h∂tφ j ,h. (4.42)

The left hand side of (4.42) is the derivative of the energy

d
dt

(

h
2

N

∑
j=1

|∂tφ j ,h|2+
h
2

N

∑
j=1

(

φ j+1,h−φ j ,h

h

)2
)

=
1
2

dEh[φh]

dt
,

whereas the right hand side satisfies

∣

∣

∣

∣

∣

h
N

∑
j=1

f j ,h∂tφ j ,h

∣

∣

∣

∣

∣

≤
(

h
N

∑
j=1

| f j ,h|2
)1/2(

h
N

∑
j=1

|∂tφ j ,h|2
)1/2

≤
(

h
N

∑
j=1

| f j ,h|2
)1/2

√

Eh[φh](t).

Equation (4.42) then implies

∣

∣

∣

∣

d
√

Eh

dt
(t)

∣

∣

∣

∣

≤
(

h
N

∑
j=1

| f j ,h(t)|2
)1/2

. (4.43)

Integrating in time, we obtain that for allt ∈ [0,T],

√

Eh(t)≤
∫ T

0

(

h
N

∑
j=1

| f j ,h(t)|2
)1/2

dt.

Finally, recalling the properties of the Fourier extensionoperator in Section 3.2, we
obtain (4.40).

Estimate (4.41) can be deduced from the multiplier approachdeveloped in the
proof of Theorem 2.2 by multiplying (4.38) byj(φ j+1,h−φ j−1,h):

h
N

∑
j=1

∫ T

0
f j ,h jh

(

φ j+1,h−φ j−1,h

h

)

dt = h
N

∑
j=1

∫ T

0
∂tt φ j ,h jh

(

φ j+1,h−φ j−1,h

h

)

dt

−h
N

∑
j=1

∫ T

0

[

φ j+1,h+φ j−1,h−2φ j ,h

h2

]

jh

(

φ j+1,h−φ j−1,h

h

)

dt. (4.44)

The right hand-side of (4.44) has already been dealt with in the proof of Theorem
2.2 and yields:
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h
N

∑
j=1

∫ T

0
∂ttφ j ,h jh

(

φ j+1,h−φ j−1,h

h

)

dt

−h
N

∑
j=1

∫ T

0

[

φ j+1,h+φ j−1,h−2φ j ,h

h2

]

jh

(

φ j+1,h−φ j−1,h

h

)

=

∫ T

0

∣

∣

∣

∣

φN,h(t)

h

∣

∣

∣

∣

2

dt+
h3

2

N

∑
j=0

∫ T

0

∣

∣

∣

∣

∂tφ j+1,h− ∂tφ j ,h

h

∣

∣

∣

∣

2

dt

−
∫ T

0
Eh(t)dt−Xh(t)

∣

∣

∣

T

0
,

where, similarly as in (2.14),Xh(t) is given by

Xh(t) = 2h
N

∑
j=1

jh

(

φ j+1,h−φ j−1,h

2h

)

∂tφ j ,h.

From the conditionsφh(T)= ∂tφh(T) = 0 in (4.38),Xh(T) = 0. Besides, as in (2.15),
one has|Xh(0)| ≤ Eh(0).

On the other hand,

∣

∣

∣

∣

∣

h
N

∑
j=1

∫ T

0
f j ,h jh

(

φ j+1,h−φ j−1,h

h

)

dt

∣

∣

∣

∣

∣

≤
∫ T

0

(

h
N

∑
j=1

| f j ,h|2
)1/2√

Eh(t)dt

≤ sup
t∈[0,T]

{
√

Eh(t)
}

∫ T

0

(

h
N

∑
j=1

| f j ,h|2
)1/2

dt.

Therefore, from (4.40), there exists a constant independent of h such that

∫ T

0

∣

∣

∣

∣

φN,h(t)

h

∣

∣

∣

∣

2

dt+
h3

2

N

∑
j=0

∫ T

0

∣

∣

∣

∣

∂tφ j+1,h− ∂tφ j ,h

h

∣

∣

∣

∣

2

dt

≤C

(

∫ T

0

(

h
N

∑
j=1

| f j ,h|2
)1/2

dt

)2

,

which implies (4.41). ⊓⊔

Proof (Proposition 4.3).Lemma 4.1 and identity (4.39) allow us to deduce bounds
onyh. Indeed,

‖yh‖L∞(0,T;L2(0,1)) = sup
f∈L1(0,T;L2(0,1))
‖ f‖L1((0,T);L2(0,1))

∫ 1

0
yh(x) f (x)dx.

But thereyh is the Fourier extensionFh(yh) (recall Section 3.2), hence it involves
only Fourier modes smaller thanN. We thus only have to consider the projection of
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f onto the firstN Fourier modes. But this exactly corresponds to discrete functions
fh. Therefore,

‖yh‖L∞(0,T;L2(0,1)) = sup
fh∈L1(0,T;L2(0,1))

‖ fh‖L1((0,T);L2(0,1))≤1

{

h
N

∑
j=1

∫ T

0
y j ,h f j ,h dt

}

.

But, introducingφh, the solution of (4.38) with source termfh, using Lemma 4.1,
we obtain:

h
N

∑
j=1

∫ T

0
y j ,h f j ,h dt =−h

N

∑
j=1

(y0
j ,h∂tφ j ,h(0)− y1

j ,hφ j ,h(0))+
∫ T

0
vh(t)

φN,h(t)

h
dt

≤ C
∥

∥y0
h

∥

∥

L2(0,1) ‖∂tφh(0)‖L2(0,1)+C
∥

∥y1
h

∥

∥

H−1(0,1)‖φh(0)‖L2(0,1)

+‖vh‖L2(0,T)

∥

∥

∥

∥

φN,h

h

∥

∥

∥

∥

L2(0,T)

≤ C
(

∥

∥y0
h

∥

∥

L2(0,1)+
∥

∥y1
h

∥

∥

H−1(0,1)+ ‖vh‖L2(0,T)

)

‖ fh‖L1(0,T;L2(0,1)) .

This yields in particular (4.37). ⊓⊔

4.3.2 Estimates on∂tyh

We now focus on getting estimates on∂tyh.

Proposition 4.4.There exists a constant C independent of h> 0 such that any solu-
tion yh of (4.7)satisfies

‖∂tyh‖L∞(0,T;H−1(0,1)) ≤C
(

∥

∥y0
h

∥

∥

L2(0,1)+
∥

∥y1
h

∥

∥

H−1(0,1)+ ‖vh‖L2(0,T)

)

. (4.45)

Similarly as for Proposition 4.3, this result is obtained byduality, based on the
following identity: if φh solves the adjoint wave equation (4.38) with source term
fh = ∂tgh with gh ∈ L1(0,T;H1

0(0,1)), we have:

h
N

∑
j=1

∫ T

0
y j ,h∂tg j ,hdt =−h

N

∑
j=1

(y0
j ,h∂tφ j ,h(0)− y1

j ,hφ j ,h(0))

+

∫ T

0
vh(t)

φN,h(t)

h
dt. (4.46)

The proof of Proposition 4.4 is sketched at the end of the section, since it is very
similar to the one of Proposition 4.3.

Hence, we focus on the following adjoint problem:
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

















∂ttφ j ,h−
1
h2

[

φ j+1,h+φ j−1,h−2φ j ,h
]

= ∂tg j ,h,

(t, j) ∈ (0,T)×{1, · · · ,N},
φ0,h(t) = φN+1,h(t) = 0, t ∈ (0,T),
φ j ,h(T) = 0, ∂tφ j ,0(T) = 0, j = 1, . . . ,N.

