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BLOWUP FOR A TIME-OSCILLATING
NONLINEAR HEAT EQUATION

TH. CAZENAVE, M. ESCOBEDO and E. ZUAZUA

Abstract. In this paper, we study a nonlinear heat equation with a periodic time-

oscillating term in factor of the nonlinearity. In particular, we give examples show-
ing how the behavior of the solution can drastically change according to both the

frequency of the oscillating factor and the size of the initial value.

1. Introduction

Let Ω be a smooth, bounded domain of RN and fix α > 0. Let τ > 0 and let
θ ∈ C(R,R) be a τ -periodic function. Given ω ∈ R and φ ∈ C0(Ω) (the space
of continuous functions on Ω that vanish on ∂Ω), we consider the nonlinear heat
equation 

ut = ∆u+ θ(ωt)|u|αu,
u|∂Ω = 0,
u(0, ·) = φ(·),

(1.1)

and the (formally) limiting equation
Ut = ∆U +A(θ)|U |αU,
U|∂Ω = 0,
U(0, ·) = φ(·),

(1.2)

where

A(θ) =
1
τ

∫ τ

0

θ(s) ds,(1.3)

i.e., A(θ) is the average of θ.
In Ref. [3, 9], the authors study a similar problem, but for Schrödinger’s equa-

tion on RN instead of the heat equation on Ω. Under appropriate assumptions,
the solution of the time-oscillating Schrödinger equation converges as |ω| → ∞
to the solution of the limiting Schrödinger equation with the same initial value.
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Moreover, if the solution of the limiting equation is global and decays (in an ap-
propriate sense) as t → ∞, then the solution of the time-oscillating equation is
also global for |ω| large. It is natural to expect that if the solution of the limiting
equation blows up in finite time, then so does the solution of the time-oscillating
equation for |ω| large, but this question seems to be open. (See [3, Question 1.7].)

We note that the proofs in [3, 9] are based on Strichartz estimates for the
Schrödinger group. Since the heat equation satisfies the same Strichartz estimates
as Schrödinger’s equation, results similar to the results in [3, 9] hold for the
equation (1.1). However, the heat equation enjoys specific properties, such as the
maximum principle, so that much more can be said. This is our main motivation
for studying the equation (1.1).

It is not difficult to prove by standard contraction arguments that the initial
value problem (1.1) is locally well-posed in C0(Ω). (Apply Proposition 2.1 below
with f(t) ≡ θ(ωt).) As |ω| → ∞, the solution u of (1.1) converges in an appropriate
sense to the solution U of the limiting equation (1.2), as shows the following result.

Proposition 1.1. Let τ > 0 and let θ ∈ C(R,R) be τ -periodic. Given
φ ∈ C0(Ω), let U be the corresponding solution of (1.2), defined on the maximal
existence interval [0, Tmax). For every ω ∈ R, let uω be the (maximal) solution
of (1.1). If 0 < T < Tmax, then uω exists on [0, T ] provided |ω| is sufficiently large.
Moreover, ‖uω − U‖L∞((0,T )×Ω) → 0 as |ω| → ∞.

Note that 0 is an exponentially stable stationary solution of (1.2). (See Re-
mark 2.3 (i) below.) It follows in particular that any global solution of (1.2) either
converges exponentially to 0 as t → ∞ or else is bounded away from 0. If the
limiting solution as given by Proposition 1.1 is global and exponentially decaying,
then the solution of (1.1) is global (and exponentially decaying) for all large |ω|,
as the next result shows. (Note that this property is classical in the framework of
ordinary equations, see e.g. [14, 15].)

Proposition 1.2. Let τ > 0 and let θ ∈ C(R,R) be τ -periodic. Let φ ∈ C0(Ω)
and suppose the corresponding solution U of (1.2) is global and U(t) → 0 as
t → ∞. For every ω ∈ R, let uω be the (maximal) solution of (1.1). It follows
that uω is global provided |ω| is sufficiently large. Moreover, there exist constants
C, λ > 0 such that ‖uω(t)‖L∞+‖U(t)‖L∞ ≤ C e−λt for all t ≥ 0 and all sufficiently
large |ω|. In particular, ‖uω − U‖L∞((0,∞)×Ω) → 0 as |ω| → ∞.

Let A(θ) be defined by (1.3). If A(θ) ≤ 0, then all solutions of (1.2) are global
and exponentially decaying, so that, by Proposition 1.2, all solutions of (1.1) are
global (and exponentially decaying) for large |ω|.

If A(θ) > 0, then the set of initial values φ for which the solution of (1.2) is
global and converges to 0 is an open neighborhood of 0. For such φ, the solution
of (1.1) is also global (and exponentially decaying) for large |ω|.

On the other hand (still assuming A(θ) > 0), there exist initial values φ for
which the solution of (1.2) blows up in finite time. For such φ, we may wonder if
the solution of (1.1) also blows up in finite time for large |ω|. In this regard, it is
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instructive to consider the ODE associated with the heat equation (1.1), i.e.,

v′ + av = θ(ωt)|v|αv,(1.4)

where a > 0 and the limiting ODE

V ′ + aV = A(θ)|V |αV.(1.5)

The solutions v of (1.4) and V of (1.5) with the initial conditions v(0) = V (0) =
x > 0 are given by

v(t) = e−at(x−α − h(t, ω))−
1
α ,(1.6)

where

h(t, ω) = α

∫ t

0

e−aαs θ(ωs) ds,(1.7)

and

V (t) = e−at(x−α − a−1A(θ)[1− e−aαt])−
1
α .(1.8)

The solution V blows up in finite time if and only if x−α < a−1A(θ). For such
x, there exists T1 > 0 such that x−α < a−1A(θ)[1 − e−aαT1 ]. Since h(T1, ω) →
a−1A(θ)[1− e−aαT1 ] as |ω| → ∞, it follows that x−α < h(T1, ω) for |ω| large; and
so by formula (1.6), v blows up in a finite time T2 < T1. Thus we see that if the
solution of the limiting equation (1.5) blows up in finite time, then so does the
solution of (1.4) if |ω| is sufficiently large.

The above calculations can be adapted to a nonlinear heat equation with a
nonlocal nonlinearity. More precisely, consider the nonlinear heat equation

ut = ∆u+ θ(ωt)‖u‖αL2u,

u|∂Ω = 0,
u(0, ·) = φ(·),

(1.9)

and the (formally) limiting equation
Ut = ∆U +A(θ)‖U‖αL2U,

U|∂Ω = 0,
U(0, ·) = φ(·).

(1.10)

It is easy to show that both problems are locally well posed in L2(Ω), and that
analogues of Propositions 1.1 and 1.2 hold. Moreover, we have the following result.

