ON THE QUADRATIC FINITE ELEMENT APPROXIMATION OF
1-D WAVES: PROPAGATION, OBSERVATION AND CONTROL*

AURORA MARICAS AND ENRIQUE ZUAZUAS$T

Abstract. We study the propagation, observation and control properties of the quadratic P>-
classical finite element semi-discretization of the 1-d wave equation on a bounded interval. A careful
Fourier analysis of the discrete wave dynamics reveals two different branches in the spectrum: the
acoustic one, of physical nature, and the optic one, related to the perturbations that this second-
order finite element approximation introduces with respect to the P;-one. On both modes there are
high frequencies with vanishing group velocity as the mesh size tends to zero. This shows that the
classical property of continuous waves of being observable from the boundary fails to be uniform for
this discretization scheme. As a consequence of this, the controls of the discrete waves may blow-up
as the mesh size tends to zero. To remedy these high frequency pathologies, we design filtering
mechanisms based on the Fourier truncation method or on a bi-grid algorithm, for which one can
recover the uniformity of the observability constant in a finite time and, consequently, the possibility
to control with uniformly bounded L2 - controls appropriate projections of the solutions. This also
allows showing that, by relaxing the control requirement, the controls are uniformly bounded and
converge to the continuous ones as the mesh size tends to zero.

Key words. Quadratic finite element method, uniform mesh, vanishing group velocity, observ-
ability /controllability property, acoustic/optic mode, Fourier truncation method, bi-grid algorithm.
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1. Introduction, problem formulation and main results. Consider the 1-d
wave equation with non-homogeneous Dirichlet boundary conditions:

Y (T, t) — Yoo (z,8) =0, z € (0,1), t >0,
y(0,t) =0, y(1,t) = v(t), t >0, (1.1)
y(:r,O) = yo(x)v yt(xao) = yl(x)v T e (07 1)

System (1.1) is said to be ezactly controllable in time T > 2 if, for all (y°,y!) €
L? x H71(0,1), there exists a control function v € L?(0,T) such that the solution of
(1.1) can be driven at rest at time T, i.e.

y(x,T) =y (2, T) = 0. (1.2)

We also introduce the adjoint 1-d wave equation with homogeneous Dirichlet
boundary conditions:

utt(xvt) - uzz(xvt) =0, z€ (Ov 1)7 t>0,
=u(l,t) =0, t >0, (1.3)
(2), u(z,T) = ul(z), = € (0,1).
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This system is well-known to be well-posed in the energy space V := H} x L?(0,1)
and the total energy below is conserved in time:

1
E(u’,ut) := S (luC, Ol 0,0 + el O Z20,0))

The Hilbert Uniqueness Method (HUM) introduced in [18] allows showing that the
property of exact controllability for (1.1) is equivalent to the boundary observability
of (1.3). The observability property of the wave equation ensures that the following
observability inequality holds for all solutions of (1.3) provided T > 2:

T
£, ul) < C(T)/|uz(17t)|2dt. (1.4)
0

The best constant C'(T) in (1.4) is the so-called observability constant. The ob-
servability time T has to be larger than the characteristic time T* := 2 which is
needed by any solution associated to initial data (u°,u!) supported in a very narrow
neighborhood of z = 1 to travel along the characteristic rays z(t) = x — t, get to
the boundary x = 0 and come back to the boundary x = 1 along the characteristics
x(t) =z +t.

It is also well-known that, for all T' > 0 and all solutions u of the adjoint problem
(1.3) with initial data (u®,u') € V, the following admissibility inequality holds:

T
C(T)/|Uw(1,t)|2 dt < &, ul), (1.5)

so that, for all T > 2, [|0,u(1,-)||r2(0,7) and [|(u®,u')|]y are equivalent norms.

As a consequence of these results, it is easy to see that for all (y°,y') € L? x
H~1(0,1), there exists a control v € L?(0,T) driving the solution of (1.1) to the rest
at t =T, i.e. such that (1.2) holds. This turns out to be equivalent to the fact that

T
/v(t)uz(l, t) dt = <(y17 7340)’ (u(7 0)7 ut('a O))>V’,V7 (1~6)
0

-1

for all solutions w of (1.3), where (-, )y v is the duality product between V' := H~' x
L?(0,1) and V.
The HUM control v, the one of minimal L?(0,T)-norm, has the explicit form
v(t) = 0(t) := u,(1,1), (1.7)

where 1(x,t) is the solution corresponding to the minimum (@° @') € V of the
quadratic functional

T

j(uoﬂul) = %/|uz(l,t)|2dt - <(y17 _yO)’ (u(-,0)7ut(-,0))>w’v. (1'8)

0

An explicit expression of the optimal L?-control v in (1.1) in terms of the initial
data (y°,y"') is given in Theorem 3.1 in [13]. This result implies that, for any piece-
wise linear data (y°,y'), the corresponding optimal control is a piecewise quadratic
function and, in general, it is discontinuous.
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The effect of substituting the continuous controlled wave equation (1.1) or the
corresponding adjoint problem (1.3) by discrete models has been intensively studied
during the last years, starting from some simple numerical schemes on uniform meshes
like finite differences or linear Pi-finite element methods in [17] and, more recently,
more complex schemes like the discontinuous Galerkin ones in [21]. In all these cases,
the convergence of the approximation scheme in the classical sense of the numerical
analysis does not suffice to guarantee that the sequence of discrete controls converges
to the continuous ones. This is due to the fact that there are classes of initial data
for the discrete adjoint problem generating high frequency wave packets propagating
at a very low group velocity and that, consequently, are impossible to be observed
from the boundary of the domain during a finite time, uniformly as the mesh-size
parameter tends to zero. This leads to the divergence of the discrete observability
constant as the mesh size tends to zero. High frequency pathological phenomena have
also been observed for numerical approximation schemes of other models, like the
linear Schrédinger equation (cf. [15]), in which one is interested in the uniformity of
the so-called dispersive estimates, which play an important role in the study of the
well-posedness of the corresponding non-linear models.

Several filtering techniques have been designed to face these high frequency patholo-
gies: the Fourier truncation method (cf. [17]), which simply eliminates all the high
frequency Fourier components propagating non-uniformly; the bi-grid algorithm in-
troduced in [10] and [11] and rigorously studied in [16], [20] or [24] in the context
of the finite difference semi-discretization of the 1-d and 2-d wave equation and of
the Schrédinger equation (cf. [15]), which consists in taking initial data with slow
oscillations obtained by linear interpolation from data given on a coarser grid; and
the numerical viscosity method, which, by adding a suitable dissipative mechanism,
damps out the spurious high frequencies ([23], [25]). We should emphasize that the
mized finite element method analyzed in [4] is, as far as we know, the unique method
preserving the propagation and controllability properties of the continuous model
uniformly in the mesh size parameter without requiring any extra filtering. The in-
terested reader is referred to the survey articles [9] and [26] for a presentation of the
development and the state of the art in this topic.

The purpose of the present paper is to analyze the behavior of the quadratic
P»-finite element semi-discretization of problems (1.1) and (1.3) from the uniform
controllability /observability point of view. In Section 2 we introduce in a rigorous
way the discrete analogue of (1.1) and (1.3) and explain the minimization process
generating the discrete controls. In Section 3 we analyze the spectral problem asso-
ciated to this discrete model and reveal the co-existence of two main types of Fourier
modes: an acoustic one, of physical nature, related to the nodal components of the nu-
merical solution, and an optic one, of spurious nature, related to the curvature with
which the quadratic finite element method perturbs the linear approximation. We
also study finer properties of the spectrum, for example the spectral gap, identifying
three regions of null gap: the highest frequencies on both acoustic and optic modes
and the lowest frequencies on the optic one. The content of this section is related to
previously existing work. For instance, the dispersive properties of higher-order finite
element methods have been analyzed in [1] in the setting of the Helmholtz equation.
An explicit form of the acoustic dispersion relation was obtained for approximations
of arbitrary order. It was shown that the numerical dispersion displays three different
types of behavior, depending on the approximation order relative to the mesh-size
and the wave number. In Subsection 3.6 we explain how the Fourier analysis of the
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numerical scheme in the 1-d case can be extended to the biquadratic finite element ap-
proximation of the 2-d wave equation in the square on uniform quadrilateral meshes.
In Section 4 we obtain some spectral identities allowing us to analyze the discrete
observability inequality for the adjoint system. One of the main contributions of this
paper is to design appropriate subspaces on which the observability constant is uni-
formly bounded as the mesh size parameter goes to zero. Thus, in Section 5 we show
that the Fourier truncation of the three pathological regions of the spectrum leads to
an uniform observability inequality. In Section 6 we prove that a filtering mechanism
consisting in, firstly, considering piecewise linear initial data and, secondly, precondi-
tioning the nodal components by a bi-grid algorithm guarantees uniform observability
properties. Within the proof, we use a classical dyadic decomposition argument (cf.
[16]), which mainly relies on the fact that for this class of initial data the total energy
can be bounded by the energy of the projection on the low frequency components
of the acoustic dispersion relation. We should emphasize that our results are finer
than the ones in [6] or [7], where one obtains uniform observability properties for fi-
nite element approximations of any order, but by truncating the Fourier modes much
under the critical scale 1/h. Here we only consider the particular case of quadratic
finite element approximation on 1-d meshes, but we get to the critical filtering scale
1/h. Note however that the results in [6] and [7] apply in the more general context
of non-uniform grids as well. In Section 7 we present the main steps of the proof of
the convergence of the discrete control problem under the assumption that the initial
data in the corresponding adjoint problem are filtered through a Fourier truncation
or a bi-grid algorithm. Section 8 is devoted to present the conclusions of the paper
and some related open problems.

2. The P, - finite element approximation of 1-d waves. For p € N, set
N, :=[0,p] "N and Ny := [1,p] "\N. Let N € N, h=1/(N +1) and 0 = zo < z; <
xn+41 = 1 be the nodes of an uniform grid of the interval [0,1], with z; = jh, j €
Nn 41, constituted by the subintervals I; = (z;,2,41), with j € Ny. We also define
the midpoints ;1,9 = (j +1/2)h of this grid, with j € Ny. Let us introduce the
space Pp(a,b) of polynomials of order p on the interval (a, b) and the space of piecewise
quadratic and continuous functions Uy, := {u € H(0,1) s.t. ul;, € P2(I;), j € Ny}
The space Uy, can be written as Uy = span{¢;,j € Ny} © span{¢; 12,5 € Ny}. Set
X 4 to be the characteristic function of the set A. The two classes of basis functions
are explicitly given below (see Fig. 2.1)

¢j(x) i= (@ —xj_12)(x — 2 1)Xp,_, (2) + 3% (x — 2j41)2) (@ — 2j41)X1, (2)
and  ¢jq12(x) = —gz(x — x5)(x — 2j11)X1, (2).