(4.47)

We shall thus prove the following:

Lemma 4.2.For φh solution of(4.47), there exists a constantC independent of h>0
such that

‖φh‖L∞(0,T;H1
0 (0,1))

+ ‖∂tφh(0)‖L2(0,1) ≤C‖gh‖L1(0,T;H1
0 (0,1))

(4.48)

and
∥

∥

∥

∥

φN,h

h

∥

∥

∥

∥

L2(0,T)
≤C‖gh‖L1(0,T;H1

0 (0,1))
. (4.49)

Proof. To study solutionsφh of (4.47), it is convenient to first assume thatgh is
compactly supported in time in(0,T) and use the density of compactly supported
functions in time inL1(0,T;H1

0(0,1)).
Let us introduceψh satisfying∂tψh = φh, which satisfies



















∂tt ψ j ,h−
1
h2

[

ψ j+1,h+ψ j−1,h−2ψ j ,h
]

= g j ,h,

(t, j) ∈ (0,T)×{1, . . . ,N},
ψ0,h(t) = ψN+1,h(t) = 0, t ∈ (0,T),
ψ j ,h(T) = 0, ∂tψ j ,h(T) = 0, j = 1, . . . ,N.

(4.50)

Obviously, using Lemma 4.1, we immediately obtain

‖ψh‖L∞(0,T;H1
0 (0,1))

+ ‖∂tψh‖L∞(0,T;L2(0,1))+
∥

∥

∥

ψN,h

h

∥

∥

∥

L2(0,T)
≤C‖gh‖L1(0,T;L2(0,1))

≤C‖gh‖L1(0,T;H1
0 (0,1))

.

To derive more precise estimates onφh, we multiply (4.50) by−(∂tψ j+1,h +
∂tψ j−1,h−2∂tψ j ,h)/h2:

d
dt

(

h
2

N

∑
j=0

(

∂tψ j+1,h− ∂tψ j ,h

h

)2

+
h
2

N

∑
j=1

(

ψ j+1,h+ψ j−1,h−2ψ j ,h

h2

)2
)

= h
N

∑
j=1

(

g j+1,h−g j ,h

h

)(

∂tψ j+1,h− ∂tψ j ,h

h

)

.

Arguing as in (4.43), this allows to conclude that
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sup
t∈[0,T ]

{

h
2

N

∑
j=0

(

∂tψ j+1,h− ∂tψ j ,h

h

)2

+
h
2

N

∑
j=1

(

ψ j+1,h+ψ j−1,h−2ψ j ,h

h2

)2
}

≤C





∫ T

0

(

h
N

∑
j=0

(

g j+1,h−g j ,h

h

)2
)1/2

dt





2

. (4.51)

Using (4.38) and∂tψh = φh and again the equivalences proven in Section 3.2, we
deduce

‖φh‖L∞(0,T; H1
0 (0,1))

+ ‖∂tt ψh+gh‖L∞((0,T);L2(0,1)) ≤C‖gh‖L1(0,T;H1
0 (0,1))

,

where we use the equation ofψh. In order to get (4.48), we only use the fact that
gh(0) = 0.

To deduce (4.49), we need to apply a multiplier technique on the equations (4.47)
directly.

Multiplying (4.47) by j(φ j+1,h−φ j−1,h), we obtain, similarly as in (2.13),

∫ T

0

∣

∣

∣

∣

φN,h(t)

h

∣

∣

∣

∣

2

dt+
h3

2

N

∑
j=0

∫ T

0

∣

∣

∣

∣

∂tφ j+1,h− ∂tφ j ,h

h

∣

∣

∣

∣

2

dt

=
∫ T

0
Eh(t)dt−Xh(0)−h

∫ T

0

N

∑
j=1

jh

(

φ j+1,h−φ j−1,h

h

)

∂tg j ,hdt, (4.52)

whereXh is as in (2.14). To derive (4.49), it is then sufficient to bound each term in
the right hand side of this identity.

First remark that

∫ T

0
Eh(t)dt = h

∫ T

0

N

∑
j=0

(

φ j+1,h−φ j ,h

h

)2

dt+h
∫ T

0

N

∑
j=0

|∂tφ j ,h|2dt

= h
∫ T

0

N

∑
j=0

(

∂tψ j+1,h− ∂tψ j ,h

h

)2

dt+h
∫ T

0

N

∑
j=0

|∂ttψ j ,h|2dt

= h
∫ T

0

N

∑
j=0

(

∂tψ j+1,h− ∂tψ j ,h

h

)2

dt+h
∫ T

0

N

∑
j=1

(

ψ j+1,h+ψ j−1,h−2ψ j ,h

h2

)2

dt

+h
∫ T

0

N

∑
j=0

g2
j ,hdt+2h

∫ T

0

N

∑
j=1

(

ψ j+1,h+ψ j−1,h−2ψ j ,h

h2

)

g j ,hdt.

In particular, from (4.51), we obtain
∣

∣

∣

∣

∣

∫ T

0
Eh(t)dt−h

∫ T

0

N

∑
j=0

g2
j ,hdt

∣

∣

∣

∣

∣

≤C‖g‖2
L1(0,T;H1

0 (0,1))
.
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Let us then boundXh(0). Sincegh(0) = 0,

Xh(0) = 2h
N

∑
j=1

jh

(

φ j+1,h(0)−φ j−1,h(0)

2h

)

∂tφ j(0)

= 2h
N

∑
j=1

jh

(

φ j+1,h(0)−φ j−1,h(0)

2h

)

∂ttψ j(0)

= 2h
N

∑
j=1

jh

(

φ j+1,h(0)−φ j−1,h(0)

2h

)(

ψ j+1,h(0)+ψ j−1,h(0)−2ψ j ,h(0)

h2

)

.

It follows then from (4.51) that

|Xh(0)| ≤C‖gh‖2
L1(0,T;H1

0 (0,1))
.

We now deal with the last term in (4.52):

I := 2h
∫ T

0

N

∑
j=1

jh

(

φ j+1,h−φ j−1,h

2h

)

∂tg j ,hdt.

Integrating by parts we get

I = −h
∫ T

0

N

∑
j=1

φ j ,h
(

( j +1)∂tg j+1,h− ( j −1)∂tg j−1,h
)

dt

= −h
∫ T

0

N

∑
j=1

φ j ,h

(

(∂tg j−1,h+ ∂tg j+1,h)+ jh

(

∂tg j+1,h− ∂tg j−1,h

h

))

dt.

Taking into account that, by assumption,gh(0) = gh(T) = 0,

I = h
∫ T

0

N

∑
j=1

∂tφ j ,h

(

(g j−1,h+g j+1,h)+ jh

(

g j+1,h−g j−1,h

h

))

dt.

But ∂tφ j ,h = ∂tt ψ j ,h, and then equation (4.50) yields:

I = h
∫ T

0

N

∑
j=1

g j ,h

(

(g j−1,h+g j+1,h)+ jh

(

g j+1,h−g j−1,h

h

))

dt

+h
∫ T

0

N

∑
j=1

(

ψ j+1,h+ψ j−1,h−2ψ j ,h

h2

)

(g j−1,h+g j+1,h)dt.

+h
∫ T

0

N

∑
j=1

(

ψ j+1,h+ψ j−1,h−2ψ j ,h

h2

)

jh

(

g j+1,h−g j−1,h

h

)

dt.

Since
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h
∫ T

0

N

∑
j=1

g j ,h

(

(g j−1,h+g j+1,h)+ jh

(

g j+1,h−g j−1,h

h

))

dt

= h
∫ T

0

N

∑
j=1

g j ,hg j+1,hdt,

due to estimates (4.51), we obtain
∣

∣

∣

∣

∣

I −h
∫ T

0

N

∑
j=1

g j ,hg j+1,hdt

∣

∣

∣

∣

∣

≤C‖g‖2
L1(0,T;H1

0 (0,1))
.