Theorem 1.3. Let τ > 0 and let θ ∈ C(R,R) be τ -periodic. Given φ ∈
H2(Ω) ∩ H1

0 (Ω), let U be the corresponding solution of (1.10) and, for every
ω ∈ R, let uω be the (maximal) solution of (1.9). If U blows up in finite time,
then uω blows up in finite time provided |ω| is sufficiently large.

Our proof of Theorem 1.3 makes use of the very particular structure of the
equations (1.9) and (1.10). It is based on an abstract result (see Section A),
relying on an explicit calculation of the solution.

We are not aware of any result similar to Theorem 1.3 for the heat equa-
tion (1.1), so we emphasize the following open problem.
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Open problem 1.4. Let τ > 0, let θ ∈ C(R,R) be τ -periodic and let A(θ)
be defined by (1.3). Assume A(θ) > 0 and let φ ∈ C0(Ω) be such that the
corresponding solution of (1.2) blows up in finite time. Does the solution of (1.1)
blow up in finite time if |ω| is sufficiently large?

Note that the answer to the open problem 1.4 might depend on whether or not
the exponent α is Sobolev subcritical (i.e. α < 4/(N − 2) if N ≥ 3). Indeed,
if α is subcritical, then the set of initial values producing blowup in the limiting
problem (1.2) is an open subset of C0(Ω). (This follows easily from [16].)) On the
other hand, if α is supercritical, then the set of initial values producing blowup in
the limiting problem (1.2) is not an open subset of C0(Ω) (see [5, Theorem B]).
In other words, blowup is stable with respect to small perturbations of the initial
value if α is subcritical, but not if α is supercritical. It is possible that a similar
phenomenon occurs for the stability of blowup with respect to perturbations of
the equation.

The difficulty in proving a general blowup result for (1.1) (when θ is not con-
stant) comes from the fact that the standard techniques that are used for the
autonomous equation (1.2) seem to fail. Levine’s energy method [13] (see also
Ball [1, Theorem 3.2] for a slightly different argument) uses the decay of the en-
ergy associated with (1.2). There is an energy identity for (1.1), but it contains
the time derivative of the function θ(ωt), which is difficult to control (especially
when |ω| → ∞). On the other hand, Kaplan’s argument [12, Theorem 8] (see
also [10, Theorem 2.6]) and Weissler’s argument [19, Theorem 1] only apply to
positive solutions and when θ(ωt) ≥ 0 on the time interval on which the argument
is performed. Therefore, Kaplan’s argument can be applied to prove blowup for
positive initial values when θ(0) > 0 and |ω| is small; or when θ is bounded from
below and the initial value is sufficiently large, in which case blowup occurs for all
ω. However, it does not seem to be applicable on a time interval where θ takes
negative values. Thus we mention the following open problem.

Open problem 1.5. Let τ > 0, let θ ∈ C(R,R) be τ -periodic and let A(θ) be
defined by (1.3). Suppose A(θ) > 0 and θ(0) < 0. Does there exist φ and ω for
which the solution of (1.1) blows up in finite time?

Note that the problems 1.4 and 1.5 seem to be open even in the apparently
simple situation when N = 1, Ω = (−1, 1) and φ is positive and even.

Of course, a positive answer to the problem 1.4 would yield a positive answer
to the problem 1.5. We are not aware of any general result of the type suggested
in Open Problem 1.5. However, it is easy to construct an initial value φ and a
function θ as in Problem 1.5 such that the solution of (1.1) with ω = 1 blows up
in finite time after picking up negative values of θ. (See Remark 2.7 below.) On
the other hand, it is also easy to construct a function θ as in Problem 1.5 such
that for all φ ∈ C0(Ω), the solution of (1.1) with ω = 1 is global. (See Remark 2.8
below.)

In the following result, we describe an interesting situation where, for a given,
nonnegative function θ, the behavior of the solution of (1.1) changes drastically
according to both the frequency ω and the size of the initial value.
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Theorem 1.6. There exist τ > 0, a τ -periodic, positive θ ∈ C∞(R), a positive
ψ ∈ C0(Ω) and 0 < k0 < k1 < k2 < k3 < ∞ with the following properties. Let
k > 0, φ = kψ and, given ω > 0, let uk,ω be the solution of (1.1).

(i) If 0 ≤ k ≤ k0, then uk,ω is global (and exponentially decaying) for all ω > 0.
(ii) If k = k1, then uk,ω blows up in finite time if 0 < ω ≤ 1 and is global (and

exponentially decaying) if ω is large.
(iii) If k = k2, then uk,ω blows up in finite time if 0 < ω ≤ 1 and if ω is large,

and it is global (and exponentially decaying) for some ω0 > 1.
(iv) If k ≥ k3, then uk,ω blows up in finite time for all ω > 0.

The solution uk,ω of Theorem 1.6 is global (and exponentially decaying) if k is
small (k ≤ k0) and blows up in finite time if k is large (k ≥ k3). This is certainly
not surprising. The interesting features of Theorem 1.6 appear for intermediate
values of k, for which the behavior of uk,ω (blowup or global) changes in terms
of ω. As k increases from k0, uk,ω blows up for small values of ω ≥ 0 while it
remains global for larger values of ω. As one keeps increasing k (below k3), we see
that uk,ω blows up for both small and large values of ω, while it remains global
for intermediate values of ω. (See Figure 1.)

We prove Theorem 1.6 by constructing an appropriate function θ. If θ is
bounded from below and above by positive constants, the existence of k0 and
k3 is straightforward. Furthermore, if θ(t) ≡ 1 for t in a neighborhood of 0 and
A(θ) < 1, then it is not difficult to prove the existence of k1. The existence of
k2 is more involved. Showing that for some k2 ∈ (k1, k3) the solution uk2,ω blows
up for both small and large ω is easy, but the fact that uk2,ω is global for an
intermediate value ω0 relies on a delicate balance in the various parameters in-
troduced in the construction of θ. The idea is to make θ small on a long interval
(a, b). The parameters are adjusted in such a way that uk2,ω0 exists on [0, a/ω0].
On [a/ω0, b/ω0], θ(ω0t) is very small, so the equation (1.1) is close to the linear
heat equation. Therefore, uk2,ω0 decays exponentially on [a/ω0, b/ω0]. Thus if b is
sufficiently large uk2,ω0(b/ω0) will be so small as to ensure global existence.
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Figure 1. The ω, k picture of Theorem 1.6.



130 TH. CAZENAVE, M. ESCOBEDO and E. ZUAZUA

In the following result, we describe a situation in which the behavior of uk,ω
for intermediate values of k is in some sense opposite to the behavior described in
Theorem 1.6.