The quadratic approximation of the adjoint problem (1.3) is as follows:

2
Uh(~,t) €Uy s.t. %(uh('a t)v QO)LQ(O,I) + (Uh(',t), <)O)HI(O,l) =0, v@ € Up,

0 1 o (2.1)

up(x,T) = up (), un(z, T) = up (z), € (0,1).

Since up(-,t) € Up, it admits the decomposition up(z,t) = Z?flﬂ Uj2(t)o; ().
The function up(-,t) can be identified with the vector of its coefficients, Up(t) :=
(Uj/2(t))jens,,, (inthe sequel, all vectors under consideration will be column vectors).
Thus, using ¢ = ¢;/2, j € Njy, 1, as test functions in (2.1), system (2.1) can be
written as the following system of 2N + 1 second-order differential equations (ODEs):

MpUp(t) + S Up(t) = 0, Up(T) = UY, U (T) = Uy, (2.2)
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F1G. 2.1. The basis functions: ¢; (left) and ¢;1 1,2 (Tight).

where M}, and S}, are the following (2N + 1) x (2N + 1) mass and stiffness matrices
alternating the tridiagonal and pentadiagonal structure:

8h h
b h g 0 0 0 0 0 0 0
LA T R 0o 0 0 0
15 15 1)5; }?0
0o L & Ao 0 0 0 0 0
0 15h ]}? iz h h 0 0 0 0
M, = 36 15 15 15 30
. h h 4h h
0 0O 0 0 0 0 SR
0 0O 0 0 0 0 0 0o = £
and
16 8
L _8 9 0 0 0 0 0 0 0
T (T 0 0 0 0
3h 3% 1%h 3)78
0o - soow g 0 0 0 0 0 0
1 8 1
S = 0 5% —3r 3 “3 3% 0 0 0 0

0 1—;; -
X 8
1
0 0 —35 3
We introduce the discrete analogues of H}(0,1), L2(0,1) and H~1(0, 1) as follows:

/H;L = {Fh = (Fj/Q)jEN§N+1 S (C2N+1 s.t. HFh|

o~
w
=

i <oo}, i=-—1,01.

For the elements of the space H;, we impose the additional requirement Fy = Fy 11 =
0. The inner products defining the discrete spaces H},, i = —1,0, 1, are given by

(Fh, Gh)h,i = ((MhS;l)liiShFh, GIL)(C2N+1

and the norms are given by \|Fh||%” = (Fp,Fp)py, for all i = —1,0,1. Here,
(v, *)cen+1 is the inner product in the Euclidian space C", defined by (F, Gp)cen+1 :=
Ziﬁf 'F, /261C /2 (the overline symbol denotes complex conjugation).

For fj, € U, of coefficients F, = (Fj/Q)jeNgN+1 € M}, we introduce the following
notations for the three possible discrete derivatives on each nodal point (the forward,
the backward and the midpoint ones, represented by the 4+, — and null superscripts):

+ . _ L Fiti/241/2—4Fj 010 43Fj11/271/2
Op Fjia/oz1/2 = Onfn(j i1 jomjo) = FHEmf— i nams,

2.3
Fjp1—F; (2:3)
h

OnFir172 = Oufn(Tjy1y2) =
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and the values of fy at xj11,4 := (j +1/4)h and x;3/4 := (j +3/4)h, j € Ny:

3 3 1
Fiiio41/4 = fu(®jq1/241/4) = glivieere + ZFj+1/2 - gFj+1/2$1/2'

With these notations, it is easy to check that the || - ||5,1 and || - ||n,0 - norms
admit the following representations:

N
IFnlli, =5 > (10 Fi1? + 4|00 Fji1y2l* + 10, Fja ),
N =0 (2.4)
Full2,=24 12|F; 2 7|F; 2 4+ 32|F; 2
1Fnllio = 95 ZO |Fj11/2] +§( |Fjr1/241/2]% + 32| ]+1/211/4|) .
i=

Set Vi, := Hi x HY and V), := H; ' x H) to be its dual. The duality prod-
uct <~,~)Va7yh between V; and V), is defined as <(Fh71,Gh71),(Fh72,Gh72)>yé/vyh’ =
(Fun,1,Fn2)no+ (Gn1,Gr2)no-

Problem (2.2) is well-posed in H}, x M. The total energy of its solutions is
conserved in time:

1
En(U}, Uy) = §(||Uh(t)||i,1 +[Une(®)l70)- (2.5)

One of the goals of this paper is to study discrete versions of the observability
inequality (1.4) of the form

T
(UL, 01) < C() [ (1B U0 o, (2.6
0

where By, is a (2N + 1) x (2N + 1) observability matriz operator. The observabil-
ity inequality (2.6) makes sense for rather general matrices By, corresponding, for
instance, to the observability from any open subset contained in the spatial domain
(0,1). But, within this paper, we focus on the particular case of boundary observation
operators By, in the sense that they approximate the normal derivative u,(x,t) of the
solution of the continuous adjoint problem (1.3) at = 1. The main example of such
boundary matrix operators By, that will be used throughout this paper is as follows:

_ [~k (i) =@N+1,.2N),
Bij '_{ (),h otherwise. (2.7)

The operator By, is also the one used for the finite difference semi-discretization in
[17]. Let us remark that at the discrete level there are different ways to approximate
the normal derivative of the continuous solution of (1.3). Since B, Uy(t) is a vector
and u,(z,t) is a scalar, the way in which B, Uy (t) approximates u,(1,t) needs to be
further explained. Remark that Bj in (2.7) is almost a null matrix, excepting the
penultimate component on the last row. The last component of B, Uy(t), the only
non-trivial one, equals to up (Tn41/2,t). The consistency analysis shows that if f is
a sufficiently regular function and f;, is its quadratic interpolation, then fh o (2 n41/2)
is a first-order approximation of f(1).

We are interested in observability inequalities (2.6) in a finite, but sufficiently
large observability time, say 7' > T > 0. In this paper we show that, when working
on the whole discrete space V;, x Vy, the observability constant Cj(T) blows-up as
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h — 0, whatever T' > 0 is. More precisely, we design appropriate subspaces S, C Vj,
on which the observability constant Cj,(T') is uniformly bounded as h — 0.

We will also prove that the discrete version of (1.5) below holds uniformly as
h — 0 in the whole approximate space Vp, for all T > 0:

T) / | BrUR ()| 2en+1 dt < E, (U, UR). (2.8)

Once the observability problem is well understood, we are in conditions to address
the discrete control problem. For a discrete control function Vj such that By V) €
(H}L)’ , we consider the following non-homogeneous problem:

MpYpu(t) + SpYn(t) = =BiVa(t), Yn(0) =Y, Y,.(0) =Y}, (2.9)
where (Y}, YY) € V;. Here, the superscript * denotes matrix transposition. Multi-
plying system (2.9) by any solution Uy(t) of the adjoint problem (2.2), integrating in
time and imposing that at ¢ = T the solution is at rest, i.e.

<(Yh’t(T)a _Yh(T)>7 (U(f)w U111)>V,’L,Vh =0, V(U(})w U%L) € W, (2'10)

we obtain that V},(¢) necessarily satisfies the following identity which fully character-
izes all possible exact controls V(t), for all (U, U}) € Vy:

T
/(Vh(b‘)»]3hUh('5))<czN+1 dt = (Y}, =Y3), (Un(0), Une(0)))vy v, - (2.11)
0

In view of this, we introduce the following discrete version of the quadratic func-
tional (1.8) in which Ujy(t) is the solution of the adjoint problem (2.2) with initial
data (U9, U}) and (Y},YY) €V}, is the initial data to be controlled in (2.9):

In(U;,U;) = /||BhUh( MIgansr dt—{(Yh, =Y3), (Un(0), Upt(0))vy v, (2.12)

The functional J}, is continuous and strictly convex. Thus, provided it is coercive
(which is actually what the uniform observability inequality guarantees), it has an
unique minimizer (U?L, U,ll) € Sy, whose Fuler-Lagrange equations are as follows:

T
/ BrUL(t), ByUp(t))cav+r dt = (Y}, =Y7), (Un(0), Upe(0))vy v,s  (2.13)
0
for all (UY,U}) € S, and Uy(t) the corresponding solution of (2.2). The discrete
HUM control is then
Vi(t) = Vi(t) := B OA(1). (2.14)

Let us briefly comment the analogies between identities (1.7) and (2.14). As we
said, when By, is a boundary observability matrix operator, like for example the one
n (2.7), BpLUp(t) is a vector whose last component ¥ (t), the only non-trivial one,
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approximates the normal derivative of the solution to the adjoint continuous wave
equation (1.3). Accordingly, the controls —B;} 'V (t) only act on yn(t) when Vj(¢) is
the numerical control obtained by (2.14). Consequently, the boundary observability
operator B, does not act really at x = 1, but at x = 21,2, being in fact an internal
control acting on a single point which is closer and closer to the boundary as h becomes
smaller, so that in the limit as h — 0 it becomes a boundary control.

Observe also that the control problem we deal with is a coupled system of non-
homogeneous ODEs modeling the interaction between the nodal and the midpoint
components. Thus, the node w1/ lies in fact on the boundary of the midpoint
component. Consequently, the controls —Bj: V() in (2.9), with V,(¢) as in (2.14),
are really natural approximations of the continuous boundary controls v in (1.1).

3. Fourier analysis of the P»-finite element method. For the sake of com-
pleteness, we recall the spectral analysis of this Ps-finite element method, following
[14]. The spectral problem associated to the adjoint system (2.1) is as follows:

Find (Ah, @h) € R x U, such that ((ﬁh, (bh)Hé = Ah(gﬁh, (bh)Lz, Vo € Uy,. (31)

Due to the symmetry and the coercivity of the bi-linear forms generated by the
scalar products (-,-)z2 and (-,-) gz, we have A, > 0. Let @, = (3;/2)jeny,,, be the
components of the eigenfunction @p. The pair (Ay, ¢;,) is a generalized eigensolution

corresponding to the pair of matrices (Sp, My,), i.e.

Consider the normalized eigenvalues A := h?Aj;. System (3.2) is a pair of two
equations:
8 . 16 _ 8 1 8 . 1.
—3%i T 3 i1z~ 5P A(TE)% + P12t B‘Pj-&-l) =0, (3.3)

for 7 € Ny, and

3Pi-1— 5Bj-12 T 50 — §Pj41/2 + 38j1—
A 1~ 1~ 4 - 1~ 1~ (34)
~A(= 55851+ 1585172+ 1585 + 15854172 — 75P5+1) =0,
depending on j € N% and with the boundary condition ¢ = ¢n4+1 = 0.