These estimates, combined with (4.52), finally give

∣

∣

∣

∣

∣

∫ T

0

∣

∣

∣

∣

φN,h(t)

h

∣

∣

∣

∣

2

dt+
h3

2

N

∑
j=0

∫ T

0

∣

∣

∣

∣

∂tφ j+1,h− ∂tφ j ,h

h

∣

∣

∣

∣

2

dt

−h
∫ T

0

N

∑
j=1

(

|g j ,h|2−g j ,hg j+1,h
)

dt

∣

∣

∣

∣

∣

≤C‖g‖2
L1(0,T;H1

0 (0,1))
,

or, equivalently,

∣

∣

∣

∣

∣

∫ T

0

∣

∣

∣

∣

φN,h(t)

h

∣

∣

∣

∣

2

dt+
h
2

N

∑
j=0

∫ T

0

∣

∣∂tφ j+1,h− ∂tφ j ,h
∣

∣

2
dt

− h
2

∫ T

0

N

∑
j=0

|g j+1,h−g j ,h|2dt

∣

∣

∣

∣

∣

≤C‖g‖2
L1(0,T;H1

0 (0,1))
. (4.53)

Remark then that

h
N

∑
j=0

∫ T

0

∣

∣∂tφ j+1,h− ∂tφ j ,h
∣

∣

2
dt−h

∫ T

0

N

∑
j=0

|g j+1,h−g j ,h|2dt

= h
N

∑
j=0

∫ T

0

∣

∣∂tt ψ j+1,h− ∂ttψ j ,h
∣

∣

2
dt−h

∫ T

0

N

∑
j=0

|g j+1,h−g j ,h|2dt

= h
N

∑
j=0

∫ T

0

(

ψ j+2,h+ψ j ,h−2ψ j+1,h

h2 − ψ j+1,h+ψ j−1,h−2ψ j ,h

h2

)2

dt

+ 2h
N

∑
j=0

∫ T

0

(

ψ j+2,h+ψ j ,h−2ψ j+1,h

h2

)

(g j+1,h−g j ,h)dt,

− 2h
N

∑
j=0

∫ T

0

(

ψ j+1,h+ψ j−1,h−2ψ j ,h

h2

)

(g j+1,h−g j ,h)dt,

with the notationψ−1,h =−ψ1,h andψN+2,h =−ψN,h.
In view of (4.51), we have
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∣

∣

∣

∣

∣

h
N

∑
j=0

∫ T

0

∣

∣∂tφ j+1,h− ∂tφ j ,h

∣

∣

2
dt−h

∫ T

0

N

∑
j=0

|g j+1,h−g j ,h|2dt

∣

∣

∣

∣

∣

≤C‖g‖2
L1(0,T;H1

0 (0,1))
.

Estimate (4.49) then follows directly from (4.53). ⊓⊔

Proof (Proposition 4.4).Sinceyh is a smooth function of time and space (recall that
yh has been identified with its Fourier extension, see Section 3.2),

‖∂tyh‖L∞((0,T);H−1(0,1)) = sup
g∈L1((0,T);H1

0 (0,1))
‖g‖

L1((0,T);H1
0 (0,1))

≤1

∫ T

0
∂tyhg.

As in the proof of Proposition 4.3, we can take the supremum ofthe functions
g ∈ L1(0,T;H1

0(0,1)) that are Fourier extensions of discrete functions. Therefore,
using Lemma 4.2 together with the duality identity (4.46), we immediately obtain
Proposition 4.4. ⊓⊔

4.4 Convergence rates for smooth data

4.4.1 Main convergence result

Our goal is to show the following result:

Theorem 4.7.Let (y0,y1) ∈ H1
0(0,1)× L2(0,1) and v∈ H1(0,T) be such that

v(0) = 0 and y the corresponding solution of(4.1) with initial data (y0,y1) and
boundary condition v.

Then there exists a discrete sequence of initial data(y0
h,y

1
h) such that the solution

yh of (4.7) with initial data (y0
h,y

1
h) and boundary data v satisfies the following

convergence rates:
• Convergence of yh: the following convergence estimates hold:

sup
t∈[0,T]

‖yh(t)− y(t)‖L2 ≤C
(

h2/3
∥

∥(y0,y1)
∥

∥

H1
0×L2 +h1/2‖v‖H1

)

. (4.54)

If we furthermore assume that v(T) = 0,

‖yh(T)− y(T)‖L2 ≤Ch2/3
(

∥

∥(y0,y1)
∥

∥

H1
0×L2 + ‖v‖H1

)

. (4.55)

• Convergence of∂tyh: the following convergence estimates hold:

sup
t∈[0,T ]

‖∂tyh(t)− ∂ty(t)‖H−1 ≤Ch2/3
(

∥

∥(y0,y1)
∥

∥

H1
0×L2 + ‖v‖H1

)

. (4.56)
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Remark 4.3.The above convergences (4.54) and (4.56) may appear surprising since
the rates of convergence of the displacement and of the velocity are not the same
except whenv(T) = 0. We refer to Section 4.4.2 for the details of the proof.

More curiously, the rates of convergence for the displacement are not the same
depending on the fact thatv(T) = 0 or not. This definitely is a surprise. In the proof
below, we will see that this is due to the rate (4.22) of convergence of the normal
derivative for solutions of the Laplace operator.

The proof is divided in two main steps, namely one focusing onthe convergence
of yh towardsy and the other one on the convergence of∂tyh to ∂ty, these two
estimates being the object of the next sections.

Also, recall that under the assumptions of Theorem 4.7, the solution y of (4.1)
lies in C([0,T];H1(0,1)), its time derivative∂ty belongs toC([0,T];L2(0,1)) and
∆y to C([0,T];H−1(0,1)).

As in the case of homogeneous Dirichlet boundary conditions, we will write
down

y0 =
∞

∑
k=1

ŷ0
kwk, y1 =

∞

∑
k=1

ŷ1
kwk, (4.57)

whoseH1
0(0,1)×L2(0,1)-norm coincides with

∥

∥(y0,y1)
∥

∥

2
H1

0×L2 =
∞

∑
k=1

k2π2|ŷ0
k|2+

∞

∑
k=1

|ŷ1
k|2 < ∞.

We will then choose the initial data(y0
h,y

1
h) of the form

y0
h =

N

∑
k=1

ŷ0
kwk, y1

h =
N

∑
k=1

ŷ1
kwk. (4.58)

4.4.2 Convergence ofyh

Proposition 4.5.Under the assumptions of Theorem 4.7, taking(y0
h,y

1
h) as in(4.58),

we have the convergences(4.54)and (4.55).

Proof. To estimate the convergence ofyh to y at timeT, we write

‖yh(T)− y(T)‖L2 = sup
φT∈L2(0,1)

‖φT‖L2(0,1)≤1

{

∫ 1

0
(yh(T)− y(T))φT

}

. (4.59)

We thus fixφT ∈ L2(0,1) and compute

∫ 1

0
(yh(T)− y(T))φT . (4.60)
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We expandφT on its Fourier basis:

φT =
∞

∑
k=1

φ̂kw
k,

∞

∑
k=1

|φ̂k|2 < ∞. (4.61)

Computation of
∫ 1

0 y(T)φT .
Let us now compute

∫ 1
0 y(T)φT . In order to do that, we introduceϕ solution of







∂ttϕ − ∂xxϕ = 0, (t,x) ∈ (0,T)× (0,1),

ϕ(t,0) = ϕ(t,1) = 0, t ∈ (0,T),
ϕ(T) = 0, ∂tϕ(T) = φT .

(4.62)

Then, multiplying (4.1) byϕ , we easily obtain

∫ 1

0
y(T)φT =

∫ T

0
v(t)∂xϕ(t,1)dt+

∫ 1

0
y0∂tϕ(0)−

∫ 1

0
y1ϕ(0). (4.63)

But v(t) =
∫ t

0 ∂tv(s)ds, thus yielding

∫ T

0
v(t)∂xϕ(t,1)dt =

∫ T

0
∂tv(t)

(

∫ T

t
∂xϕ(s,1)ds

)

dt.

We therefore introduceΦ(t) =
∫ T
t ϕ(s)ds. One then easily checks that

∫ 1

0
y(T)φT =

∫ T

0
∂tv(t)∂xΦ(t,1)dt−

∫ 1

0
y0∂tt Φ(0)+

∫ 1

0
y1∂tΦ(0), (4.64)

whereΦ solves






∂tt Φ − ∂xxΦ =−φT , (t,x) ∈ (0,T)× (0,1),

Φ(t,0) = Φ(t,1) = 0, t ∈ (0,T),
Φ(T) = 0, ∂tΦ(T) = 0.