Theorem 1.7. There exist τ > 0, a τ -periodic, positive θ ∈ C∞(R), a positive
ψ ∈ C0(Ω) and 0 < k0 < k1 < k2 < k3 < ∞ with the following properties. Let
k > 0, φ = kψ and, given ω > 0, let uk,ω be the solution of (1.1).

(i) If 0 ≤ k ≤ k0, then uk,ω is global (and exponentially decaying) for all ω > 0.
(ii) If k = k1, then uk,ω is global (and exponentially decaying) if ω is small and

if ω is large, and it blows up in finite time for ω = 1.
(iii) If k = k2, then uk,ω is global (and exponentially decaying) if ω is small, and

it blows up in finite time if ω is large.
(iv) If k ≥ k3, then uk,ω blows up in finite time for all ω > 0.

The solution uk,ω of Theorem 1.7 is global (and exponentially decaying) if k is
small (k ≤ k0) and blows up in finite time if k is large (k ≥ k3). As k increases
from k0, uk,ω blows up for intermediate values of ω > 0 while it remains global
for both small and large values of ω. As one keeps increasing k (below k3), we see
that uk,ω blows up for small values of ω, while it remains global for large values of
ω. (See Figure 2.) In fact, while the behavior of uk,ω for intermediate values of k
is very different in Theorems 1.6 and 1.7, the function θ which we use in the proof
of Theorem 1.7 is simply deduced by reflection and translation from the function
θ of the proof of of Theorem 1.6.
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Figure 2. The ω, k picture of Theorem 1.7.

We note that equations of the form (1.1) were studied by Esteban [7, 8], Quit-
tner [17] and Húska [11], where positive, time-periodic solutions are constructed
under certain assumptions. More precisely, let θ be as above and suppose further
that θ ∈ W 1,∞(R) and min θ > 0. If α < 2/(N − 2), or if α < 4/(N − 2) and |ω|
is sufficiently small, then there exists a positive, τ/ω-periodic solution of (1.1).

The rest of this paper is organized as follows. In Section 2, we recall some
properties of the initial value problem (1.1). Section 3 is devoted to the proofs of



BLOWUP FOR A TIME-OSCILLATING NONLINEAR HEAT EQUATION 131

the convergence results (Propositions 1.1 and 1.2), while Theorems 1.6, 1.7 and 1.3
are proved in Sections 4, 5, and 6 respectively. The last section of the paper is an
appendix devoted to an abstract result which we use in the proof ot Theorem 1.3.

Notation

We denote by λ1 > 0 the first eigenvalue of −∆ in L2(Ω) with Dirichlet boundary
condition and we let ϕ1 be the eigenvector of −∆ corresponding to the first eigen-
value λ1 and normalized by the condition maxϕ1 = 1. We denote by (et∆)t≥0 the
heat semigroup in Ω with Dirichlet boundary condition, so that et∆ ϕ1 = e−λ1t ϕ1.

2. Local properties

We recall below some properties concerning local well-posedness for the equa-
tions (1.1) and (1.2). Although these are well-known results, we state them ex-
plicitly because we use the precise values of some of the constants. For further
reference, we consider the slightly more general problem

vt = ∆v + f(t)|v|αv,
v|∂Ω = 0,
v(0, ·) = v0(·),

(2.1)

where f ∈ L∞(0,∞), which we study in the equivalent form

v(t) = et∆ v0 +
∫ t

0

f(s) e(t−s)∆ |v|αv(s) ds.(2.2)

Recall that

‖ et∆ w‖L∞ ≤ t−
N
2p ‖w‖Lp ,(2.3)

for all t > 0 and 1 ≤ p ≤ ∞, and that there exists a constant CΩ ≥ 1 such that

‖ et∆ w‖L∞ ≤ CΩ e−λ1t ‖w‖L∞ ,(2.4)

for all t ≥ 0. (See e.g. [2, Corollary 3.5.10] or [18, Proposition 48.5].) It follows
from (2.3) and (2.4) that, with CΩ ≥ 1 possibly larger,

‖ et∆ w‖L∞ ≤ CΩt
− N

2p e−
λ1
2 t ‖w‖Lp ,(2.5)

for all t > 0 and 1 ≤ p ≤ ∞.
The following result is a consequence of a standard contraction argument.

Proposition 2.1. Let CΩ be given by (2.4). There exists δ > 0 such that if
f ∈ L∞(0,∞), v0 ∈ C0(Ω) and 0 < T ≤ ∞ satisfy

(1− e−αλ1T )‖f‖L∞(0,T )‖v0‖αL∞(Ω) ≤ δ,(2.6)

then there exists a unique solution v ∈ C([0, T ), C0(Ω)) of (2.2). Moreover,

‖v(t)‖L∞ ≤ 2CΩ e−λ1t ‖v0‖L∞ ,(2.7)
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for all 0 ≤ t < T . In addition, if v0, w0 both satisfy (2.6) and v, w are the
corresponding solutions of (2.1), then

‖v(t)− w(t)‖L∞ ≤ 2CΩ e−λ1t ‖v0 − w0‖L∞ ,(2.8)

for all 0 ≤ t < T . Moreover, the solution v can be extended to a maximal existence
interval [0, Tmax), and if Tmax <∞ then ‖v(t)‖L∞ →∞ as t ↑ Tmax.

Proof. Existence follows by applying Banach’s fixed point theorem to the map
v 7→ Φv0(v), where

Φv0(v)(t) = et∆ v0 +
∫ t

0

f(s) e(t−s)∆ |v|αv(s) ds,

in the ball of radius 2CΩ‖v0‖L∞ of the Banach space

XT =

{
C([0, T ], C0(Ω)) if T <∞,
{v ∈ C([0,∞), C0(Ω)); supt≥0 eλ1t ‖v(t)‖L∞ <∞} if T =∞,

equipped with the norm ‖v‖XT = ‖ eλ1· v‖L∞((0,T ),L∞). Indeed, using (2.4) and
setting

δ =
αλ1

(α+ 1)2α+1Cα+1
Ω

,

one obtains by straightforward calculations that ‖Φv0(v)‖XT ≤ 2CΩ‖v0‖L∞ and

‖Φv0(v)− Φv0(w)‖XT ≤
1
2
‖v − w‖XT(2.9)

provided (2.6) holds. This proves the existence statement. Uniqueness easily fol-
lows from Gronwall’s inequality, while the continuous dependence statement (2.8)
follows from (2.9). Finally, by uniqueness, one can extend the solution to a max-
imal interval [0, Tmax) by the standard procedure. The fact that ‖v(t)‖L∞ blows
up at Tmax if Tmax < ∞ follows from the local existence property applied to an
appropriate translation of f . �

Remark 2.2. It follows from the smoothing properties of the heat semigroup
that the solution v of (2.1) given by Proposition 2.1 is smooth at positive times,
as much as the regularity of f and that of the map v 7→ |v|αv allow. In any case,
v ∈ C((0, Tmax), C2(Ω)) and vt ∈ L∞((0, Tmax), C0(Ω)).