3.1. The acoustic and optic modes. From (3.3), we obtain that for A # 10,
the values of ¢;, at the midpoints can be obtained according to the two neighboring
nodal values as follows:

_ 0+A .
Pi+1/2 = 8(10 — A) (‘pj + @jJrl)v Vj € Nn. (35)

Replacing (3.5) into (3.4), we obtain the following recurrence, for all j € N}

3A? — 104A + 240 1
—=Pj_ p; — —pir1 =0, with ¢g = ¢ =0. 3.6
2% 1T AT 16A rodp T p¥itt T W Yo =@ (3.6)
It is easy to check that ¢; = sin(kwz;) solves (3.6), for all k& € N%;,. Then the
normalized eigenvalues A verify the identity

3A2 — 104A + 240

cos(krh) = w(A), with w(A) = ===

(3.7)
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Fi1G. 3.1. The eigenvalues Ay (left) versus their square roots A\p (right): the continuous ones
(blue) and the discrete acoustic/optic/resonant modes (red/black/green).

For each n € [0, 7], consider the second-order algebraic equation in A = A(n):
(3 — cos(n))A? — 2A(52 + 8 cos(n)) + 240(1 — cos(n)) = 0, (3.8)
whose solutions are A = A*(n), a € {a, 0}, with

_22+8 cos?(n/2) + 2sign(a)/A(n)
1+ sin?(n/2)

A%(n) : , (3.9)

sign(a) = —1, sign(o) = 1 and A(n) := 1 + 268 cos?(n/2) — 44 cos*(n/2). The super-
script a/o stands for acoustic/optic. We will also need the square roots of the Fourier
symbols (3.9), the so-called dispersion relations for the discrete wave equation:

A4 (n) = V/A%(n) and X°(n) := \/A°(n). (3.10)
For each k € N, set
A®* .= A%(krh) and A®* := A°(knh). (3.11)

For o = a or a = o, we refer to (A“’k)keN;V as the acoustic/optic branch of the spec-
trum. The corresponding eigenvectors are as follows (with j € Ny and, respectively,
j € Ny for the nodal/midpoint components):

~a,k 40+Aa’k

~a . wh, .
& k sin(kmz;) and Gt se = 1010 — Aok —— ) sin(km@;41/2). (3.12)

COS( B

3.2. The resonant mode. Up to this moment, we have explicitly calculated
2N solutions of the eigenvalue problem (3.2). To do this, we have supposed that
A # 10. But A = A" := 10 is also an eigenvalue corresponding to the resonant
mode, the superscript r standing for resonant. The components of the corresponding
eigenvector @) are

@ =0, Vj € Nyy1, and @f,, o = (=1)7, Vj € Ny. (3.13)

For any normalized eigenvalue A, set A, = A/h?, X = /A, Ay = /Ay, (Fig. 3.1).
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Fic. 3.2. Ezamples of normalized acoustic, optic and resonant eigenvectors for N = 99. In
blue/red, we represent their nodal/midpoint components

3.3. Normalized eigenvectors. For any eigenvector ¢, € {@Z’k7 c,No‘,)l’k, k €
N%, @}, we define the L2-normalized eigenvector ¢, := @;/||@n|n.0-
Using the expression (2.4) of the discrete norms ||-||,0 and ||-||»,1 and the identity

(3.5), we obtain the following representations of the || - ||n,0 and H . Hh 1-norms of the
coustic and optic eigen n terms of their nodal compon
. 1 500 _ -
185" 1170 = 5= [H_W}hz B0 + @5 k|2+ D Z G5 — B P, (3.14)

for all o € {a, 0} and k € N, and

hZIVJ L8P (3.15)




P>-FEM APPROXIMATION OF WAVES: PROPAGATION, OBSERVATION, CONTROL 11

Then, using the representation formula (3.14), the identities

N N
kY sin®(krx;) = 3, hY [sin(krzjy) —sin(knz;)[? = 2sin? (522),
= =0 (3.16)
hY |sin(krzji1) + sin(krz;)[? = 2cos? (E22), vk € Ny
j=0

and (3.7), we obtain

~ _ 2
H~a k with W(A) o (A 10)(A + 16A+240)

1
= = A7
E’;W(th’f)7 19A2 + 120A — 3600 (3.17)

Let us remark that H@h’th,o blows-up as kh — 1. With the above notation,

k

gajak = n**sin(krz;) and ¢ =m*"sin(krx;i1/2), Ya € {a,0}, (3.18)

J-irl/2

where n and m stand for the nodal and midpoint components and

= 40 + Axk kmh
a,k _ o,k ak __ — a,k
n 3W(AF), m n® 7(10 Aoy (2 ) .

Using the explicit form of the || - ||5 0-norm and the characterization (3.13) of the
resonant mode, we obtain [|@}[|7 o = 8/15 and therefore, the normalized resonant
mode ¢j satisfies

@ =0, Vj € Nyy1 and ¢f,, 5 = (—=1)71/15/8, Vj € Ny. (3.19)
Let us introduce the sets of eigenvalues and of H)-normalized eigenfunctions, i.e.

EVp = {(Az’k)(a,k)e{a,o}xN;\,, AL} and EF) = {(‘Pz’k)(a,k)e{a,o}xN;\ﬂ ent (3.20)

3.4. Fourier representation of discrete solutions. Since £F} is an or-
thonormal basis in HY, the initial data in (2.2) admit the following Fourier repre-

sentation, in which 7*% := (Ui "), o and @™ := (Ui, @} )y 0:

Z > amhiept 4 arien, Vi=0,1. (3.21)

k=1 a€c{a,0}

Correspondingly, the solution of (2.2) can be represented as follows:

Z [Z Z UL exp(itAS ") " + UL exp(£it A} } (3.22)

k=1 a€{a,o0}
where
~oLk,1 =l
ok 1 ma,k,0 u™" * ~r _ 1 ~r,0 u-
uy —§<u ii)\f:’k Vo € {a,0}, ke Ny, up = 5 (U ii)\z .

The total energy (2.5) of the solutions of (2.2) is then as follows:

U Z Z Aak|/\ak:

k=1a€{a,o0}

|Aa k2

2+ Ap([af P + | ). (3.23)
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3.5. Limits and monotonicity of the eigenvalues. Firstly, we remark that,
as kh — 1, A%* — 10, A>* — 12 and, as kh — 0, A>* — 60. On the other hand, the
first-order derivatives of the Fourier symbols (3.9) or of the corresponding dispersion
relations (3.10), the so-called group velocities, verify the positivity conditions below:

A (1), OpA*(n), —0yA°(n), —0,A°(n) >0, Vn € (0,7),

meaning that the acoustic/optic branch is strictly increasing/decreasing in k. Con-
sequently, the high frequency wave packets involving only the acoustic or the optic
modes and concentrated around a given frequency k* € N} propagate in opposite
directions. Moreover, at 7 = 0 or = m, the group velocities satisfy

0 A% () = 0, A%(0) = 0, DA% (x) = B,A°(0) =0, Yo € {a, 0}, and I \*(0) = 1,

which, according to the analysis in [21], shows, in particular, that there are waves
concentrated on each mode which propagate at arbitrarily slow velocity.

3.6. Extension to biquadratic finite element approximations of waves
on quadrilateral meshes of the square. Let N, N, € N, h, := 1/(N, + 1)
and hy, := 1/(N, + 1) be the mesh sizes in the x and y directions and (z;,,y;,) :=
(Jehe, jyhy), jo € Nn,41, jy € Ny, 41, be the nodes of the uniform grid of the
square [0,1] x [0,1] constituted by the cells I, ;, = [xj,,%;,+1] X [yj,,¥;j,+1], With
Je € Nn,, jy € Ny,. We also define the midpoints (z;,+1/2,Y;,+1/2) = ((jz +
1/2)hs, (jy + 1/2)hy) (with j. € Ny, jy € Ny, ), (25,,9;,+1/2) and (2, 41/2,9;,)-
Set Un, n, = {u € Hg([0,1] x [0,1]) s.t. u(-,a) € Up, and u(a,-) € U, ,Va € (0,1)}
to be the space of biquadratic functions. Its elements are piecewise quadratic and
continuous functions in both horizontal and vertical directions. This space can be
written as U, n, = span{¢;, /2 j,/2:Jo € N3y, 11, Jy € Niy 11}, where the basis
functions are given by ¢;_/2; /2(2,y) := ¢;, /2(x)d;, j2(y) (see Fig. 3.3).

The biquadratic semi-discretization of the wave equation on the unit square with
homogeneous Dirichlet boundary conditions is similar to (2.1), in which U}, is replaced

by Up, h, - Since the solution Uh,,h, Delongs to Uy, p,, it admits the decomposition

2N, +1 2Ny +1 .
Uny b, (2,9, 1) = ij:;r ij:'ﬁ Uj,/2.5,/2) 95, /2.5, 72(x,y). We organize the un-

knowns into a vector Up, s, (t) of (2N, +1) x (2N, + 1) components obtained by con-
catenating the 2N, 41 vectors U. ;/5(t) := (Ujj2,5/2) jens of dimension 2N, +1, so

2Ny +1
that Up, n, (t) := (U. k/2(t))keng, - In this way, we obtain the second-order system
- Y

of ODEs My, 1,07 Un, n, (t) + Sh,h, Un, n, (t) = 0, in which the mass and stiffness
matrices are defined by My, , := My, ® My, and Sy, p, := Mp, @ Sk, + Sh, @ My, .
Here, M}, and S}, are the mass and stiffness matrices in the 1-d context and A® B is
the Kronecker product of the matrices A and B (cf. [12], equation 2.1). The matrices
My, n, and Sp, pn, alternate the block pentadiagonal and block tridiagonal structures.

Let us now consider the spectral problem associated to the biquadratic finite ele-
ment approximation of waves, Sh, n, @n, n, = Mno.hy Mh, by Ph, b, Using the expres-
sions of the mass/stiffness matrices in the 2-d case as Kronecker products of matrices
in the 1-d case and the property that (A ® B)(a® b) = Aa ® Bb for any square
matrices A, B and any column vectors a, b of dimensions m and n (see equation 2.4
in [12]), we can easily check that ¢, ,, = @), @, and Ap, p, = Ap, +Ap,, where
(An,,¢p,) and (Ap,, ¢, ) are any two solutions of the 1-d spectral problem (3.2) with
h = hy and h = hy. For £,n € [0,7] and «, 8 € {a,0} (standing for acoustic/optic
mode in the 1-d case), we define the corresponding Fourier symbols of the discrete
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//"’;‘;“‘\’\

AT
XA N
///'%“\““ T
2%\

(b) 0dd j, k

(c¢) Even j, odd k (d) Odd j, even k

Fic. 3.3. Basis functions ¢;/3 /2 generating the biquadratic finite element space Up, p,

2-d Laplacian as AP (&,n) = A%(&) + AP(n) and A\¥P(£,n) == /A¥B(E,n) to be
the corresponding dispersion relations for the wave equation. The associated group
velocity |V e A*?(€,m)] is as follows:

e o DROPIAMOR + NP1 ()P
VienX™eml = @)+ V()P |

It vanishes at some point (&, 7) if and only if 9eA*(€) = 9, (n) = 0, or if IA*(€) =
M(n) = 0, or if A*(¢) = 9,M?(n) = 0. More precisely, when a = 8 = a, the critical
points are (€,17) € {(,0), (0, ), (x, m)}, whereas, when (a, 8) € {(a,0), (0,a), (0,0)}.
they are (&,n) € {(0,0), (7,0), (0,7), (7, m)} (see Fig. 3.4).