(4.65)

We also introducezT the solution of

− ∂xxzT = φT , on(0,1), zT(0) = zT(1) = 0, (4.66)

so that
Ψ = Φ − zT (4.67)

satisfies






∂ttΨ − ∂xxΨ = 0, (t,x) ∈ (0,T)× (0,1)

Ψ(t,0) =Ψ(t,1) = 0, t ∈ (0,T),
Ψ(T) = zT , ∂tΨ(T) = 0.

(4.68)

and
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∫ 1

0
y(T)φT =

∫ T

0
∂tv(t)∂xΨ(t,1)dt−

∫ 1

0
y0∂ttΨ (0)+

∫ 1

0
y1∂tΨ (0)

+

∫ T

0
∂tv(t)∂xzT(1)dt,

and, using thatzT is independent of time,

∫ 1

0
y(T)φT =

∫ T

0
∂tv(t)∂xΨ(t,1)dt−

∫ 1

0
y0∂ttΨ (0)+

∫ 1

0
y1∂tΨ (0)

+ v(T)∂xzT(1). (4.69)

Computation of
∫ 1

0 yh(T)φT .
Expandingyh(T) in discrete Fourier series, we get

∫ 1

0
yh(T)φT =

∫ 1

0
yh(T)φT,h = h

N

∑
j=1

y j ,h(T)φ j ,T,h,

where

φ j ,T,h =
N

∑
k=1

φ̂kw
k
j , j ∈ {1, · · · ,N}. (4.70)

Then, similarly as in (4.64), we can prove

∫ 1

0
yh(T)φT =−

∫ T

0
∂tv(t)

ΦN,h

h
dt−h

N

∑
j=1

y0
j ,h∂tt Φ j ,h(0)+h

N

∑
j=1

y1
j ,h∂tΦ j ,h(0),

(4.71)
whereΦh is the solution of


















∂tt Φ j ,h−
1
h2

(

Φ j+1,h−2Φ j ,h+Φ j−1,h
)

=−φ j ,T,h,

(t, j) ∈ (0,T)×{1, · · · ,N},
Φ0,h(t) = ΦN+1,h(t) = 0, t ∈ (0,T),
Φh(T) = 0, ∂tΦh(T) = 0.

(4.72)

Note that, due to the orthogonality properties of the Fourier basis, we can write

−h
N

∑
j=1

y0
j ,h∂tt Φ j ,h(0)+h

N

∑
j=1

y1
j ,h∂tΦ j ,h(0) = −

∫ 1

0
y0

h∂tt Φh(0)+
∫ 1

0
y1

h∂tΦh(0)

= −
∫ 1

0
y0∂tt Φh(0)+

∫ 1

0
y1∂tΦh(0),

and thus (4.71) can be rewritten as

∫ 1

0
yh(T)φT =−

∫ T

0
∂tv(t)

ΦN,h

h
dt−

∫ 1

0
y0∂tt Φh(0)+

∫ 1

0
y1∂tΦh(0). (4.73)
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Then setting
zT,h = (−∆h)

−1φT,h, (4.74)

we obtain

∫ 1

0
yh(T)φT =−

∫ T

0
∂tv(t)

ΨN,h

h
dt−

∫ 1

0
y0∂ttΨh(0)+

∫ 1

0
y1∂tΨh(0)

− v(T)
zN,T,h

h
, (4.75)

whereΨh is the solution of



















∂ttΨj ,h−
1
h2

(

Ψj+1,h−2Ψj ,h+Ψj−1,h
)

= 0,

(t, j) ∈ (0,T)×{1, · · · ,N},
Ψ0,h(t) =ΨN+1,h(t) = 0, t ∈ (0,T)
Ψh(T) = zT,h, ∂tΨh(T) = 0.

(4.76)

Estimating the difference
∫ 1

0 y(T)φT − ∫ 1
0 yh(T)φT .

First, sincezT solves the Laplace equation (4.66),zT ∈ H2∩H1
0(0,1) and

‖zT‖H2∩H1
0
≃ ‖φT‖L2 .

SinceφT ∈ L2(0,1), using Theorem 4.1 and Theorem 4.3,
∥

∥zT,h− zT
∥

∥

H1
0
≤ Ch‖φT‖L2 , (4.77)

∣

∣

∣∂xzT(1)+
zN,T,h

h

∣

∣

∣ ≤ C
√

h‖φT‖L2 . (4.78)

Hence using Proposition 3.8, we obtain

sup
t∈[0,T ]

‖(Ψh,∂tΨh,∂ttΨh)− (Ψ ,∂tΨ ,∂ttΨ)‖H1
0×L2×H−1

+

∥

∥

∥

∥

∂xΨ(t,1)+
ΨN,h

h
(t)

∥

∥

∥

∥

L2(0,T)
≤Ch2/3‖φT‖L2 . (4.79)

We thus deduce that

∣

∣

∣

∣

∫ T

0
∂tv(t)

(

ΨN,h

h
+ ∂xΨ(t,1)

)

dt+
∫ 1

0
y0(∂ttΨh(0)− ∂ttΨ (0))

−
∫ 1

0
y1(∂tΨh(0)− ∂tΨ(0))

∣

∣

∣

∣

≤Ch2/3‖φT‖L2

(

∥

∥(y0,y1)
∥

∥

H1
0×L2 + ‖v‖H1

)

.

According to (4.69), (4.75) and the bound (4.78), this implies
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∣

∣

∣

∣

∫ 1

0
(yh(T)− y(T))φT

∣

∣

∣

∣

≤C
(√

h|v(T)|+h2/3(
∥

∥(y0,y1)
∥

∥

H1
0×L2 + ‖v‖H1)

)

‖φT‖L2 .

Using now identity (4.59), we obtain the following result:

‖yh(T)− y(T)‖L2 ≤C
(√

h|v(T)|+h2/3(
∥

∥(y0,y1)
∥

∥

H1
0×L2 + ‖v‖H1)

)

,

which implies that, ifv(T) = 0,

‖yh(T)− y(T)‖L2 ≤Ch2/3
(

∥

∥(y0,y1)
∥

∥

H1
0×L2 + ‖v‖H1

)

,

whereas otherwise

‖yh(T)− y(T)‖L2 ≤C
(

h2/3
∥

∥(y0,y1)
∥

∥

H1
0×L2 +

√
h‖v‖H1

)

.

Conclusion. Note that all the above estimates hold uniformly forT in bounded
intervals of time. This concludes the proof of Proposition 4.5. ⊓⊔

4.4.3 Convergence of∂tyh

Proposition 4.6.Under the assumptions of Theorem 4.7, taking(y0
h,y

1
h) as in(4.58),

we have the convergence(4.56).

Proof. The proof of Proposition 4.6 closely follows the one of Proposition 4.5 and
actually it is easier. We first begin by the following remark:

‖∂tyh(T)− ∂ty(T)‖H−1 = sup
φT∈H1

0
‖φT‖H1

0
≤1

{

∫ 1

0
∂tyh(T)φT −

∫ 1

0
∂ty(T)φT

}

.

Hence we fixφT ∈ H1
0(0,1). We expand it in Fourier series:

φT =
∞

∑
k=1

φ̂kw
k, with ‖φT‖2

H1
0
=

∞

∑
k=1

k2π2|φ̂k|2. (4.80)

We thus introduce

φT,h =
N

∑
k=1

φ̂kw
k.

Using the fact that∂tyh belongs to the span of theN-first Fourier modes,

∫ 1

0
∂tyh(T)φT =

∫ 1

0
∂tyh(T)φT,h. (4.81)
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Hence we are reduced to show

∣

∣

∣

∣

∫ 1

0
∂ty(T)φT −

∫ 1

0
∂tyh(T)φT,h

∣

∣

∣

∣

≤Ch2/3
(

∥

∥(y0,y1)
∥

∥

H1
0×L2 + ‖v‖H1

)

‖φT‖H1
0
. (4.82)

Again, we will express each of these quantities by an adjointformulation and
then relate the proof of (4.82) to convergence results for the adjoint system.