Remark 2.3. Here are some immediate consequences of Proposition 2.1.

(i) Letting T =∞ in (2.6), we see that if ‖f‖L∞(0,∞)‖v0‖αL∞(Ω) ≤ δ , then (2.2)
has a global solution v ∈ C([0,∞), C0(Ω)) which satisfies (2.7) for all t ≥ 0.

(ii) Since 1− e−r ≤ r, we deduce from (2.6) that if αλ1T‖f‖L∞(0,T )‖v0‖αL∞(Ω) ≤
δ, then there exists a solution v ∈ C([0, T ), C0(Ω)) of (2.2) which satis-
fies (2.7) for all 0 ≤ t < T .

Here is a result based on Kaplan’s argument [12].
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Lemma 2.4. Let f ∈ L∞(0,∞), f ≥ 0 and let v ∈ C([0, Tmax), C0(Ω)) be the
maximal solution of (2.2) with v0 ≥ 0, v0 6≡ 0. If

α

∫ 1

0

f(s) ds > eαλ1 ‖ϕ1‖αL1

(∫
Ω

v0ϕ1

)−α
,(2.10)

then Tmax < 1.

Proof. Note that, by the strong maximum principle, v(t) > 0 for all 0 < t <
Tmax. Next, multiplying the equation (2.1) by ϕ1 and integrating by parts, we
obtain

d

dt

∫
Ω

v(t)ϕ1 + λ1

∫
Ω

v(t)ϕ1 = f(t)
∫

Ω

vα+1ϕ1 ≥ f(t)‖ϕ1‖−αL1

(∫
Ω

vϕ1

)α+1

,

where we used Hölder in the last inequality. Setting

h(t) = eλ1t

∫
Ω

v(t)ϕ1,

we deduce that h′(t) ≥ e−αλ1t f(t)‖ϕ1‖−αL1 h(t)α+1, so that

h(s)−α ≥ α‖ϕ1‖−αL1

∫ t

s

e−αλ1σ f(σ) dσ,

for all 0 < s < t < Tmax. Letting s ↓ 0 and t ↑ Tmax, we conclude that

(h(0))−α ≥ α‖ϕ1‖−αL1

∫ Tmax

0

e−αλ1σ f(σ) dσ.

In particular, if

(h(0))−α < α‖ϕ1‖−αL1

∫ 1

0

e−αλ1σ f(σ) dσ,

then necessarily Tmax < 1. Since e−αλ1σ > e−αλ1 for σ < 1, the result follows. �

Remark 2.5. Set

K = eλ1
‖ϕ1‖L1

‖ϕ1‖2L2

≥ eλ1 > 1.(2.11)

(Note that ‖ϕ1‖L∞ = 1, so that ‖ϕ1‖2L2 ≤ ‖ϕ1‖L1 by Hölder.) If v0 = kϕ1 with
k > 0 and

α

∫ 1

0

f(s) ds > Kαk−α,(2.12)

then it follows from Lemma 2.4 that Tmax < 1.

Remark 2.6. Set η = α−1Kα, where K is defined by (2.11). It follows from
Remark 2.5 that if f(t) ≡ 1 and if v0 = kϕ1 with kα > η , then Tmax < 1.
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Remark 2.7. We claim that there exist an initial value φ and a function θ as
in Problem 1.5 such that the solution of (1.1) with ω = 1 blows up in finite time
after picking up negative values of θ. To see this, let ξ ∈ C∞c (Ω), ξ ≥ 0, ξ 6≡ 0 and
let ζ be the solution of {

−∆ζ = ξ in Ω,
ζ = 0 on ∂Ω.

It follows from the strong maximum principle that ζ ≥ aϕ1 for some a > 0.
Moreover, since ξ has compact support we see that ζα+1 ≥ νξ for some ν > 0. We
now let φ = Aζ with

A ≥ max
{
ν−

1
α , 2a−1α−

1
αK
}
,(2.13)

where K is defined by (2.11), and we let u be the corresponding solution of (2.2)
with f(t) ≡ 1 defined on the maximal interval [0, Tmax). Note that

∆φ+ |φ|αφ = A(−ξ +Aαζα+1) ≥ A(−ξ +Aανξ) ≥ 0,

by the first inequality in (2.13). It follows in particular that ut ≥ 0 on (0, Tmax)×Ω.
Next, we deduce from the second inequality in (2.13) that

α > eαλ1 ‖ϕ1‖αL1

(∫
Ω

φϕ1

)−α
,(2.14)

so that Tmax < 1 by Lemma 2.4. We fix 0 < T < Tmax. Since u(T ) ≥ φ, we deduce
from (2.14) that

α > eαλ1 ‖ϕ1‖αL1

(∫
Ω

u(T )ϕ1

)−α
.(2.15)

We now consider a function f ∈ C(R) such that f(t) = 1 for T ≤ t ≤ T + 1
and we let v be the corresponding solution of (2.2) with the initial value φ. It
follows from a standard argument that for every ε > 0 there exists δ > 0 such
that if ‖f − 1‖L1(0,T ) ≤ δ then v is defined on [0, T ] and ‖u(T )− v(T )‖L∞ ≤ ε. In
particular, if δ > 0 is sufficiently small and ‖f − 1‖L1(0,T ) ≤ δ then v is defined on
[0, T ] and, by (2.15),

α > eαλ1 ‖ϕ1‖αL1

(∫
Ω

v(T )ϕ1

)−α
.(2.16)

Since f(t) = 1 for T ≤ t ≤ T+1, it follows in particular from (2.16) and Lemma 2.4
(applied with f(t) ≡ 1) that v blows up before the time T + 1. Note that, once
φ is fixed, the only restriction is that ‖f − 1‖L1(0,T ) is small. This allows f to be
negative at t = 0 (and even to be highly oscillatory on the interval (0, T )). The
claim now follows by choosing τ > T + 1 and a τ -periodic function θ ∈ C(R) such
that θ(t) = f(t) for 0 ≤ t ≤ T + 1 and A(θ) > 0.