4. Boundary observability of eigenvectors. The main result of this section
is as follows:

PROPOSITION 4.1. For all o € {a,0} and all k € N¥,, the following identity holds
for both acoustic and optic eigensolutions:

e
vl

24(A — 10)2(A — 12)(A — 60)
hQW(Aa,k:)’

(41
(—19A% — 120A + 3600)(A2 + 16A + 240) (4.1)

e II5s = W(A) =

Moreover, for the resonant mode, the following identity holds:

lehllhy =

16 | P 2
6 L“/Q‘ . (4.2)

31 h
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" e [0 — '8
15
0.8 12
0.6 0.9
0.4 0.6
0.2 0.3

(a) a,f=a (b)a=a,Bf=0
18 18
15 15
1.2 1.2
0.9 0.9
0.6 0.6
0.3 0.3
* o 0

() a=o0,f=a (d) a,f=0

Fic. 3.4. Level set representation of the group velocity |V(§7n))\°‘”8 (&,m)| for the biquadratic
approximation of the wave equation. In black, the points where this group velocity vanishes.

Remark 1. The identity (4.1) is the discrete analogue of the continuous one
||<,0"3||H1 = |k (1)|2/2, where ©* () = V2 sin(krx) is the L?-normalized eigenfunction
corresponding to the eigenvalue AF = k?m2.

Remark 2. Due to the monotonicity of the Fourier symbols, we get A%* € (0,10)
and A°* € (12,60), for all k € N%. The quadratic equation —19x2 — 120z + 3600 = 0
has the roots x; = —60(1 +/20)/19 < 0 and x5 = 60/(1 + /20) € (10,12). This
implies that W(A) > 0, for all A € (0,10) U (12,60).

Remark 3. Due to the fact that the numerator of W(A) in (4.1) vanishes for
A =10, A =12 and A = 60 and to the above lower and upper bounds of the Fourier
symbols, we deduce that the coefficient 1/W (A%*) of |go%k/h|2 in (4.1) converges to
infinity as kh — 1 both when o = a or a = o and as kh — 0 when a = o.

Proof of Proposition 4.1. Fix a € {a,0} and k € N§. Obviously, it is enough to
prove (4.1) for the un-normalized eigenvectors <,~0?L’k. We will use two approaches
to prove the identity (4.1). The first one consists on using the classical multiplier
zj(Pj+1 — Pj—1)/2h (which is a discrete version of the continuous one z¢,) in the
spectral problem (3.6) and then to apply the Abel summation by parts formula

N

N
Z Qi1 — b = aN+1bN+1 - a1b0 - Za]+l bJ+1 —b; ) (43)
j=1 7=0
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for all (a;)jeny,,, € € CN*! and (b))jeny,, € CNT2 In what follows, we will add
the superscript «, k to the solution @, of (3.6). In this way, we deduce the following
identity, with w as in (3.7):

hs | ok | o s . ok za
§Z|%+kli%"k| 5’ P A £ 1) hZ Fhe5
j:

By replacing the crossed sum h Z —0 ng]D‘ +k1 @5’ ¥ obtained from the above identity

corresponding to the + sign into the one with the — sign, we get:

h ¢?+k1 95;” 2 205" 1 w(A*F) h ok | sk
0 D (44
Z‘ ’ h2( (Aak)+1)+h2 +1 Z’@]Jrl_'_ ‘ )
Using the representation (3.15) of the || - ||,1-norm of the optic and acoustic

eigenvectors in terms of the nodal components, we obtain that (4.4) is equivalent to

~a.k 2|3 12 A“’“ sok | ~onk|2
153, = — 2] 2|@7+1+ ak|?

h? (w(A“”“)—i—l) (45)

. o w(A)—1 A?
with  f(A) := w1 T 12(21% INER

By replacing (3.14) into (3.15), we obtain the following identity:

~a,k ~ak2

~ak
L@z o + L4 Z|%+y+ :

15" 1171
(4.6)

. . 25A(A—12) A—60
with  g(A) := 12(A-10)2 ~ 2(A—-10)"

On the other hand, by multiplying by ¢,, in (3.2), we obtain the following relation
between the || - ||5,0 and || - ||5,1-norms of the eigenvectors:

~ ok ~ak
len"llh. = hQH I1%.0- (4.7)

By replacing (4.7) into (4.6), we get

Ak — 12 2 ok

N
~a,k ~a,k
hZfSDJH +; | Wh 171 (4.8)

By combining (4.5) and (4.8), we obtain the identity below, from which (4.1)
follows immediately:

|:1 o Aa,k —12 f(Aa’k):| H ~ o,k
Aok g(Aa,k})

2 ’SDN ’
(Aa kY +1
The second approach to prove (4.1) is much more direct. It consists in using
the representation (3.15) of the || - ||5,1-norm of the eigenvectors, the trigonometric
identities (3.16), the fact that |p% k\ = |sin(kwh)| and the relation (3.7). Thus, for w
as in (3.7) and W as in (4.1), we get:
o,k
Rt |12 WA H) + 4] i | (1 w(aeh) 1
e (el re(e ) WRe
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( A0)1/2 |

+

( Ao)1/2 |

ay1/2
(AD™F

Fic. 5.1. The selected area contains square roots of eigenvalues whose eigenvectors gen-
erate the truncated class 7’;“”1,7,077711. With triangle/circle/square-shaped markers, the acous-

tic/optic/resonant mode.

The identity (4.2) follows by combining the explicit expressions (3.13) of the
components of the resonant eigenvector and (2.4). This concludes the proof of (4.2).
t

5. Discrete observability inequality: an Ingham approach.

5.1. The observability inequality. In this section we prove that the discrete
observability inequality (2.6) holds uniformly as h — 0 in a truncated class of initial
data, with the observation operator By, as in (2.7). More precisely, consider 0 < A% <
10 and 12 < A® < A% < 60 and correspondingly the wave numbers

g2 = (A)71(A%) and 2 = (A°) (A3, (5.1
Set I* :=[0,n%], I° := [%,n°] and introduce the subspace of C*V*! given by
Thons o 2. = span{@?* krh € I°} @ span{@?", krh € 1°}.
Consider the truncated subspace Sy, C V, defined by (see also Fig. 5.1):
Sh = (Thmz me mz X Thaa e m2) N V. (5.2)
The main result of this subsection is as follows:

THEOREM 5.1. For all A% € (0,10) and A < A9 € (12,60) independent of h,
all initial data (UM0,UMY) € Sy, with Sy, as in (5.2) and %, n% given by (5.1), and

for any observability time T > Tﬁim‘lmi , with
T = 2
T2 min{ min 9, A%(n), min (—9,A\°(n))}’
nele nele

the observability inequality (2.6), with By, as in (2.7), holds uniformly as h — 0.

Proof of Theorem 5.1. The fact that the eigenmodes involved in the class ﬂlvﬂiﬂiiﬂli
are such that the gap in each branch has a strictly positive lower bound, uniformly
as h — 0, allows us to apply Ingham Theorem (cf. [19], Theorem 4.3, pp. 59). More



P>-FEM APPROXIMATION OF WAVES: PROPAGATION, OBSERVATION, CONTROL 17

precisely, the spectral gap on each branch ()\Z"k)lgkg N, with « € {a, 0}, is bounded
as follows:

DV ™ min 10,A%(n)| >0, Vk s.t. kxh, (k+1)wh e I°.

Then v = y(n%,n%,n%) = 7mmin{minyese A% (n), mingero(—9,A°(n))} > 0 is
the uniform gap needed to apply the Ingham theory. From (3.22) and the definition
of the class Th e no e, we get

Z Z Z A" exp(it A M) k.

*+ a€{a,o0} krhel®

By applying the inverse inequality in Ingham Theorem (cf. [19], pp. 60, (4.9)), we

can guarantee that, for all T' > 27w /vy = T;ivniv"i’ there exists a constant C_(T") > 0

k’ > Un (£) 12
Al < [
0
Using the identities (4.1) and ||<sz||}211 = Az’k, we obtain the inequality below

(in which W is as in (4.1)):
r Un(t)|2
oy N (l
W (A /( ; ) dt.
0

Taking into account that for the filtering algorithm under consideration A €
[0,A9]U[A%,A%] C [0,10)U(12,60) (with uniform inclusion as i — 0 due to the fact
that AY and A% do not depend on h), and that for A € [0,10) U (12,60), the weight
W is strictly positive, we can guarantee that

independent of h such that

@ > > [t

+ ae{a,o} kmhel>

MY > Y AvtagtPw

+ a€{a,o} krhel®

C_(n%,n%,n%) = Aol )U(A° i)W(A) is strictly positive.

Then the proof concludes by taking in (2.6) (with By, as in (2.7)) the observability
constant Cp,(T') := C_(T)C_(n%,n%,n%), which is independent of h. O

5.2. The admissibility inequality. Using the direct inequality in Ingham The-
orem (cf. [19], pp. 60, (4.8)), we can also prove that inequality (2.8) (with By as in
(2.7)) holds uniformly as h — 0, for all T > 0, with ¢, (T') := 1/(C+(T)C+(n%,1%,1%)),
where C' (T') is the constant of the direct Ingham inequality and C'y (n¢,1%,7%) below
is bounded:

C(n®,n°,n%) = W(A).
(g, n%,n3) rci0.AB e ae) (A)

6. Discrete observability inequality: a bi-grid algorithm.

6.1. The observability inequality. In this section, N is an odd number. We
consider the space L, containing discrete piecewise linear functions given below

Ly =A{Fn = (Fjja)jeny,,» Fo=Fny1 =0, Fji1/0 = (Fj + Fj41)/2, Vj € Ny}
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and the space B, of functions whose nodal components are given by a bi-grid algorithm,
i.e. the even components are arbitrarily given and the odd ones are computed as
average of the two even neighboring values:

Bh :=A{Fn = (Fjj2)jensy, - Fo = Fnt1 =0, Fojp1 = (F2j+F2j42)/2, Vj € Nvo1)2}-
We also define the subspace Sy, of Vp,
Sy = ((Lh N Bh) x (LpN Bh)) N V. (6.1)

The aim of this section is to prove that the observability inequality (2.6) still
holds uniformly as h — 0 for initial data in the bi-grid subspace S, in (6.1):

THEOREM 6.1. For allT > 2 and all initial data (UY,U}) in the adjoint problem
(2.2) belonging to Sy, introduced in (6.1), the observability inequality (2.6) with Bp,
given by (2.7) holds uniformly as h — 0.

Remark 4. Note that, in the bi-grid filtering mechanism we have designed, the
data under consideration have been taken, before filtering through the classical bi-grid
algorithm, to be piecewise linear in each interval (xj,xj4+1), j € Z, which imposes a
further restriction. This allows to obtain the sharp observability time.