Indeed,

∫ 1

0
∂ty(T)φT =

∫ T

0
v(t)∂xϕ(t,1)dt−

∫ 1

0
y0∂tϕ(0)+

∫ 1

0
y1ϕ(0), (4.83)

whereϕ solves






∂tt ϕ − ∂xxϕ = 0, (t,x) ∈ (0,T)× (0,1),
ϕ(t,0) = ϕ(t,1) = 0, t ∈ (0,T),
(ϕ(T),∂t ϕ(T)) = (φT ,0).

(4.84)

Then, introducingΦ(t) =
∫ T
t ϕ(s)ds, we easily check thatΦ solves







∂tt Φ − ∂xxΦ = 0, (t,x) ∈ (0,T)× (0,1),
Φ(t,0) = Φ(t,1) = 0, t ∈ (0,T),
(Φ(T),∂tΦ(T)) = (0,−φT).

(4.85)

Besides, identity (4.83) then becomes

∫ 1

0
∂ty(T)φT =

∫ T

0
∂tv(t)∂xΦ(t,1)dt+

∫ 1

0
y0∂ttΦ(0)−

∫ 1

0
y1∂tΦ(0). (4.86)

Similarly, we have

∫ 1

0
∂tyh(T)φT,h =−

∫ T

0
∂tv(t)

ΦN,h

h
(t)dt+

∫ 1

0
y0

h∂tt Φh(0)−
∫ 1

0
y1

h∂tΦh(0), (4.87)

whereΦh solves



















∂tt Φ j ,h−
1
h2

(

Φ j+1,h+Φ j−1,h−2Φ j ,h
)

= 0,

(t, j) ∈ (0,T)×{1, · · · ,N},
Φ0,h(t) = ΦN+1,h(t) = 0, t ∈ (0,T),
(Φh(T),∂t Φh(T)) = (0,−φT,h).

(4.88)

Also remark that, sinceφT,h is formed by Fourier modes smaller thanN, Φh has
this same structure. Due to the orthogonality properties ofthe Fourier basis and the
choice of the initial data in (4.58), we have



4.4 Convergence rates for smooth data 111

∫ 1

0
∂tyh(T)φT,h =−

∫ T

0
∂tv(t)

ΦN,h

h
(t)dt+

∫ 1

0
y0∂tt Φh(0)−

∫ 1

0
y1∂tΦh(0). (4.89)

We are thus in the setting of Proposition 3.8 sinceφT ∈ H1
0 and one easily checks

∥

∥φT −φT,h

∥

∥

L2 ≤Ch‖φT‖H1
0
.

We thus obtain

sup
t∈[0,T ]

‖(∂tΦh,∂tt Φh)− (∂tΦ,∂tt Φ)‖L2×H−1 +

∥

∥

∥

∥

∂xΦ(t,1)+
ΦN,h

h
(t)

∥

∥

∥

∥

L2(0,T)

≤Ch2/3‖φT‖H1
0
. (4.90)

Then, using the identities (4.86) and (4.89), we get

∣

∣

∣

∣

∫ 1

0
∂ty(T)φT −

∫ T

0
∂tyh(T)φT,h

∣

∣

∣

∣

≤Ch2/3‖φT‖H1
0

(

∥

∥(y0,y1)
∥

∥

H1
0×L2 + ‖v‖H1

)

. (4.91)

Combined with (4.81), this easily yields (4.82). ⊓⊔

4.4.4 More regular data

In this section, our goal is to explain what happens for smoother initial data(y0,y1)
andv, for instance for(y0,y1) ∈ H2 ∩H1

0(0,1)×H1
0(0,1) andv ∈ H2(0,T) with

v(0) = ∂tv(0) = 0. More precisely, we are going to prove the following:

Theorem 4.8.Let ℓ0 ∈ {1,2} and fix (y0,y1) ∈ Hℓ0+1
(0) (0,1)× Hℓ0

(0)(0,1) and v∈
Hℓ0+1(0,T) satisfying v(0) = ∂tv(0) = 0 if ℓ0 = 1, or v(0) = ∂tv(0) = ∂ttv(0) = 0 if
ℓ0 = 2. Let (y0

h,y
1
h) be as in(4.58)and yh the corresponding solution of(4.7) with

Dirichlet boundary conditions vh = v.
Then there exists a constant C> 0 independent of h> 0 and t∈ [0,T] such that
• for the displacement yh, for all t ∈ [0,T],

‖yh(t)− y(t)‖L2 ≤Ch2(ℓ0+1)/3
(

∥

∥(y0,y1)
∥

∥

H
ℓ0+1
(0) ×H

ℓ0
(0)

+ ‖v‖Hℓ0+1(0,T)

)

+Ch1/2|v(t)|. (4.92)

• for the velocity∂tyh, for all t ∈ [0,T],
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‖∂tyh(t)− ∂ty(t)‖H−1 ≤Ch2(ℓ0+1)/3
(

∥

∥(y0,y1)
∥

∥

H
ℓ0+1
(0) ×H

ℓ0
(0)

+ ‖v‖Hℓ0+1(0,T)

)

+Ch3/2|∂tv(t)|. (4.93)

Proof. The proof follows the one of Theorem 4.7.
Let us then focus on the convergence of the displacement and follow the proof

of Proposition 4.5. We introduceφT ∈ L2(0,1), zT as in (4.66),Ψ the solution of
the homogeneous wave equation (4.68) with initial data(zT ,0) and, similarly,φT,h

as in (4.70),zT,h as in (4.74), andΨh the solution of the discrete homogeneous wave
equation (4.76) with initial data(zT,h,0). Since

• zT ∈ H2
(0)(0,1) and‖zT‖H2

(0)
≃ ‖φT‖L2;

• By (4.15),
∥

∥zT,h− zT
∥

∥

L2 ≤Ch2‖φT‖L2 , (4.94)

Proposition 3.8 applies and yields:

‖(∂tΨh,∂ttΨh)− (∂tΨ ,∂ttΨ)‖H−ℓ0×H−ℓ0−1 ≤Ch2(ℓ0+1)/3‖φT‖L2 .

In particular,

∣

∣

∣

∣

∫ 1

0
y0(∂ttΨh(0)− ∂ttΨ(0))−

∫ 1

0
y1(∂tΨh(0)− ∂tΨ(0))

∣

∣

∣

∣

≤Ch2(ℓ0+1)/3‖φT‖L2

∥

∥(y0,y1)
∥

∥

H
ℓ0+1
(0) ×H

ℓ0
(0)

. (4.95)

According to identities (4.69) and (4.75), we shall then derive a convergence
estimate on

∫ T

0
∂tv

(

∂xΨ (t,1)+
ΨN,h(t)

h

)

dt.

In order to do that, we write∂tv=
∫ t

0 ∂ttv and introduce

ξ (t) =
∫ T

t
Ψ(s)ds, ξh(t) =

∫ T

t
Ψh(s)ds,

so that
∫ T

0
∂tv

(

∂xΨ(t,1)+
ΨN,h(t)

h

)

dt =
∫ T

0
∂ttv

(

∂xξ (t,1)+
ξN,h(t)

h

)

dt.

Of course,ξ andξh can be interpreted as solutions of continuous and discrete wave
equations:ξ solves







∂tt ξ − ∂xxξ = 0, (t,x) ∈ (0,T)× (0,1)

ξ (t,0) = ξ (t,1) = 0, t ∈ (0,T),
ξ (T) = 0, ∂tξ (T) =−zT ,

(4.96)
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whereasξh solves



















∂ttξ j ,h−
1
h2

(

ξ j+1,h−2ξ j ,h+ ξ j−1,h
)

= 0,

(t, j) ∈ (0,T)×{1, · · · ,N},
ξ0,h(t) = ξN+1,h(t) = 0, t ∈ (0,T),
ξh(T) = 0, ∂tξh(T) =−zT,h.