Remark 2.8. We claim that there exists a function θ as in Problem 1.5 such
that the solution of (1.1) with ω = 1 is global for all φ ∈ C0(Ω). Indeed, let
δ > 0 be as in Proposition 2.1 and set T = 1/(αδ). Fix τ > 2T and a τ -periodic
function θ ∈ C(R) such that θ(t) = −1 for 0 ≤ t ≤ T , ‖θ‖L∞ ≤ 1 and A(θ) > 0.
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Given any φ ∈ C0(Ω), let u be the corresponding solution of (1.1) with ω = 1. It
follows easily by comparison with the solution (αt)−

1
α of the ODE u′ = −|u|αu

that u exists up to the time T and that ‖u(T )‖L∞ ≤ (αT )−
1
α = δ−

1
α . Applying

Remark 2.3 (i) with f(t) ≡ θ(t+ 1), we conclude that u is global.

3. Proofs of Propositions 1.1 and 1.2

Proposition 1.1 could be proved (with convergence in Lp, p < ∞, rather than in
L∞) by the “periodic unfolding method”, see [6]. We give here a direct proof
which relies on the following elementary lemma.

Lemma 3.1. Given 0 < T <∞ and h ∈ L∞((0, T )× Ω), it follows that∫ t

0

θ(ω(s+ t0)) e(t−s)∆ h(s) ds −→
|ω|→∞

A(θ)
∫ t

0

e(t−s)∆ h(s) ds,(3.1)

in L∞((0, T )× Ω), uniformly in t0 ∈ R.

Proof. Set

ψ(t) = θ(t)−A(θ), Ψ(t) =
∫ t

0

ψ(s) ds,

so that Ψ is τ -periodic, hence bounded. It follows from (2.5) that∥∥∥∫ t

0

ψ(ω(s+ t0)) e(t−s)∆ h(s) ds
∥∥∥
L∞
≤ C

∫ t

0

e−
λ1
2 (t−s)(t− s)−

N
2(N+1) ‖h(s)‖LN+1

≤ C
(∫ t

0

e−
λ1(N+1)

2N s s−
1
2

) N
N+1 ‖h‖LN+1((0,T )×Ω)

≤ C‖h‖LN+1((0,T )×Ω),

for every 0 ≤ t ≤ T . Therefore, by density, we need only prove (3.1) for h ∈
C∞c ((0, T ) × Ω). Since ψ(ω(s + t0)) = 1

ω
d
dsΨ(ω(s + t0)), an integration by parts

yields∫ t

0

ψ(ω(s+ t0)) e(t−s)∆ h(s) ds =
1
ω

Ψ(ω(t+ t0))h(t)

− 1
ω

∫ t

0

Ψ(ω(s+ t0)) e(t−s)∆[ht(s)−∆h(s)] ds.

Thus, by (2.4),

(3.2)
∥∥∥∫ t

0

ψ(ω(s+ t0)) e(t−s)∆ h(s) ds
∥∥∥
L∞

≤ C

|ω|
‖Ψ‖L∞ [‖h‖L∞((0,∞)×Ω) + ‖ht −∆h‖L∞((0,∞)×Ω)] −→

|ω|→∞
0,

uniformly in t ∈ [0, T ] and t0 ∈ R. This completes the proof. �
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Proof of Proposition 1.1. Fix 0 < T < Tmax and set

M = 2CΩ sup
0≤t≤T

‖U(t)‖L∞ ,

where CΩ ≥ 1 is given by (2.4). In particular, ‖φ‖L∞ ≤ M/2, so we may define
Tω > 0, for every ω ∈ R, by

Tω = min{T, sup{t > 0; uω exists on (0, t) and ‖uω‖L∞((0,t)×Ω) ≤M}}.
For 0 ≤ t < Tω, we have

U(t)− uω(t) =
∫ t

0

θ(ωs) e(t−s)∆[|U |αU − |uω|αuω] ds

+
∫ t

0

[A(θ)− θ(ωs)] e(t−s)∆ |U |αU ds def= aω(t) + bω(t).
(3.3)

It follows from Lemma 3.1 that

‖bω‖L∞((0,T )×Ω) −→
|ω|→∞

0.(3.4)

Moreover,

‖aω(t)‖L∞ ≤ 2(α+ 1)‖θ‖L∞Mα

∫ t

0

‖U(s)− uω(s)‖L∞ ds,

so we deduce from (3.3) and Gronwall’s inequality that

‖U − uω‖L∞((0,Tω)×Ω) ≤ ‖bω‖L∞((0,T )×Ω) e2(α+1)‖θ‖L∞MαT .(3.5)

Applying (3.5) and (3.4), we may now assume that |ω| is sufficiently large so
that ‖U − uω‖L∞((0,Tω)×Ω) ≤ M/4. Since ‖U‖L∞((0,Tω)×Ω) ≤ M/2 by definition
of M , we conclude that ‖uω‖L∞((0,Tω)×Ω) ≤ 3M/4 < M . Thus we see that
Tω = T . This proves the first statement of Proposition 1.1. Moreover, we may now
apply (3.5) with Tω replaced by T and the second statement of Proposition 1.1
follows from (3.4). �

Proof of Proposition 1.2. Let δ > 0 be given by Proposition 2.1 and fix S large
enough so that

‖θ‖L∞(R)‖U(S)‖αL∞(Ω) ≤
δ

2
.(3.6)

Applying Proposition 2.1 with f(t) ≡ A(θ), T = ∞ and v0 = U(S), we deduce
that

‖U(t)‖L∞ ≤ 2CΩ‖U(S)‖L∞ e−λ1(t−S),(3.7)

for all t ≥ S. Moreover, it follows from Proposition 1.1 that if |ω| is sufficiently
large, then uω exists on [0, S] and

‖U(S)− uω(S)‖L∞ −→
|ω|→∞

0.(3.8)

Applying (3.8) and (3.6), we conclude that

‖θ‖L∞(R)‖uω(S)‖αL∞(Ω) ≤ δ,
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if |ω| is sufficiently large. We may now apply Proposition 2.1 with f(t) ≡ θ(ω(S+
t)), T = ∞ and v0 = uω(S), and we deduce that uω is globally defined and
‖uω(S + t)‖L∞ ≤ C e−λ1t for all t ≥ 0, where C is independent of ω. This
proves the first and second statements of Proposition 1.2 (with λ = λ1). The last
statement follows from Proposition 1.1. �

4. Proof of Theorem 1.6

Let CΩ be given by (2.4), let the constants δ,K and η be as defined in Proposi-
tion 2.1 and Remarks 2.5 and 2.6, respectively. Set

k0 = δ
1
α ,(4.1)

k1 = e2λ1 η
1
α ,(4.2)

k2 = K
(

1 +
4
αδ

) 1
α

k1,(4.3)

c =
δ

2kα1
,(4.4)

` = 2 +
2αkα2
δ

log
4C2

Ωk2

δ
1
α

,(4.5)

τ = max
{

2(`+ 2),
8
c

}
.(4.6)

Fix

0 < ε ≤ min
{ c

2
,

1
(`− 2)(2CΩ)α

,
δ

kα2

}
,(4.7)

and set

k3 = 2K(αε)−
1
α .(4.8)

Note that (4.3) and (4.4) imply that

c

2
=
δKα

4kα2

(
1 +

4
αδ

)
>

Kα

αkα2
.(4.9)

Note also that by Remark 2.3 (i) (applied with f(t) ≡ 1) and Remark 2.6, η ≥ δ.
Therefore, and since K > 1 by (2.11), we deduce from (4.3) and (4.2) that k2 >

k1 > δ
1
α . Since CΩ ≥ 1, it follows from (4.5) that

` > 2.(4.10)

Let Φ ∈ C∞(R) be τ -periodic and satisfy ε ≤ Φ ≤ 1 and

Φ(t) =


1 0 ≤ t ≤ 1
ε 2 ≤ t ≤ `
c `+ 1 ≤ t ≤ τ − 1.