The bi-grid filtering algorithm proposed in Theorem 6.1 yields optimal observabil-
ity time, i.e. the characteristic one T* = 2. This is due to the fact that for a numerical
scheme the minimal time required for the observability to hold is 2/v, where v is the
minimal group velocity involved in the corresponding solution. From our analysis, we
will see that the bi-grid filtering algorithm above acts mainly as a Fourier truncation of
the whole optic diagram and of the second half (the high frequency one) of the acoustic
one. Consequently, v := min, (o~ 21 OyA*(n). Since the group velocity of the acoustic
branch, 0,\*(n), is increasing on [0, /2], we conclude that v = 0,A\*(0) = 1 and then
the observability time of the numerical scheme is sharp: T > 2. The following two
auxiliary results hold:

PROPOSITION 6.2. If the initial data (U9, U}) in (2.2) belong to (Ly x Lp) NV,
then the resonant Fourier coefficients in (3.22) vanish, i.e.

ulL =0 (6.2)
and the optic and the acoustic ones are related by the following two identities:
~a ~a kmh
Z (u+’k + ™k (ma’k —n** cos (;)) =0 (6.3)
a€{a,o}
and

krh
3 k@t - ack) <m0~k — n®* cos <g)> = 0. (6.4)

a€{a,o}

Taking squares in (6.3) and (6.4) and in view of (3.18), we deduce that

Aa,k ) Wl (Aa,k)

~ok | ~o,k ~a,k | ~ak
@k + 5% |2:fi(m %" +avk2, (6.5)

Wi (AoF) N
where fy(x) =1, f_(z) =z, for all z € R, and

A?(A? + 16A + 240)

A) = .
Wi(4) (A —10)(19A2 4 120A — 3600)
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Proof of Proposition 6.2. We will prove only (6.2) and (6.3), the proof of (6.4) being

similar to the one for (6.3). Observe that the Fourier representation of the identity
that characterizes U?L € Ly is

@* 4 g2 kmh )
Z Z k k <m0£,k _ na,k cos (g)) Sln(kﬂl'j+1/2) (66)

a€{a,o} k=1
. 15

+ (u”. +u’ sin((N + )7z ; ,
(@, + ) Y2 (N + D172

for all j € Ny. Multiplying (6.6) by sin(lmz;,;/5), | € Ny, adding in j € Ny and
taking into account the orthogonality property below, we conclude the two identities

(6.2) and (6.3):

N
0
h Z Sin(kﬁl'j+1/2) Sin(lﬂ$j+1/2) = utli ; Vk,l S N?\/-{-l' O

- 2
7=0

The total energy of the data (U%,U}) € (L, x L) NV in (2.2) can be written
only in terms of the nodal components and coincides with the one of the P;-finite
element method

N 0 0
h Us, . —yo,2
0 Uly= = 2+l 75
En(U;,Uy,) = 5 ;:0‘ 5

Taking into account the form of the Fourier coefficients (6.2) and (6.5) corresponding
to linear initial data, we obtain that the Fourier representation of the total energy
(6.7) is as follows (f1 being as in (6.5)):

£4(U3,U}) = QZZA”(HJ;(AM);V;& §)|A“kiﬂ‘i’k|2. (6.8)

k=1

N

b U UL + U (6

7=0

The second auxiliary result establishes that for initial data in the bi-grid subspace
Sp, in (6.1), the high frequency Fourier coefficients on the acoustic branch can be
evaluated in terms of the low frequency ones:

PROPOSITION 6.3. For each element (UY,U}) € Sy, introduced in (6.1), the
following identities hold:

aj1r,(N+1)/2 — ge(N+D/2 _ 0, (6.9)

a,k’ Ww- a,k’
~a,k’ Aak nw Q(A’ )Aak ~a,k
_ + 6.10
e nk Wg(Aa,k) (@y™ +u"), ( )

with k' :== N +1—k, and

a,k’ a,k
ok ~ak MO W (ASF ) A —ak  ~ak
uy”t —ul = ek Wy(AeE) AR (uy™ —ul"), (6.11)

for all k € N?N—l)/Q’ with

(60 — A)(A —10)(A —12)
(A% +16A +240)2

Wa(A) =
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Taking squares in (6.10-6.11), we obtain that

k! | ~ak’ @k |2 _ W (A% a% k

[ul"” +u 7W3(Aavk) +a%k)? (6.12)

and

‘g ACF W (AGR)
~a,k’ Aa k 3 ~a,k ~a,k |2
o8 Jjgek g 6.13
a2 - P = o e 02— (613)
for all k € N{y_,) /o, where W3 is as follows and Wy is as in (6.11):

(A —10)(A? + 16A + 240)
19A2 + 120A — 3600

W3 (A) := W3 (A)

Proof of Proposition 6.3. Due to the orthogonality in HY of the eigenvectors in £Fp,
to the fact that U) € L}, and using the representation (3.18) of the normalized
eigenvectors, the following identity holds:

4(60 — ATF)
(k)2 + 16A%F + 260

~a,k

Aa g +uZ (U(f)m SOZJC)}L,O =

N
n®kp Z Uy sin(kmz;). (6.14)
j=1

Now, using the fact that UY € By, we get

> krh, MR
hz U]Q sin(kra;) = 2 cos? (T)h Z Ugj sin(kmrag;).

j=1 j=1

Taking (3.7) into account, we obtain

(N-1)/2
a4F 4+ A" = 16Wo(AF)n™Fh " UY; sin(kras;). (6.15)
j=1
For k = (N + 1)/2, we obtain ™72 4 g@WN+/2 — o Since sin(kray;) =

(N 1) /2U0

—sin(k'mzo;), by equating the expressions of h )~ sm(kwmgj) from the iden-

tity (6.15) corresponding to k = k, k', we get (6. 10) The proof of (6.11) is similar,
based on the fact that (U}, 4.0 = iX¢* (@%" —a®"), from which, for k = (N+1)/2,
we obtain eNVHD/2 _ gaN+D/2 _ concluding (6.9). O

Replacmg the Fourier representations (6.12) and (6.13) into the total energy

with linear initial data (6.8), we obtain that energy corresponding to initial data
(UY,U}) €Sy, in (6.1) is given by

-1)/2
£n (U3 Z ZA“k Polast £at?, (6.16)

where the low and high frequency coefficients are given by (f+ being as in (6.5))

Aok Wi (Aa,k) hi Wi (Aa,k’) Ws (Aa,k/)
7) 17 T Ao B0 W7 k= 1 + 7 )
Aa,k Wl(Ao,k) s Wl(Ao,k ) WB(Aa,k)

Wlio,k: = 1+sz(
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with ¥ := N +1—k, and

i A ( A W1<Aa”f’)> Wa(A)
+k

Aak + Aak’ Wl(Ao,k’) Wg(Aa,k) :

For any § € (0,1) which does not depend on h and any solution (3.22) of (2.2), let
us introduce its projection on the first [§(N + 1)| frequencies of the acoustic branch
to be (here, |a] is the integer part of « € R)

[6(N+1)]
T$UL (%) Z Z AP exp(HitAd M)tk (6.17)

Observe that the projection (6.17) is still a solution of (2.2), therefore its total energy
is conserved in time. Set

[6(N+1)]
En(T5(UR,UL)) = En(T5UL(0), T5UL.(0) = Y ARF([ag™ P + [a®*?).
k=1

The following result provides an upper bound of the total energy of the solutions of
(2.2) with initial data (U9,U}) € Sy, in (6.1) in terms of the total energy of their
projections on the first half of the acoustic mode:

PROPOSITION 6.4. For any solution Uy (t) of (2.2) with initial data (UY,U}) €
Sp in (6.1), there exists a constant C > 0 which does not depend on h such that

En(U, Up,) < C&(I] (U}, U})). (6.18)

Proof of Proposition 6.4. In order to obtain the estimate (6.18), we claim that it is
sufficient to prove that there exist W, Wi’ > ( independent of h such that Wi” e <

Wl and WjE e < < Wl for all 1 <k < (N —1)/2. Assuming this for a moment, we
can take C := max{W.L W]} for which (6.18) holds.

Let us now analyze the boundedness of the four coefficients VVli",C and W 1 in
(6.16). Observe that Wl_ok involves the product of Wj(A“*) and 1/W; (A% k) for
kh < 1/2. But Wi(A) is singular only for A — 10, whereas for kh < 1/2, due
to the increasing nature of A®, we have A%* < A%(7/2) = 60/(13 + 2v/31) < 3.
Also 1/W1(A) is singular as A — 0, but, since A° is decreasing in 7, we get A®* >
A°(m/2) = (52 + 8v/31)/3 > 30 for all kh < 1/2. In the same way, W1°, contains
the product of Wy (A®*)/A%* with A%F /W, (A%F), for kh < 1/2. The second factor,
A/Wi(A), has a singularity as A — 0, but is evaluated for A = A%* which is far from
the singularity, for all kh < 1/2. Since W;(A) contains the factor A2, we deduce that
W1(A)/A has the same singularities as Wi (A), i.e. A = 10, but since we work on the
first half of the acoustic diagram, A%* is far from that singularity. We conclude the
existence of W% > 0 independent of h such that Wj["k < Wl

The coefficient Wi”k contains two terms. The first of them contains the factors
Wg(A“’k,) and 1/W3(A%*). Since W3(A) is not singular for any A € (0,10) U (12, 60),
then W5(A%*") is bounded for all kh < 1/2. On the other hand, 1/W5(A) has three
singularities: A = 10, A = 12 and A = 60. Since all A-s situated on the first half of
the acoustic mode are far for all the three singularities, we deduce the boundedness
of 1/W5(A®*). The second term is a product of four factors: Wi (A@F"), Wy(A®H),
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1/Wi(A°*") and 1/Ws3(A%F). In view of our previous analysis, we deduce the bound-
edness of the last three factors. The first one blows-up like 1/(10 — A%*") for small k.
Nevertheless, in the same range of k-s, W3(A®*") behaves like (10—A®*")3 compensat-
ing in this way the singularity of the first factor Wi (A%*"), so that W (A%F ) W5 (A%F")
is bounded, for all kh < 1/2.