(4.97)

Then, due to (4.94), the convergence results in Proposition3.7 yield
∥

∥

∥

∥

∂xξ (t,1)+
ξN,h(t)

h

∥

∥

∥

∥

L2(0,T)
≤Ch4/3‖φT‖L2 .

This implies in particular that
∣

∣

∣

∣

∫ T

0
∂tv

(

∂xΨ(t,1)+
ΨN,h(t)

h

)

dt

∣

∣

∣

∣

≤Ch4/3‖φT‖L2 ‖∂ttv‖L2(0,T) . (4.98)

Hence, if ℓ0 = 1, i.e. (y0,y1) ∈ H2
(0)(0,1)× H1

(0)(0,1) and v ∈ H2(0,T) with
v(0) = ∂tv(0) = 0, combining (4.95) and (4.98) in identities (4.69) and (4.75), we
get

‖yh(T)− y(T)‖L2(0,1) ≤Ch4/3
(

∥

∥(y0,y1)
∥

∥

H2
(0)×H1

(0)
+ ‖v‖H2(0,T)

)

+Ch1/2|v(T)|. (4.99)

The caseℓ0 = 2. In this case,v ∈ H3(0,T), we introduceζ =
∫ T
t ξ andζh =

∫ T
t ξh, so that

∫ T

0
∂tv

(

∂xΨ(t,1)+
ΨN,h(t)

h

)

dt =
∫ T

0
∂tttv

(

∂xζ (t,1)+
ζN,h(t)

h

)

dt. (4.100)

Obviously, the functionζ can be characterized as the solution of a wave equation,
namely:







∂ttζ − ∂xxζ = zT , (t,x) ∈ (0,T)× (0,1)

ζ (t,0) = ζ (t,1) = 0, t ∈ (0,T),
ζ (T) = 0, ∂tζ (T) = 0.

(4.101)

We thus introducewT solution of

∂xxwT = zT , on (0,1), wT(0) = wT(1) = 0, (4.102)

so that
ζ̃ = ζ −wT

solves
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









∂tt ζ̃ − ∂xxζ̃ = 0, (t,x) ∈ (0,T)× (0,1)

ζ̃ (t,0) = ζ̃ (t,1) = 0, t ∈ (0,T),
ζ̃ (T) = wT , ∂t ζ̃ (T) = 0.

(4.103)

Doing that

∫ T

0
∂ttt v∂xζ (t,1)dt =

∫ T

0
∂ttt v∂xζ̃ (t,1)dt− ∂xwT(1)∂ttv(T). (4.104)

Similar computations can be done forζh. We thus obtain that

∫ T

0
∂ttt v

ζN,h(t)

h
dt =

∫ T

0
∂ttt v

ζ̃N,h(t)

h
dt− wN,T,h

h
∂ttv(T), (4.105)

wherewT,h = (∆h)
−1zT,h andζ̃h solves



















∂tt ζ̃ j ,h−
1
h2

(

ζ̃ j+1,h−2ζ̃ j ,h+ ζ̃ j−1,h

)

= 0,

(t, j) ∈ (0,T)×{1, · · · ,N},
ζ̃0,h(t) = ζ̃N+1,h(t) = 0, t ∈ (0,T)
ζ̃h(T) = wT,h, ∂t ζ̃h(T) = 0.

(4.106)

We now derive convergence estimates. Recall first thatzT ∈ H2
(0)(0,1) and the con-

vergences (4.94). SincezT ∈ H2
(0), settingz̃T,h its projection on theN-first Fourier

modes, we have:
∥

∥z̃T,h− zT
∥

∥

L2 ≤Ch2‖zT‖H2
(0)

≤Ch2‖φT‖L2 . (4.107)

Settingw̃T,h = (∆h)
−1z̃T,h, Theorem 4.4 and Theorem 4.5 yield

∥

∥wT − w̃T,h
∥

∥

H1
0
≤ Ch2‖zT‖H2

(0)
≤Ch2‖φT‖L2 , (4.108)

∣

∣

∣

∣

∂xwT(1)+
w̃N,T,h

h

∣

∣

∣

∣

≤ Ch2‖zT‖H2
(0)

≤Ch2‖φT‖L2 .

According to the estimate (4.94), we thus have
∥

∥z̃T,h− zT,h

∥

∥

L2 ≤Ch2‖zT‖H2
(0)

≤Ch2‖φT‖L2 .

Using then estimate (4.21),
∣

∣

∣

∣

w̃N,T,h

h
− wN,T,h

h

∣

∣

∣

∣

≤Ch2‖φT‖L2 ,

and thus ∣

∣

∣
∂xwT(1)+

wN,T,h

h

∣

∣

∣
≤Ch2‖φT‖L2 . (4.109)
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Besides, due to (4.94) and (4.107),
∥

∥zT,h− z̃T,h

∥

∥

L2 ≤Ch2‖φT‖L2 ,

which readily implies
∥

∥wT,h− w̃T,h
∥

∥

H1
0
≤Ch2‖φT‖L2 ,

and thus, by (4.108),
∥

∥wT,h−wT
∥

∥

H1
0
≤Ch2‖φT‖L2 .

Using then Proposition 3.6,
∥

∥

∥

∥

∂xζ (·,1)+ ζN,h

h
(·)
∥

∥

∥

∥

L2(0,T)
≤Ch2‖φT‖L2 . (4.110)

Combined with the convergences (4.109) and (4.110), identities (4.100), (4.104) and
(4.105) then imply

∣

∣

∣

∣

∫ T

0
∂tv

(

∂xΨ(t,1)+
ΨN,h(t)

h

)

dt

∣

∣

∣

∣

≤Ch2‖φT‖L2 ‖∂tttv‖L2 +Ch2‖φT‖L2 |∂ttv(T)| ≤Ch2‖φT‖L2 ‖v‖H3 . (4.111)

Combining (4.95) and (4.111) in identities (4.69) and (4.75), we get (4.92) when
ℓ0 = 2.

The proof of the estimate (4.93) on the rate of convergence for ∂tyh relies on very
similar estimates which are left to the reader. ⊓⊔

4.5 Further convergence results

As a corollary to Theorem 4.6 and Theorem 4.7, we can give convergence results
for anysequence of discrete initial data(y0

h,y
1
h) and boundary datavh satisfying

lim
h→0

∥

∥(y0
h,y

1
h)− (y0,y1)

∥

∥

L2×H−1 = 0 and lim
h→0

‖vh− v‖L2(0,T) = 0. (4.112)

Proposition 4.7.Let(y0,y1)∈ L2(0,1)×H−1(0,1) and v∈ L2(0,T). Then consider
sequences of discrete initial data(y0

h,y
1
h) and vh satisfying(4.112). Then the solu-

tions yh of (4.7)with initial data(y0
h,y

1
h) and boundary data vh converge strongly in

C([0,T];L2(0,1))∩C1([0,T];H−1(0,1)) towards the solution y of(4.1)with initial
data(y0,y1) and boundary data v as h→ 0.

Proof. Similarly as in the proof of Proposition 3.5, this result is obtained by us-
ing the density ofH1

0(0,T) in L2(0,T) and of H1
0(0,1)× L2(0,1) in L2(0,1)×
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H−1(0,1). We then use Theorem 4.7 for smooth solutions and the uniformstability
results in Theorem 4.6 to obtain Proposition 4.7. Details ofthe proof are left to the
reader. ⊓⊔

Another important corollary of Theorem 4.7 is the fact that,if the initial data
(y0,y1) belong toH1

0(0,1)×L2(0,1) and the Dirichlet datav lies in H1
0(0,T), any

sequence of discrete initial(y0
h,y

1
h) and Dirichlet datavh satisfying

∥

∥(y0
h,y

1
h)− (y0,y1)

∥

∥

L2×H−1 + ‖v− vh‖L2(0,T) ≤C0hθ , (4.113)

for some constantC0 uniform in h> 0 andθ > 0, yield solutionsyh of (4.7) such
thatyh(T) approximates at a ratehmin{2/3,θ} the statey(T), wherey is the continuous
trajectory corresponding to initial data(y0,y1) and source termv.