(4.11)

(See Figure 3.) Note that this makes sense by (4.10) and (4.6). Note also that

‖Φ‖L∞(R) = 1.(4.12)
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6

-

1

c
ε

1 2 ` `+ 1 τ − 1 τ

Figure 3. The function θ = Φ of Theorem 1.6.

Furthermore,

A(Φ) ≤ 1
τ

[4 + c(τ − `− 2) + ε(`− 2)] ≤ 1
τ

[4 + cτ + ετ ] = c+ ε+
4
τ
.

Since ε ≤ c/2 by (4.7) and 4/τ ≤ c/2 by (4.6), we deduce that A(Φ) ≤ 2c.
Applying (4.4), we conclude that

A(Φ)kα1 ≤ δ.(4.13)

Next, we observe that

A(Φ) ≥ cτ − `− 2
τ

≥ c

2
,

where we used (4.6) in the last inequality. Applying (4.9), we deduce that

A(Φ) >
Kα

αkα2
.(4.14)

We let

θ = Φ,

and, given k > 0 and ω ∈ R, we consider the solution uk,ω of (1.1) with φ = kϕ1.
We proceed in several steps.

Step 1. Since k0 is defined by (4.1), it follows from (4.12) and Remark 2.3 (i)
(applied with f(t) ≡ θ(ωt)) that if k ≤ k0, then uk,ω is global and exponentially
decaying for all ω ∈ R.

Step 2. Let k = k1 defined by (4.2). It follows from (4.13) and Remark 2.3 (i)
(with f(t) ≡ A(θ)) that the solution U of (1.2) with φ = kϕ1 is global and expo-
nentially decaying. Applying Proposition 1.2, we deduce that if |ω| is sufficiently
large, then uk,ω is global and exponentially decaying.

Step 3. Let k = k1 defined by (4.2) and let 0 < ω ≤ 1, so that θ(ωt) = 1 for
0 ≤ t ≤ 1. It follows from (4.2) and Remark 2.6 that uk,ω blows up before t = 1.

Step 4. Let k = k2 defined by (4.3). Since∫ 1

0

θ(ωs) ds −→
|ω|→∞

A(θ),

we deduce from (4.14) that if |ω| is large, then

α

∫ 1

0

θ(ωs) ds >
Kα

kα2
.(4.15)
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Applying Remark 2.5 (with f(t) ≡ θ(ωt)), we conclude by using (2.12) that uk,ω
blows up before the time t = 1. Thus we see that if |ω| is sufficiently large, then
uk,ω blows up in finite time.

Step 5. Let k = k2 defined by (4.3). If 0 < ω ≤ 1, then θ(ωt) = 1 for 0 ≤ t ≤ 1.
Since k2 ≥ k1 ≥ η

1
α by (4.3) and (4.2), it follows from Remark 2.6 that uk,ω blows

up before t = 1.

Step 6. Let k = k2 defined by (4.3) and ω = ω0 where

ω0 =
2αλ1k

α
2

δ
.(4.16)

It follows from (4.16) and Remark 2.3 (ii) (with T = 2/ω0 and f(·) = θ(ω0·)) that
uk,ω exists up to the time 2/ω0 and

‖uk,ω(2/ω0)‖L∞ ≤ 2CΩk2.(4.17)

On the other hand, we deduce from (4.7) and (4.16) that

ε ≤ 1
(`− 2)(2CΩ)α

=
ω0δ

2αλ1(`− 2)kα2 (2CΩ)α
.(4.18)

Inequalities (4.17) and (4.18) imply

αλ1

(`− 2
ω0

)
ε‖uk,ω(2/ω0)‖αL∞ ≤ δ.(4.19)

Since θ(ω0t) = ε for t ∈ (2/ω0, `/ω0), it follows from (4.19) and Remark 2.3 (ii)
(with T = (` − 2)/ω0, f(·) ≡ θ(2 + ω0·) and φ = uk,ω(2/ω0)) that uk,ω exists up
to the time `/ω0 and that

‖uk,ω(`/ω0)‖L∞ ≤ 2CΩ‖uk,ω(2/ω0)‖L∞ e−λ1
`−2
ω0 ≤ 4C2

Ωk2 e−λ1
`−2
ω0 ,(4.20)

where we used (4.17) in the last inequality. Note that, by (4.5) and (4.16),

λ1
`− 2
ω0

= log
4C2

Ωk2

δ
1
α

,

so that (4.20) implies ‖uk,ω(`/ω0)‖αL∞ ≤ δ. Applying Remark 2.3 (i) (with f(t) ≡
θ(`+ω0t)) and φ = uk,ω(`/ω0)), we conclude that uk,ω is global and exponentially
decaying.

Step 7. Let k3 be defined by (4.8). Since θ ≥ ε, we see that for every ω ∈ R,

α

∫ 1

0

θ(ωs) ds ≥ αε > Kα

kα3
,

where we used (4.8) in the last inequality. It follows that if k ≥ k3 then

α

∫ 1

0

θ(ωs) ds >
Kα

kα
.

Applying Remark 2.5 (with f(t) ≡ θ(ωt)), we conclude by using (2.12) that uk,ω
blows up before the time t = 1 for all ω ∈ R.
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Step 8. Conclusion. Property (i) follows from Step 1. Property (ii) follows
from Steps 2 and 3. Property (iii) follows from Steps 4, 5 and 6. Property (iv)
follows from Step 7.

5. Proof of Theorem 1.7

We consider Φ, k0, k1, k2, k3 as in the preceding section and we let

θ(t) ≡ Φ(3− t).

(See Figure 4.) Given k > 0 and ω > 0, we consider the solution uk,ω of (1.1) with

6

-

1

c
ε

1 2 3 4 τ − `+ 2 τ − `+ 3 τ

Figure 4. The function θ of Theorem 1.7.