The coefficient W, also contains two terms. The first of them includes the fac-
tors: A“F' | 1/A®F Wy(A®*) and 1/W5(A%*). We have already analyzed the first,
the third and the fourth ones. The second one blows-up like sin~?(kmh/2) for small
k. But, as we said, Ws(A®*") behaves like (10 — A%*)3 ~ sin®(krh/2) for small k,
compensating the singularity of the second factor, 1/A%*. In this way, W3 (A"vk/)/Aan
is bounded, for all kh < 1/2. The second term in Wf’k contains the factors 1/A%*,

AOF W3 (A“F") and 1/Ws3(A%F) and is bounded by the same arguments we used for

the first term. Consequently, there exist W/ > 0 such that Wfk < W, which con-

cludes the proof. O
Remark 5. Set ,C(;{ . {Fh = (Fj/2)j6N5N+1 S.1. Fj+1/2 = a(Fj +Fj+1), j S NN}

and S := (L N Bp) x (LY N By)) N Vy. Observe that L, = £3/* and Sy, = S/,
where Sy, is the space in (6.1). We want to point out that the result of Theorem 6.1
is not longer true when replace S, by SiY, with o # 1/2, so that the condition on the
initial data to be linear is sharp. Indeed, when replacing Sy, by S5¥, in particular Wj_"k
in (6.16) has to be substituted by

AR WRASR)
Aa7k W{I(AOJ‘:), Wl (A) -

(A2 + 16A + 240)(40 — 80cr + (1 4 8a)A)?
25(A — 10)(19A2 + 120A — 3600)

Wi =1+

One can show that, for o # 1/2, it is not longer true that W{(A%*) — 0 as kh — 0,
so that this factor cannot compensate the singularity of 1/A%* as kh — 0, like for
a =1/2. Consequently, for o # 1/2, at least W_i_o,? is not bounded for k € N?N_l)/Q.

Proof of Theorem 6.1. Proposition 6.3 ensures that the total energy of the initial data
in Sy, introduced in (6.1) is uniformly bounded by the energy of their projection on the
first half of the acoustic mode. On the other hand, Theorem 5.1 guarantees that the
observability inequality (2.6) with B}, as in (2.7) holds uniformly as  — 0 in the class
of truncated data lying on the first half of the acoustic mode. Combining these two
facts, one can apply a dyadic decomposition argument as in [16] and conclude the proof
of Theorem 6.1. O

6.2. The admissibility inequality. In the rest of this section, our aim is to
prove the direct inequality (2.8) for the boundary operator By in (2.7) using the
spectral identities (4.1) and (4.2). Firstly, let us observe that, for all matrix operators
By, and all T > 0, we get the following inequalities:

T T
/ I BRU ()| B di = / (BaS: Y2 BuST 252U (1), SY2U, (1)) o dt
0 0
T
< ||(B}LS;1/2)*BhS}:1/2||(C2N+1 /(ShUh(t)aUh(t))(CZN“ dt
0

< 2T&,(UY, UMN||(BrS;, /)" BuSy 2| a1 (6.19)
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For any matrix A, the matrix norm || -||c2~+1 involved in the right hand side of (6.19)
is defined as

4" Allean i = max_[|AM, g |axr.
llenllno=
In the above definition of the norm of a matrix, we can reduce the set of test functions
to ¢, € EF), introduced in (3.20), which is an orthonormal basis in R2V*+1. Let us
remark that for any eigenfunction ¢;,, € £F, the corresponding eigenvalue Ay, € EVy,
verifies the identity S} 1/2 1/2go = A;l/Qcph. Consequently, for any matrix By, and
@y, € EFp, the followmg identity holds:

1B4S; 2 M, 2y [comn = ALY Bugpy[cons (6.20)
Using (6.20), (4.1) and (4.2) for By, as in (2.7), we conclude that
_ _ 3
B, S-V2y< g, g=1/2)12 _ ‘QON‘ W(A). >
1B S, )" By g orctr, Ay X{Ae(o,{g)%)%m,ﬁo) @), 16}

is independent of h.

7. Convergence of the discrete controls. In this section, we describe the
algorithm of constructing the discrete controls of minimal L?(0, T')-norm and we prove
their convergence towards the continuous HUM boundary control o(¢) in (1.7) as
h — 0, under the hypothesis that both inverse and direct inequalities (2.6) and (2.8)
hold uniformly as h — 0. As we saw in the previous sections, the above hypothesis
holds when the initial data in the adjoint system (2.2) is filtered through a Fourier
truncation or a bi-grid algorithm.

7.1. Description of the algorithm. Using the admissibility inequality (2.8)
and the observability one (2.6), one can prove the continuity and the uniform coercivity
of Jp, defined by (2.12) on S C V4, where Sp, can be both the truncated space (5.2)
or the bi-grid one (6.1). Moreover, it is strictly convex. Applying the direct method
for the calculus of variations (DMCV) (cf. [5]), one can guarantee the existence of an
unique minimizer (U9, U}) of Jy, ie.:

Ty := (0}, U}) = (UOI{}IJ;E s, (U}, Up,). (7.1)
Moreover, the Euler-Lagrange equation (2.13) associated to Jj, characterizes the
optimal control (2.14).
Remark that when the space of initial data in (2.2) is restricted to a subspace
Snp C Vp, for example the ones given by (5.2) or (6.1), the exact controllability
condition (2.10) holds for all (UY,U}) € S;. This does not imply that the fi-
nal state (Y +(T), —Yxr(T)) in the controlled problem (2.9) is exactly controllable
to the rest, but its orthogonal projection I's, from V) on the subspace Sp, i.e.
s, (Y (T),—Y,(T)) = 0, meaning that

(Yni(T), =Yu(T)), (U3, Up))v; v, =0, ¥(UR, U}) € Sh.

_7.2. The convergence result. Set 9y,(t) to be the last component of the control
Vi (t) in (2.14) (the other ones vanish). Since Z, < J,(0,0) = 0 and taking into
account the inverse inequality (2.6), we obtain:

[ 1m0 at < sc)levh~YDIR,. o) = s G, (72)
€(0,
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where C},(T) is the observability constant in (2.6) under filtering.

Set EF = {pF(x) = V2sin(knz)}, AF := k272, AP := k7 and £2 be the space of
square summable sequences. Since £F is a Hilbertian basis in each H*(0,1), s € R,
the initial data (y', —y°) € V to be controlled in the continuous problem (1.1) admits
the following Fourier decomposition:

Z AP (), with g% = (y%, ") 12, i =0, 1. (7.3)
k=1
Moreover, their || - ||y-norm has the following Fourier representation:
1 0412 — |??k’1‘2 ~k,012
1" =) =D o Tl : (7.4)

k=1

Since the set £F), introduced in (3.20) is a basis in R2V ! the initial data (Y}, YY) €
V; to be controlled in the discrete problem (2.9) admit the following decomposition

N

Y= Y gk L grion Wi =0,1, (7.5)
a€e{a,o} k=1

with

gg"w‘ = ( Lwi’k)h,m a € {a,0},1 <k <N, and zf,; = (Y, @m)no,¥i=0,1.

Their || - [ly; -norm can be written in terms of the Fourier coefficients as follows:
gt e k0)2 0
0 ~r,0)2
1Y h, =Y}, = Z > Tt ’z +Z >l 0% (7.6)
k=1a€{a,o0} h k=1a€{a,o}

The main result of this section is as follows:
THEOREM 7.1. In the controlled problem (2.9), we consider initial data with the
following two properties:

~a,k,1 ~k,1

Y Yy ; PN .

( ;\‘Zk ) - ( G )k, @Z’k’o)k — (T as h — 0, weakly in £, (7.7
k

and

~0,k,1
(yh > =0, @)% —0ash—0, weakly in 2. (7.8)
k

Then
O, =0 as h—0, weaklyin L*(0,T), (7.9)

where @y, is the last component of the discrete optimal control Vy,(t) given by (2.14)
and obtained by the minimization of the functional Jn on the subspace Sy, defined
in (5.2) or in (6.1) and 0(t) is the continuous HUM control (1.7). Moreover, if the
convergence in both (7.7) and (7.8) is strong, then the controls in (7.9) also converge
strongly.
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The next result gives sufficient conditions for (7.7-7.8) to hold weakly/strongly:
PROPOSITION 7.2. For all y° € L?(0,1) and y' € H=1(0,1), we define their
projections on Uy, to be

Z S Gt (@) + gien(a), i = 0,1, (7.10)

k=1 a€{a,o0}

where
fyf’o = (yo,gof)Lz and ﬂfl = <y1,(‘0§>H—1,H67 with B = (a, k) or B =r. (7.11)

Then (7.7) and (7.8) hold. Moreover, yh , ﬂ;l/)\z — 0 as h — 0. For all y° €
H}(0,1) and y* € L*(0,1), we define their projections on Uy, by (7.10), in which

~3,0 (yoa<ﬂ§)H1 ~3,1 8
Yy = TO and G, = (y', @) )12, with B = (a,k) or B=r. (7.12)
h

Then (7.7) and 7.8) hold strongly as h — 0.

Proof of Theorem 7.1. Firstly, let us observe that from (7.7) and (7.8), we obtain that
there exists a constant C' > 0 independent of A such that

(Y5, =Yp)llv, <C. (7.13)

By combining (7.2) and (7.13), we get the uniform boundedness as h — 0 of the
discrete control 9, in L2(0,T), so that

o, — 0% as h—0, weaklyin L*(0,T). (7.14)

It is sufficient to prove that the weak limit v* coincides with the continuous HUM
control ¥ given by (1.7).

The control © can be characterized as the unique control v in (1.1) which can be
expressed as the space derivative of a solution of the adjoint problem (1.3) evaluated
at x = 1. Then, we have to prove that v* is an admissible control of the continuous
wave equation, i.e. it verifies the identity (1.6), and that o* = 4% (1,t), where u*(z, t)
is the solution of the adjoint problem (1.3) for some initial data (@*°, a*1) € V.

Step I - The weak limit ¢* is a control in the continuous problem (1.1).
Since {(£¢*/i\*, p*), k € N} is an orthonormal basis in V := H} x L?(0, 1), then the
fact that v is a control in (1.1), so it satisfies (1.6), is equivalent to prove (1.6) for all
initial data of the form (u® u') = (£p*/iA* @), k € N. The solution of the adjoint
problem (1.3) with this kind of initial data is u(z,t) = £ exp(£i\*(t — T))p"(z)/iNk.
Condition (1.6) is equivalent to the following one:

(_1)k ykl
v(t) exp(L£it\*) dt = 7% (Ak ;@’“0> ,Vk € N. (7.15)

N

Let us check that o* satisfies (7.15). To do it, we distinguish between the two cases
of subspaces Sy, of filtered data. Firstly, let us consider the case of Fourier truncated
initial data, i.e. Sh is given by (5.2). A particular class of initial data in S} is
(U9, U}) = (:I:goh /Mh N7 ¥y, for which the solution of the discrete adjoint problem
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(2.2) is Up(t) = £ " exp(£idy " (t — T)) /Ay ", for all kxh < n%. From (2.13), w
see that the discrete control vy, verifies the identity

/ SR E
/ Uy, (t) exp(£it Ay Fydt = ok sin(};ﬂh) )}\la = Figy"" |, Vkrh <n%.  (7.16)
" o\

Let us fix k¥ € N (independent of k). In that case, exp(:l:it/\Z’k) — exp(£itAF) as
h — 0 strongly in L?(0,T), so that, taking into account the weak convergence (7.14),
we can pass to the limit as h — 0 in the left hand side of (7.16) and we obtain the left
hand side of (7.15) with v substituted by ©*. On the other hand, taking into account
the condition (7.7), which is valid for all test sequences in 2 and in particular for
the basis functions of 2, e¥ = (0,---,0,1,0,---) (meaning that the weak convergence
in ¢? is a pointwise convergence), and additionally the fact that n®* — /2 and
)\Z’k/sin(kwh)/h — 1 as h — 0 for each fixed k, passing to the limit as h — 0 in the
right hand side of (2.13), we obtain the right hand side of (7.15). Then, the weak
limit o* of the optimal control ¥, obtained by minimizing the functional J; on Sy, in
(5.2) is a control for the continuous problem.