Proposition 4.8.Let (y0,y1) ∈ H1
0(0,1)× L2(0,1) and v∈ H1

0(0,T) and consider
sequences(y0

h,y
1
h) and vh satisfying(4.113).

Denote by yh (respectively y) the solution of(4.7) (resp.(4.1)) with initial data
(y0

h,y
1
h) (resp.(y0,y1)) and Dirichlet boundary data vh, (resp. v).

Then the following estimates hold:

‖(yh(T),∂tyh(T))− (y(T),∂ty(T))‖L2×H−1

≤Ch2/3
(

∥

∥(y0,y1)
∥

∥

H1
0×L2 + ‖v‖H1

0 (0,T)

)

+CC0hθ . (4.114)

Remark 4.4.In the convergence result (4.114), we keep explicitly the dependence in
the constantC0 coming into play in (4.113). In many situations, this constant can be
chosen proportional to

∥

∥(y0,y1)
∥

∥

H1
0×L2 +‖v‖H1

0 (0,T)
. In particular, in the control the-

oretical setting of Chapter 1 and its application to the waveequation in Section1.7,
this dependence onC0 is important to derive Assumption 1 and more specifically
estimate (1.29).

Proof. The proof follows the one of Proposition 3.7. The idea is to comparey with
ỹh, the solution of (4.7) constructed in Theorem 4.7 and then tocompare ˜yh andyh

by using Proposition 4.3 and Proposition 4.6. ⊓⊔

Remark 4.5.Note that under the assumptions of Proposition 4.8, the trajectoriesyh

converge toy in the spaceC([0,T];L2(0,1))∩C1([0,T];H−1(0,1)) with the rates
(4.54)–(4.56) in addition to the errorC0hθ .

Of course, Proposition 4.8 is based on the convergence result obtained in Theo-
rem 4.7. Similar results can be stated based on Theorem 4.8, for instance:

Proposition 4.9.Let ℓ0 ∈ {0,1,2}. Let (y0,y1) ∈ Hℓ0+1
(0) (0,1)×Hℓ0

(0)(0,1) and v∈
Hℓ0+1

0 (0,T) and consider sequences(y0
h,y

1
h) and vh satisfying(4.113).

Let(y0
h,y

1
h) as in(4.58)and yh the corresponding solution of(4.7)with Dirichlet

boundary conditions vh.
Denote by yh (respectively y) the solution of(4.7) (resp.(4.1)) with initial data

(y0
h,y

1
h) (resp.(y0,y1)) and Dirichlet boundary data vh (resp. v).
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Then the following estimates hold:

‖(yh(T),∂tyh(T))− (y(T),∂ty(T))‖L2×H−1

≤Ch2(ℓ0+1)/3
(

∥

∥(y0,y1)
∥

∥

H
ℓ0+1
(0) ×H

ℓ0
(0)

+ ‖v‖
H
ℓ0+1
0 (0,T)

)

+CC0hθ . (4.115)

Remark 4.6.Proposition 4.9 can then be slightly generalized forℓ0 ∈ [0,2] by inter-
polation.

4.6 Numerical results

In this section, we present numerical simulations and evidences of Proposition 4.9.
Since our main interest is in the non-homogeneous boundary condition, we focus
on the case(y0,y1) = (0,0) and(y0

h,y
1
h) = (0,0).

We fix T = 2. This choice is done for convenience to explicitly computethe
solution y of (4.1) with initial data(0,0) and source termv. Indeed, forT = 2,
multiplying the equation (4.1) byϕ solution of (3.2) with initial data(ϕ0,ϕ1) ∈
H1

0(0,1)×L2(0,1) and using the 2-periodicity of the solutions of the wave equation
(3.2), we obtain

∫ 1

0
y(2,x)ϕ1(x)dx−

∫ 1

0
∂ty(2,x)ϕ0(x)dx=

∫ 2

0
v(t)∂xϕ(t,1)dt.

Based on this formula, taking successively(ϕ0,ϕ1) = (wk,0) and(0,wk) and solv-
ing explicitly the equation (3.2) satisfied byϕ , we obtain

y(2) = ∑
k

(√
2(−1)k

∫ 2

0
v(t)sin(kπt)dt

)

wk,

∂ty(2) = ∑
k

(√
2(−1)k+1kπ

∫ 2

0
v(t)cos(kπt)dt

)

wk.

We will numerically compute the reference solutions using these formulae by re-
stricting the sums overk ∈ {1, · · · ,Nre f} for a large enoughNre f . We will choose
Nre f = 300 forN varying between 50 and 200.

We then compute numerically the solutionyh of (4.7) with initial data(y0
h,y

1
h) =

(0,0) and source termv(t).
Of course, we also discretize the equation (4.7) in time. We do it in an explicit

manner similarly as in (3.45). Ifyk
h denotes the approximation ofyh solution of (4.7)

at timek∆ t, we solve
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yk+1
h = 2yk

h− yk−1
h − (∆ t)2∆hyk

h−
(

∆ t
h

)2

Fk, Fk =











0
...
0

v(k∆ t)











.

The time discretization parameter∆ t is chosen such that the CFL condition is
∆ t/h = 0.3. With such low CFL condition, the effects of the time-discretization
can be neglected.

We run the tests for several choices ofv and forN ∈ {50, · · · ,200}:

v1(t) = sin(πt)3, t ∈ (0,2), v2(t) = sin(πt)2, t ∈ (0,2),

v3(t) = sin(πt), t ∈ (0,2), v4(t) = t, t ∈ (0,2),

v5(t) = t sin(πt), t ∈ (0,2).

In each case, we plot theL2-norm of the error on the displacement and theH−1-
norm of the error on the velocity vsN in logarithmic scales: Figure 4.2 corresponds
to the datav1. We then compute the slopes of the linear regression for theL2-error
on the displacement and for theH−1-error on the velocity. We put all these data in
Table 4.1.

4 4.2 4.4 4.6 4.8 5 5.2
−9

−8.5

−8

−7.5

−7

−6.5

−6

4 4.2 4.4 4.6 4.8 5 5.2
−8.5

−8

−7.5

−7

−6.5

−6

−5.5

Fig. 4.2 Plots of the errors versusN in logarithmic scales forv1. Left, the L2(0,1) error
‖yh(T)−y(T)‖L2 for T = 2: the slope of the linear regression is−1.96. Right, theH−1(0,1) error
‖∂tyh(T)−∂ty(T)‖H−1 for T = 2: the slope of the linear regression is−1.98.

Table 4.1 is composed of five columns. The first one is the data under consider-
ation. The second and third ones respectively are the computed slopes of the linear
regression of, respectively, theL2-error on the displacement and for theH−1-error
on the velocity. The fourth and fifth columns are the rates expected from the analysis
of the datav and Proposition 4.9:

• v1 ∈H3
0(0,2): we thus expect from (4.115) a convergence of the order ofh2. This

is indeed what is observed numerically.
• v2 is smooth but its boundary condition vanishes only up to order 1. Hence

v2 ∈ H5/2−ε
0 (0,2) for all ε > 0 due to the boundary conditions. Using Remark
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4.6, the expected slopes are−5/3−, which is not far from the slopes computed
numerically.

• the same discussion applies forv3, which belongs toH3/2−ε
0 (0,2) for all ε > 0.

Hence the expected slopes are−1−, which again are confirmed by the numerical
experiments.

• v4 almost belongs toH3/2−ε
0 (0,2) except for what concerns its non-zero value at

t = 2. But the value ofv is an impediment for the order of convergence only for
the displacement, see Theorem 4.8. We therefore expect a convergence of theL2-
norm of the error on the displacement like

√
h, whereas the convergence of the

H−1-norm of the error on the velocity is expected to go much faster, ash1− . The
numerical test indicates a good accuracy on the convergenceof theH−1-norm on
the velocity error. The convergence of theL2-norm of the displacement is slightly
better than expected.