φ = kϕ1. Property (i) (respectively, Property (iv)) follows from the argument
of Step 1 (respectively, Step 7) in the preceding section. It remains to prove
Properties (ii) and (iii), and we proceed in several steps.

Step 1. Let k ≤ k2 defined by (4.3). Given ω > 0, note that θ(ωt) = ε for
0 ≤ t ≤ 1/ω. It follows from (4.7) that ε‖φ‖αL∞ ≤ δ, so that by Remark 2.3 (i)
(applied with f(t) ≡ θ(ωt)) uk,ω exists up to the time 1/ω and

‖uk,ω(1/ω)‖L∞ ≤ 2CΩk2 e−
λ1
ω −→

ω↓0
0.

Thus we see that if ω > 0 is sufficiently small, then ‖uk,ω(1/ω)‖αL∞ ≤ δ. Applying
again Remark 2.3 (i) (with f(t) ≡ θ(1 + ωt) and φ = u(1/ω)), we conclude that if
ω > 0 is sufficiently small, then uk,ω is globally defined and exponentially decaying.

Step 2. Let k = k1 defined by (4.2). Since A(θ)kα1 ≤ δ by (4.13), we conclude
with the argument of Step 2 of the preceding section that if |ω| is sufficiently large,
then uk,ω is global and exponentially decaying.

Step 3. Let k = k1 defined by (4.2) and ω = 1. We claim that uk,ω blows up
in finite time. Indeed, assume by contradiction that uk,ω is global. Since θ ≥ 0,
we observe that uk,ω(t) ≥ et∆ φ = k1 e−λ1t ϕ1. In particular,

uk,ω(2) ≥ k1 e−2λ1 ϕ1 ≥ η
1
αϕ1,(5.1)

where we used (4.2) in the last inequality. We note that for t ∈ [2, 3], uk,ω solves
the equation (2.1) with f(t) ≡ 1. Thus it follows from (5.1) and Remark 2.6 that
u blows up before the time T = 3, which is a contradiction.

Step 4. Let k = k2 defined by (4.3). The argument of Step 4 in the preceding
section shows that if |ω| is sufficiently large, then uk,ω blows up in finite time.
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Step 5. Conclusion. Property (ii) follows from Steps 1, 2 and 3. Property (iii)
follows from Steps 1 and 4.

6. Proof of Theorem 1.3

Given φ ∈ H2(Ω) ∩H1
0 (Ω), let U be the corresponding solution of (1.10) and, for

every ω ∈ R, let uω be the (maximal) solution of (1.9). Suppose U blows up at the
time T < ∞. We first apply Theorem A.1 with H = L2(Ω), L = ∆ with domain
H2(Ω) ∩ H1

0 (Ω), F (t, u) = A(θ)‖u‖αL2 , ϕ = φ and κ = 1. (Note that the map
u 7→ f(u) def= ‖u‖αL2u is locally Lipschitz L2(Ω)→ L2(Ω). Indeed, it is not difficult
to show that, even if α < 1, ‖f(u)−f(v)‖L2 ≤ (α+1) max{‖u‖αL2 , ‖v‖αL2}‖u−v‖L2 .)
It is easy to show that, with the notation of Theorem A.1, 0 < Λ < ∞ and the
supremum in (A.7) is not achieved, i.e.

Λ =
∫ ∞

0

µ(s)ρ(s)−
α
2 ds.(6.1)

Thus we deduce from property (iv) of Theorem A.1 that

αΛ‖φ‖αL2 > 1.(6.2)

Since µ(t) > 0 for all t ≥ 0, we deduce from (6.1)-(6.2) that if T > 0 is sufficiently
large, then

α‖φ‖αL2

∫ T

0

µ(s)ρ(s)−
α
2 ds > 1.

Writing explicitly µ and ρ, this means

α‖φ‖αL2A(θ)
∫ T

0

exp
(
−α

∫ s

0

‖∇ es∆ φ‖2L2

‖ es∆ φ‖2L2

)
ds > 1.(6.3)

It follows that

α‖φ‖αL2

∫ T

0

θ(ωs) exp
(
−α

∫ s

0

‖∇ es∆ φ‖2L2

‖ es∆ φ‖2L2

)
ds > 1,(6.4)

provided |ω| is sufficiently large. We now apply Theorem A.1, this time with
F (t, u) = θ(ωt)‖u‖αL2 . With this choice of F (t, u), it follows that

Λ = sup
T≥0

∫ T

0

θ(ωs) exp
(
−α

∫ s

0

‖∇ es∆ φ‖2L2

‖ es∆ φ‖2L2

)
ds.(6.5)

We deduce from (6.4) and (6.5) that α‖φ‖αL2Λ > 1 if |ω| is sufficiently large.
Applying Theorem A.1 (property (iii) or property (iv)), we conclude that uω blows
up in finite time.

Remark 6.1. Note that the existence of solutions of (1.10) that blow up in
finite time follows immediately from Theorem A.1. (Fix ϕ ∈ H2(Ω) ∩ H1

0 (Ω),
ϕ 6≡ 0 and let φ = κϕ with κ > 0 sufficiently large.) It also follows from classical
results, see [13].
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Remark 6.2. Note that we could obtain (with the same proof) conclusions
similar to those of Theorem 1.3 for equations slightly more general than (1.9). For
example, one could replace the nonlinearity f(u) = ‖u‖αL2u in (1.9) by the more
general one

f(u) =
(∫

Ω

k(x)|u(x)|qdx
)α
q

u,(6.6)

where α > 0, 1 ≤ q ≤ 2 and k ∈ L∞(Ω), k ≥ 0, k 6≡ 0. (More generally, one can
also consider 2 < q <∞ by replacing the space H = L2(Ω) by H = D(L`) where
` is sufficiently large so that D(L`) ↪→ Lq(Ω).)

Appendix A. Blowup for an abstract evolution equation

Let H be a Hilbert space with norm ‖ · ‖ and scalar product (·, ·) and let L be
a linear, unbounded operator on H, with domain D(L). Assume that L is the
generator of a C0 semigroup (etL)t≥0 on H. Let F ∈ C([0,∞)×H,R) and assume
that there exists α > 0 such that

F (t, λx) = λαF (t, x),(A.1)

for all t ≥ 0, λ ≥ 0 and x ∈ H. Suppose further that the map u 7→ F (t, u)u is
Lipschitz continuous from bounded sets of H onto H, uniformly for t in a bounded
interval. Given φ ∈ H, we consider the equation{

u′ = Lu+ F (t, u)u,
u(0) = φ,

(A.2)

in the equivalent form

u(t) = etL φ+
∫ t

0

e(t−s)L F (s, u(s))u(s) ds.(A.3)

Under the above assumptions, it is well known that, for any φ ∈ H, there exists
a unique solution u of (A.3), which is defined on a maximal interval [0, Tmax),
i.e. u ∈ C([0, Tmax), H). Moreover, if Tmax < ∞, then ‖u(t)‖ → ∞ as t ↑ Tmax.
(Blowup alternative.) In addition, if φ ∈ D(L), then u ∈ C([, Tmax), D(L)) ∩
C1([0, Tmax), H) and u is the solution of (A.2).