Let us consider now the case of linear data given by a bi-grid algorithm, i.e. Sy, is
as in (6.1). Taking into account Propositions 6.2 and 6.3, we see that, for initial data
(U9,U}) € Sy, the Fourier representation (3.21) has the more particular form

(N-1)/2 (N-1)/2
Ug _ Z (aik o k)w and Uh — Z (a(ik o k)l)\a k¢h (717)
k=1 k=1

The basis function ¢ generating Sy, has the explicit form below (with &’ := N+1—k):

Wa(A™F) Ws(A*Y) o | Ws(A%F) Wy (A™F)
k 4 o,k 5 a,k 5 ok
- - ST ’ ’ 1
Vh = Ph W4(Ao,k)9°h W (Aak) P+ Ws (AeF) W4(A0’k’)¢h , (7.18)
where

WaA) = -2 Ji(a) and wa(p) = SO DA10@—12) [z

A—10 (A2 4+ 16A + 240)2

and W as in (3.17). Let us fix k € N?Nfl)/2 and consider the homogeneous problem

(2.2) with initial data (U9, UL) = (s¢*/iA&* k), s € {=1,41}, for which the
solution takes the form

Uty = Y (@t ey + gt e ), (7.19)
a€{a,o}

where the low frequency coefficients are T-"(t) := s exp(is\y"(t — T))/(iAP*) and

ok Wa(AF) 1/ s 1 ok
Ulo (t) = W§2(7)\Z»ki AOk)eXp(ZIZ'L)\ (t*T))

while the high frequency ones are as follows (with ¥ := N +1 — k):

a,k’ s
Uy (1) = WZ 1( ot Ahl ) exp(zixg ¥ (1 = 7))
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and

ok Ws(AY) WA ) <1/ s 1 o’
T = e Waaem) 22 (g * sgm) PN =T

By considering the particular class of solutions given by (7.19) into (2.13), we see
that the control 0y (t) satisfies the identity

T (_1)k hAa,k @\a k 1
/f)h(t) exp(isAP*t) dt = —h ( h is@i’k’0>
0

nek sin(krh) \ A0*

is(—=1)F  hALF (
n®k  sin(kwh)

Ef 1 + Ef,) exp(isAi"T),  (7.20)

where the error terms are as follows (with &' := N + 1 — k)

T
& k sin( k7rh Ao k k ~a, k

Ep,=—(=1) On(t ulo n" + § , Un; ( )dt

0 a€e{a,o}

and
k _ ~o, Ao,k: ~a,k’ o k /\O,]C/\O k /\oc k
Eh,2 - h, ulo Z h,1 “hi —Yn ,0 lo t Z Up; t
a€{a,o} a€{a,o}

Passing to the limit as h — 0 in the left hand side and in the first term in the
right hand side of (7.20) can be done as for the truncated space S, in (5.2). Therefore,
in order to prove that the weak limit 0* satisfies (7.15), it is enough to show that the
error terms are small as h — 0, i.e.

|Ef 1| — 0 and |Ef 5| — 0 as h — 0. (7.21)

From the fact that the L?(0, T')-norm of the discrete control @, () is uniformly bounded
as h — 0, the Cauchy-Schwartz inequality and the explicit expressions of ﬂf;k(t),

/\07

a2 ¥ (t) and @9 (t), we obtain

k E,3\1/2
|Eh1|<c\/>(Ehi+Eh1+E 3) )

where
Bl = |no,k|2‘ II;ZE/X:]’:;‘ (SmA(f;Th) N Sini(f:h))’
e iy | (R ),
BE o2 ’ 4(A° ,k:)‘z’m(m’k’)’ (sm 2(kmh) +sin2(k7lrh))7
, A(AOF )| W5 (AaF) Aok Aok

k' :=N+1—k and Wy, Ws are as in (7.18).
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On the other hand, since the || - ||y, - norm of the initial data (Y}, Y}) to be
controlled is uniformly bounded as h — 0, we see that

|Ef 5| < C(Eyy + By + ER)'?,

with
k1. _ Aok 2, ~0,k 2 W4(Aa"k) 2 AOF
By =Ny g, S (0)7 + ulo7t(0)| = ‘W4(Ao,k)‘ (Amk + 1>’
R N W (Aa,k’) 2 Aa,k’
k2 a,k’ ak 2 a,k 2 5
B3 = A O + 1L 0P = |3 Gen | (e +1):
k':=N+1—Fk and
o Aok
3= APV A O)P + [a55,(0) \ \ et o P ).

For a fixed k € N, let us study the limit ash—>OofE}’:;,for1 <i<3,1<5<2

From |n®*]2 — 3W(60) = 10 (W introduced in (3.17)), |[Wi(A®*)> —
[W4(0)]2 = 0, [W4(A2F)|> — |[W,4(60)|? = 24/25, sin®(krh)/A%* — 1 and
sin?(kmh)/A%F — 0, we see that Eﬁi —0as h— 0.

From [n®* |2 — 3W(10) = 0, [W5(A“F)|2 — |[W5(10)|2 = 0, |[W5(A“F)]2 —
[W5(0)|2 = 1/96 and sin®(krh)/A®* — 0, we see that E,’ff — 0as h— 0.
Remark that [n®¥|2 — 3W(12) = 6, [W4(A>*)]2 — |W4(12)]* = 72 and
sin?(kmwh)/A°F = 0, but [Wi(A**)2 = |W4(10)]2 = oo. Nevertheless,
|VV4(A“"’“l)|2|I/V5(A“"'“/)|2 — 0, so that, at the end, Ei? —0ash—0.
Remark that A®* — 60 and A®* — 0. Moreover, |[W,(A%F)2 — 0 like
This compensates the singularity of 1/A%*, so that EZ; — 0 as

h — 0.

|W5(A®*)[2 — 0 since it involves the factor (10— A®*")3 ~ sin®(kxh/2). This
cancels the singularity introduced by 1/A%* ~ 1/sin?(kwh/2) and ensures
that E,’jg —+0as h—0.

|VV4(A“”“/)|2|I/V5(Aa’k/)|2 — 0 since it contains the factor (10 — A%F)2 ~
sin?(kwh/2), which compensates the singularity of 1/A%* ~ 1/sin?(kwh/2)
so that E:S’—H)ashﬁo

This concludes (7.21) and the fact that the weak limit o* of the sequence of
discrete HUM controls obtained by minimizing the functional J} over the bi-grid
class Sy, in (6.1) is a control in the continuous problem (1.1).

Step II - The weak limit v* is the normal derivative of a solution of
the continuous adjoint problem (1.3). Consider (U9, U}) € S;, (which in what
follows can be both the subspace in (5.2) or the one in (6.1)) to be the minimum of
the functional J;. Due to the uniform nature of the observability inequality (2.6),
Eh(ﬁg, fJ}L) is uniformly bounded, i.e. there exists C' > 0 independent of h such that

a, akO ~a,k,1
Enl Z > Aptla +la, P <C. (7.22)

k 1 a€e{a,o}
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Due to the property (6.2), the resonant mode in the solution of the adjoint problem
(2.2) for initial data in the filtered space Sy, in (5.2) or in (6.1) vanishes, so that the
Fourier representation of the total energy in the left hand side of (7.22) is valid for
both filtered spaces S, in (5.2) and (6.1).

Remark however that the high frequency components vanish for data in the trun-
cation subspace Sy, in (5.2). On the other hand, for data in the bi-grid space S in
(6.1), the relations between the optic and the acoustic modes and the high frequencies
in the acoustic mode and the lowest ones described in Propositions 6.2 and 6.3 hold.

From (7.22), we deduce the following weak limits as A — 0 in £2:

~o0,k,1

’k/;a,k,() ~x,k,0 ~a,k,1 ~k,k,1 u ~0,k,0

Ot = e @ = @ (S ) @ 0 (723)
h

Set @i(x) == Y00, @ " oF(x). Remark that (@*°,a"!) € V and denote by

4*(z,t) the corresponding solution of (1.3). Firstly, we prove that

Un(t)
h

In fact, for arbitrary functions ¢ € L2(0,T) and . € CE(0,T), we will prove the
following estimate:

T ~
‘/(—UNT“)— it 1t dt‘ ‘/ a;(l,t))z/)(t)dt‘
0

+ Cllp = Yellr2(0,1) + Chk”wék)HL?(O,T)v (7.25)

where I'* := T'{ is the projection on the acoustic branch defined by (6.17). In a similar
way, we define the projection on the optic branch, I'°. In order to prove (7.25), we
decompose its right hand side as follows:

— 4% (1,t) as h — 0 weakly in L*(0,T). (7.24)

T ~ T

/(f O ) )y de = / (- %N“) (1,0 ) () de

T T
FOU FOU
+/ [Un(t) (¢(t) dt+/ Un (1) ws() = I + I+ 1.
0 0

Taking into account that 1. € C*(0,T), by integration by parts, we get
r N o1 1 <p°’l
3 _ k k =0, .y o,l N
Ih = (—1) /’lﬁé )(t)<z U,i Wexp(:l:z)\z (t—T))(— T))dt
0 + I=1 h
From the Cauchy-Schwartz and the admissibility inequality, the bound (7.22) and
the fact that AZ’Z > 12/h2 for all [ € N}, we deduce that

7 <|| - MO

19 = Yellz20.7)

L2(0,T)

N
0,1 ~o,l ~o,l 1/2
S = ez (AR P +1E2R) T S 116 - vellzzom
=1
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and

o,l

N
~o, 1 o
D g e (- 57|

B < @] H
5] < [le™|lr (0,T) L2(0,T)

0.1 172051 ~o,l 0.l — 1/2
< 1P a0 (3 AP E P+ A ™) T < ROz 0.m)

Once we get (7.25), we conclude (7.24) by using the following three ingredients:
i) the weak convergence (7.7) combined with the strong convergence n®! — /2,
sin(lrh) /A%t — 1 and

T
/1/1 exp(i(t — T)A) dt—>/w )exp(i(t — T)A) dt as h — 0,
0

allowing us to pass to the limit as h — 0 in I}, := fOT(—F“UN(t)/h)w(t) dt or, equiv-
alently, in the sense of £ in each term on the right hand side of

Ih—ZZ)\alal at(_qysinlmh) /1/} £) exp(£i(t — T)ASY) dt,

)\al
+ =1

so that we can guarantee that the first term I} in the right hand side of (7.25) is
small as h — 0; ii) the density of C¥(0,T) in L?(0,T), allowing to choose ¢ so that
[ — ell2(0,7) is arbitrarily small; iii) an appropriate choice of the mesh size h

according to €, so that hk|\¢£’“>||L2(0,T) is arbitrarily small.
Let us check that o* = @%(1,t) in L?(0,T). Indeed, using (7.14), (7.24), we get:

T T -

[ -
0

0 0

i (1,8)3(t) dt,

~—
<
—
=
U
~
I
o

for any ¢ € L?(0,T). Therefore, 9* = ¢ in L?(0,T) and also @ (1,t)

= 1,(1,t), which,
jointly with the continuous observability inequality (1.4) yields ( 0 gt

) = (@°,a')
in V and then (@ ’k’z)k = (ﬁm)k in £2, i = 0,1. Consequently, once we have identified
that the weak limit of the discrete controls is the continuous HUM control, we get the
I'-convergence of the discrete minimizer to the continuous one.