• v5 is smooth and satisfiesv5(0) = ∂tv5(0) = 0 andv5(2) = 0 but ∂tv5(2) 6= 0.
According to Theorem 4.8, we thus expect that theL2-norm of the error on the

displacement behaves as whenv5 belongs toH5/2−
0 (0,1), i.e. ash5/3−. However,

theH−1-norm of the error on the velocity should behave likeh3/2 according to
(4.93). This is completely consistent with the slopes observed numerically.

Data ComputedL2 slope ComputedH−1 slope Exp.L2-slope Exp.H−1-slope
v1 −1.96 −1.98 −2 −2
v2 −1.87 −1.70 −5/3− −5/3−

v3 −0.99 −0.95 −1− −1−

v4 −0.97 −0.95 −1/2 −1−

v5 −1.82 −1.47 −5/3− −3/2

Table 4.1 Numerical investigation of the convergence rates. Columns2 and 3 give the slopes
observed numerically (respectively, for theL2 error on the displacement, for theH−1 error on
the velocity), whereas columns 4 and 5 provide the slopes (respectively, for theL2 error on the
displacement, for theH−1 error on the velocity) expected from our theoretical results.

In each case, the numerical results indicate good accuracy of the theoretical re-
sults derived in Theorem 4.8 and Proposition 4.9.





Chapter 5
Further comments and open problems

Discrete versus Continuous approaches

We have developed the time continuous and space discrete approaches for solving a
control problem (and a data assimilation one) and we have proved that:
• The continuous approach works well for a limited number of iterations. In other
words, the error between the continuous control and the approximated one decreases
for a number of iterations. But, if one goes too far in the iteration process, beyond
a threshold that theory predicts, the result can be completely misleading. Indeed,
one eventually converges to a discrete control that is far away from the continuous
one because of the high frequency spurious oscillations. Thus, getting precise esti-
mates on the threshold in the number of iterations is very important. But this is hard
to do in practical applications since this requires, in particular, explicit bounds on
the observability constants, something that is unknown in general and in particular
for problems with variable coefficients, multi-dimensional problems with complex
geometries, etc.

The main advantage of the continuous approach is that it can be applied by simply
combining the control theoretical results of the continuous model and the numeri-
cal convergence results for the initial-boundary value problem without any further
study of the control theoretical properties of the numerical approximation scheme.
• The discrete approach yields good results after a given number of iterations (very
close to the one of the continuous approach) and has the greatadvantage that the er-
ror keeps diminishing as the number of iterations increases. Thus there is no risk in
going beyond any threshold in the number of iterations. However, guaranteeing that
the discrete approach converges, contrarily to the continuous approach, requires the
study of the control theoretical properties of the discretesystems and, in particular,
the proof of a uniform observability result, uniformly withrespect to the mesh-size.
This requires a good understanding of the dynamics of the solutions of numerical
schemes and often careful filtering devices to eliminate thehigh frequency spurious
oscillations.
• The main advantage of the discrete approach is that one may consider faster min-
imization algorithms, like conjugate gradient methods or more sophisticated ones,

121
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which converge often much faster. This justifies why the thorough study of uniform
observability properties still is a major issue when numerically computing controls.

Comparison with Russell’s approach

The steepest descent algorithm applied in the continuous setting using the HUM
approach leads to the following sequence of solutions of theadjoint problem

ϕk =

(

k−1

∑
j=0

(I −ρΛT)
j

)

ρy0,

that, ask tends to infinity, approximates the solution of the adjoint system determin-
ing the exact control. Indeed, when lettingk→ ∞, we get

lim
k→∞

ϕk = (I − (I −ρΛT))
−1ρy0 = Λ−1

T y0.

Of course, this holds when the operator(I −ρΛT) is of norm strictly smaller than 1.
This is precisely implied by the assumption thatρ > 0 is small enough and the fact
thatΛT is positive definite, see (1.47).

On the other other hand, the approach developed in [9], inspired in Russell’s
iteration, that allows to get the control as a consequence ofthe stabilization property,
leads to (see also [25] in the context of data assimilation)

Ψ0 = ∑
k≥0

(LT)
ky0,

whereLT is an operator ofL(X) of norm strictly smaller than 1 andLT is computed
through the resolution of two wave equations (one forward and one backward) on
(0,T) (whereT ≥ T∗) with a damping term.

The numerical method proposed in [9] then follows the same strategy as our
so-called continuous approach:

• Study the convergence of the sequenceΨk
0 = ∑k

j=0(LT)
jy0, in the spacesX and

D(A). At this stage, the authors use thatBB∗ mapsD(A3/2) into D(A);
• ApproximateLT by some discrete operatorLTh based on the natural approxima-

tions of the wave equation;
• CompareΨk

0h = ∑k
j=0(LTh)

jy0h with Ψk
0 ;

• Optimize the choice ofk.

The method in [9] enters in the class of continuous methods. Note however that
the continuous approach we proposed, inspired in HUM ratherthat on Russell’s
principle, does not requireBB∗ to mapD(A3/2) into D(A).

In the continuous setting, the algorithm based on the time-reversal approach de-
rived in [29] when recovering a source term is very close to Russell’s approach:
indeed, it corresponds to computing iterates of an operatorof norm strictly smaller
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than one, and deduced from the resolution of two dissipativewave equations. In that
context, one easily understands that the approach in [25] enters the framework of
the continuous approach based on [29].

Uniform discrete observability estimates

The discrete approach relies in an essential manner upon theuniform observability
estimates (1.37) of the semi-discrete approximations of the continuous model, i.e.
Assumption 3, which, as we have said, is not an easy task to prove in practice.

In particular, to our knowledge, there are only few results which hold in general
geometric settings and for regular finite-elements method (not necessarily on uni-
form meshes), namely the ones in [12, 41]. However, these twoworks do not yield
estimates on the time under which uniform observability holds. This is due to their
strategy, based on resolvent estimates as a characterization of observability, see for
instance [40]. The scale of filtering employed in these worksto guarantee uniform
discrete observability estimates is very likely not optimal. Its improvement is an
interesting open problem.

Therefore, getting uniform observability estimates stillis a challenging issue
when considering general geometric setting guaranteeing the observability inequal-
ity (1.5) of the continuous model, in particular with respect to the time and the scale
of filtering required for guaranteeing uniform discrete observability estimates.

Optimal control theory

Optimal control problems and the design of feedback controlsystems are topics
that are closely related to the questions we have analyzed. Similarly to the numer-
ical algorithms for exact control problem we studied here, we could also address
the problem of numerically computing feedback control operators. As one could
expect, getting discrete optimal feedback controls which converge to the continuous
one usually requires the so-called uniform stabilizability property, see [30, 34, 19],
ensuring that the exponential decay rate of the energy of thesolutions, both contin-
uous and discrete, is bounded from below uniformly with respect to the mesh-size
parameter. This issue is very closely related to the uniformdiscrete observability
estimates (1.37). In [16], following the approach of [26], we explained how discrete
observability inequalities can be transferred into uniform stabilizability results for
the corresponding damped equations by the addition of a suitable numerical viscos-
ity. This should provide convergent approximations of optimal feedback operators,
as it has been done in [44].

However, to our knowledge, getting explicit rates on the convergence of these
feedback controllers is an open problem.
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Fully discrete approximations

Our approach is very general and can also be applied to fully discrete systems under
very similar assumptions. For instance, one can formulate the analogs of Assump-
tions 1 and 2 that take into account the required convergenceproperties of the fully
discrete numerical approximation scheme, whereas Assumption 3 consists of a uni-
form (with respect to the space-time mesh size parameters) observability result for
the fully discrete systems.

Note that, according to the results in [14], the corresponding fully discrete ver-
sion of Assumption 3, which reads as uniform observability estimates for the fully-
discrete system, can be deduced as a consequence of the time-continuous (and space
discrete) analogs.
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temps.Port. Math., 46(3):245–258, 1989.
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