Theorem A.1. Let ϕ ∈ D(L), ϕ 6= 0, and suppose (for simplicity) that etL ϕ 6=
0 for all t ≥ 0. Set

η(t) = ‖ etL ϕ‖−2(L etL ϕ, etL ϕ),(A.4)

µ(t) = ‖ etL ϕ‖−αF (t, etL ϕ),(A.5)

ρ(t) = exp
(
−2
∫ t

0

η(s) ds
)
> 0,(A.6)

for all t ≥ 0 and

Λ = sup
T≥0

∫ T

0

µ(s)ρ(s)−
α
2 ds,(A.7)
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so that 0 ≤ Λ ≤ ∞. Let κ ≥ 0, set φκ = κϕ and let uκ be the solution of (A.2)
with initial value φκ, defined on the maximal interval [0, Tκmax).

(i) If Λ = 0, then uκ is global, i.e. Tκmax =∞ for all κ ≥ 0.
(ii) If Λ =∞, then uκ blows up in finite time, i.e. Tκmax <∞ for all κ > 0.
(iii) If 0 < Λ < ∞ and the supremum in (A.7) is achieved, then uκ is global

if κ < (αΛ‖ϕ‖α)−
1
α and uκ blows up in finite time if κ ≥ (αΛ‖ϕ‖α)−

1
α .

Moreover, in the last case, Tκmax is the smallest positive number T such that∫ T

0

µ(s)ρ(s)−
α
2 ds =

1
ακα‖ϕ‖α

.(A.8)

(iv) If 0 < Λ <∞ and the supremum in (A.7) is not achieved, then uκ is global
if κ ≤ (αΛ‖ϕ‖α)−

1
α and uκ blows up in finite time if κ > (αΛ‖ϕ‖α)−

1
α .

Moreover, in the last case, Tκmax is the smallest positive number T such
that (A.8) holds

Remark A.2. Here are some comments on Theorem A.1.
(i) Note that Theorem A.1 yields some blowup results that are not immediate by

the standard techniques. In particular, the operator L is only supposed to be
the generator of a C0 semigroup on H. (L is not assumed to be symmetric).

(ii) There is no need in principle to introduce the parameter κ in Theorem A.1.
(One could let κ = 1 in the statement.) The parameter κ is there to empha-
size the fact that the elements η, µ, ρ,Λ are left unchanged if one replaces the
initial value ϕ by κϕ for κ > 0.

The proof of Theorem A.1 is based on the following elementary property. (See
the proof of Theorem 44.2 (ii) in [18] for similar calculations. See also the proof
of Theorem 2.1 in [4].)

Proposition A.3. Let φ ∈ D(L), f ∈ C([0,∞),R) and let u ∈ C([0,∞), D(L))
∩ C1([0,∞), H) be the solution of{

u′ = Lu+ f(t)u,
u(0) = φ.

(A.9)

It follows that

‖ etL φ‖u(t) = ‖u(t)‖ etL φ,(A.10)

for all t ≥ 0.

Proof. Set w(t) = Φ(t) etL φ where Φ(t) = exp(
∫ t

0
f(s) ds). It follows that

w ∈ C([0,∞), D(L)) ∩ C1([0,∞), H), w(0) = φ, and wt = Lw + f(t)w. Therefore
w(t) ≡ u(t), so that u(t) = Φ(t) etL φ, and (A.10) easily follows. �

Proof of Theorem A.1. Set Mκ(t) = ‖uκ(t)‖2 for all 0 ≤ t < Tκmax. Taking the
scalar product of (A.2) with uκ, we obtain

1
2
M ′κ(t) = (Luκ, uκ) + F (t, uκ)Mκ(t).(A.11)
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On the other hand, it follows from Proposition A.3 that

uκ(t) =
‖uκ(t)‖
‖ etL(κϕ)‖

etL(κϕ) =
‖uκ(t)‖
‖ etL ϕ‖

etL ϕ.(A.12)

Using the homogeneity property (A.1), we deduce that

1
2
M ′κ(t) =

Mκ(t)
‖ etL ϕ‖2

(L etL ϕ, etL ϕ) +
Mκ(t)1+α

2

‖ etL ϕ‖α
F (t, etL ϕ)

= η(t)Mκ(t) + µ(t)Mκ(t)1+α
2 .

(A.13)

Integrating the above differential equation, we deduce that

[ρ(t)Mκ(t)]−
α
2 = [κ‖φ‖]−α − α

∫ t

0

µ(s)ρ(s)−
α
2 ds,(A.14)

for all 0 ≤ t < Tκmax.
If Λ ≤ 0, we deduce from (A.14) that ‖uκ(t)‖ ≤ κρ(t)−

1
2 ‖φ‖ for all 0 ≤ t < Tκmax,

so that Tκmax =∞ by the blowup alternative. This proves property (i).
Suppose now Λ > 0. If κ > (αΛ‖ϕ‖α)−

1
α , then there exists 0 < T < ∞ such

that the right-hand side of (A.14) is negative. Thus we deduce from (A.14) that
Tκmax < T <∞. This proves property (ii) and part of properties (iii) and (iv).

Finally, suppose 0 < Λ <∞. If κ < (αΛ‖ϕ‖α)−
1
α , then we deduce from (A.14)

that

[ρ(t)Mκ(t)]−
α
2 ≥ [κ‖φ‖]−α − αΛ def= δ > 0.(A.15)

Thus we see that ‖uκ(t)‖ ≤ δ− 1
α ρ(t)−

1
2 for all 0 ≤ t < Tκmax, so that Tκmax =∞ by

the blowup alternative. This proves part of properties (iii) and (iv).
It remains to consider the case 0 < Λ < ∞ and κ = (αΛ‖ϕ‖α)−

1
α . If the

supremum in (A.7) is achieved at some T <∞, then the right-hand side of (A.14)
vanishes at T , so that Tκmax ≤ T . This completes the proof of property (iii). If the
supremum in (A.7) is not achieved, then the right-hand side of (A.14) is positive
for all t ≥ 0, so that Tκmax = ∞ by the blowup alternative. This completes the
proof of property (iv). �
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