Step III - Strong convergence of the discrete controls. In order to prove
that 9, converges strongly in L%(0,7)) to ¥ as h — 0, it is enough to prove that

T T
lim/|ﬁh(t)\2dt:/|17(t)|2dt. (7.26)
h—0

0 0

Using as test function Uy (t) in (2.13) the solution Uy (t) of (2.2) corresponding to
the minimizer (U9, U}) € S, of Jj, in (2.12), we get

t

T
SO e = (0¥, (€00 OOy = X BE (@20
0 ac{a,0}
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and, additionally, \|{J;L||2LQ(O7T) = ||ﬁN/h||%2(O,T) (from 2.14). Here,

S LB ) (et £ ) exp(TA)

a,k
+ k=1 A

Let us remark that using the strong convergence of the acoustic part of the initial
data to be controlled (7.7) and the boundedness of the energy of the minimizer of 7},

m%—ZZ(

T
~k,
)(z)\’€~ ta 1) exp(FiTAF) = / (1,t)|* dt.
0

Additionally, [|8[729 7 = I[@z(1,°)[|72( py (from (1.7)). On the other hand, from
the uniform boundedness of the energy of the minimizer of 7, we get

‘Aokl

Ao,k7
|Ph|2<CZ( AT U OIQ)%OashHO,
k=1
which concludes (7.26) and the strong convergence of the optimal control. O

Proof of Proposition 7.2. Consider firstly y° € L?(0, 1), so that y°(z) = D k1 00k (),
with [[y°]]72 = Zk>1
The discrete data y§) constructed in this way is the L?(0, 1)-projection of y° on Uy, in
the sense that (y° — 49, ¢n)r2 = 0 and ||y — yP||r2 < ||y° — éul|r2, for all ¢ € Up,.
Clearly, ||y?]|z2 < ||y°||2, so that, in order to obtain the second weak convergence in
both (7.7) and (7.8), it is sufficient to fix ¥ € N and to show that 7, R0 5 780 and
that g m0 5 0ash — 0. Using the explicit form (3.12) and (3.17) of the eigenvectors
and (3.19), we can easily compute 7, #0 and g;,o as follows:

2 < 00. Take y? € Uy, of Fourier coefficients given by (7.11).

krhy  BA%EAE \ \/6 (Ak)
~a,k,0 _ ~k,0 . 9 ¥ w0
I =Y (2 sin (5) 10— Amk) oo (7.28)

with BF := sin?(kwh/2) + sin(krh)/(kmh) — 1, and

ATO Z’\(% 1)(N+1), ( 8\/ﬁ (729)

20— 1373

The term rz’k’ is of the form Y00  7?m(N+DERO0Z - with (B )men € £2. Tt
converges to zero due to the fact that 1t has an upper bound in terms of the re-
minder of order N + 1 of the series Y, _ [7%°|2. 0

The convergence fy\Z’k’ — g0
holds since A%*/(kmwh)?> — 1 and (/6W (A%k) — 2 as h — 0. Since A>* — 60,
2sin(kwh/2)/(kwh) — 1, (sin(kwh)/(kwh) — 1)/(kwh)? — —1/6 and /6W (A®k) —

V20, we conclude that Uy #0 5 0 as h — 0. The coefficient of the resonant mode, ﬂ;’o
tends to zero as h — 0 due to the fact that (7.29) can be bounded from above by the
reminder of order N 4 1 of a convergent series. One could intult the last convergence
in (7.7) since, for a fixed k € N, 0" — ¥ in L2(0,1). In ¢3*, the vector of nodal
components behaves like v/5¢*, while the one of the midpoints components behaves
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like —v/50% /2, so that it is highly oscillatory. This explains intuitively the second
weak convergence in (7.8).

Let us consider now y' € H=1(0,1), y'(z) = 3,5, 7% (x), with |[y'||%_, =
S sy [7512/(km)? < co. Using the Riesz Representation Theorem (cf. [3], Theorem
5.5, pp. 135), there exists y' € H}(0,1) such that <y1,¢)H71,H3 = (3717¢)Hé and
Ny - = 17 g, with g (x) = 3,5, 5% 9" (2)/(km)?. We construct firstly the
projection of y' € H}(0,1) on U, given by

o N @G @ on ) ms o @' en)uy
yp(z) = Z Py (z) + % ¥ (x) | + T<Ph(x)~
k=1 Ay Ay h

Then, in order to find the approximation y; € U, of y', we solve (y;, On)g-1,H1 =
(T &)z for all g, € Up. But, since yy, € Uy, € L*(0,1), (yp, dn) 1,52 = (Ups On) L2,
so that y} has the representation (7.10), with ;’g\‘;’k’l = (7, (p‘;:’k)Hé = (y!, npz’k>H_17H3
and gyt = @ ey = W' eh)m-rmy, e (7.11). In fact, the coefficients Y}, and
?,11 of y; and 7 with respect to the basis (¢j/2)1<j<on+1 in Fig. 2.1 satisfy the
identity Y} = M{lsh?}b. Since gy} is the projection of §' € H}(0,1) on Uy, we get

1Y hllr = 1Yl = 0nlley < 115 ey = 1yl (7.30)
The expression of ﬂg’k’l is similar to the one of ﬂ;’:’k’o in (7.28), so that, since

AR s ke, we get g@R 1 ASF s R0 (k). Also 1/A0% — 0 and therefore g8 /A% —
0 as h — 0 for fixed k € N. These remarks combined with the bound in (7.30) conclude
the first convergence in (7.7) and (7.8).

In order to obtain strong convergence in (7.7) and (7.8), we prove in a similar
way that, for y) and y} of Fourier coefficients given by (7.12), the weak convergence
in (7.7) and (7.8) holds in A' := {(f;);j>1 € £2,2j>1j2\fj|2 < oo0}. The strong
convergence in #2 holds since k' is compactly embedded in ¢2. O

8. Final comments and open problems. In this paper, we do a careful analy-
sis of the numerical pathologies that might occur when approximate the 1-d controlled
wave equation and its adjoint system by P,-finite elements. We design several filtering
mechanisms for the initial data in the discrete adjoint problem based on the Fourier
truncation method and on the bi-grid algorithm and prove their efficiency. In the
last part of this article, we prove the convergence to the continuous HUM control
of the discrete controls obtained by minimizing the functional J, in (2.12) over the
restricted space of Fourier truncated or of bi-grid data.

The main difficulty to study the P»-finite element approximation of the control
problem with respect to previous analyzed methods (finite differences or P;-finite
elements, see [9] or [26]) is generated by the presence of the added optic branch of
the spectrum. This spurious mode is not an inconvenient for the convergence of
the method in the classical sense of numerical analysis, but it adds two new points
of vanishing spectral gap as h — 0 to the one on the acoustic diagram. This is
an added drawback for the uniform observability to hold. The Fourier truncation
method, whose efficiency is justified by a classical result of Ingham (cf. [19]), is
computationally expensive in practice. Its use can be avoided by implementing R.
Glowinski’s bi-grid method introduced in [10]. The main contribution of this paper
is to present an adaption of this two-grid strategy to the the P;-approximation under
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consideration, in which the spectrum is more complex and has several wave numbers
of vanishing group velocity. The optic mode of the spectrum is generated by the
dynamics of the values of the numerical solution at the midpoints of the grid. Thus,
the most natural strategy to attenuate the pathologies generated by the optic mode
is to restrict the class of initial data to linear ones in each computational cell. The
proof of the convergence of this remedy follows the methodology in [16].

In [9], it was proved that, for initial data (y°,y') € Hg x L?(0,1) in the continuous
control problem (1.1), the numerical controls obtained for the finite difference or the
linear finite element semi-discretization of the wave equation (1.1) by minimizing the
discrete quadratic functional over a filtered space converge to the continuous HUM
controls with an error order h?/3. This is due to the fact that |\, (€) — €| ~ h2€3,
where A, (§) can be each one of the dispersion relations for the finite difference or
finite element approximation of the wave equation. It is well-known (cf. [2]) that the
accuracy of the finite element method increases with the order of the polynomial in
the approximation. Indeed, one can easily check that the acoustic dispersion relation
AL (&) of the P, - finite element method approximates the continuous one & with an
error of order h*&5 for all £ € [0, /], so that the convergence error for the numerical
controls obtained by the bi-grid algorithm in the quadratic approximation of the wave
equation increases to h*/® under the regularity assumption (y°,y') € H} x L?(0,1) on
the continuous initial data to be controlled. In fact, in [22] we observed numerically
this improvement in the convergence rate for the numerical controls when passing
from piecewise linear to quadratic finite element approximations.

All the results in this paper can be extended to finite element methods of arbi-
trary order k, with the additional difficulty that when computing the eigenvalues, the
quadratic equation (3.8) has to be replaced by a k-th order algebraic equation in A
which is technically complicated to be solved explicitly. The same difficulty arises
when passing to several space dimensions on triangular uniform meshes. As we saw
in Section 3, one can do an explicit Fourier analysis for the biquadratic finite element
approximation of the 2-d wave equation on quadrilateral uniform meshes in each di-
rection. In that case, it is expected that, by minimizing the corresponding discrete
quadratic functional over an appropriate filtered subspace (obtained for example by
applying a bi-grid technique as in [16] to linear data), the convergence of the optimal
controls in the biquadratic finite element approximations of the 2-d controlled wave
equation to the continuous HUM controls can be achieved.

The results in [8] providing a general method to obtain uniform observability
results for time discretizations of conservative system lead to the extension of our
observability results for the P, - space semi-discretization to fully discrete Py conser-
vative approximations of the wave equation.

The extension of the results in this paper to non-uniform meshes is a completely
open problem.

The last open problem we propose is to design appropriate bi-grid algorithms tak-
ing care of all the singularities of both group velocity and acceleration simultaneously
and ensuring the dispersive properties of the Schréodinger equation approximated in
space using the P - finite element method to hold uniformly as h — 0 (see [15] for
the case when the Schrédinger equation is approximated by finite differences).
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