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Abstract

We consider space semi-discretizations of the 1− d wave equations in a bounded interval
with homogeneous Dirichlet boundary conditions. We analyze the problem of boundary
observability, i.e., the problem of whether the total energy of solutions can be estimated
uniformly in terms of the energy concentrated on the boundary as the net-spacing h → 0.
We prove that, due to the spurions modes that the numerical scheme introduces at high
frequencies, there is no such a uniform bound. We prove however a uniform bound in a
subspace of solutions generated by the low frequencies of the discrete system. When h → 0
this finite-dimensional spaces increase and eventually cover the whole space. We thus recover
the well-known observability property of the continuous systems as the limit of discrete
observability estimates as the mesh size tends to zero. We consider both finite-difference and
finite-element semi-discretizations.

1 Introduction: Finite-difference semi-discretizations

Consider the 1− d wave equation
utt − uxx = 0, 0 < x < L, 0 < t < T
u(0, t) = u(L, t) = 0, 0 < t < T
u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < L.

(1.1)

System (1.1) is well-posed in the energy space H1
0 (0, L) × L2(0, L). More precisely, for

any (u0, u1) ∈ H1
0 (0, L) × L2(0, L) there exists a unique solution u ∈ C

(
[0, T ];H1

0 (0, L)
)
∩

C1
(
[0, T ];L2(0, L)

)
.

The energy of solutions is given by

E(t) =
1
2

∫ L

0

[
| ut(x, t) |2 + | ux(x, t) |2

]
dx (1.2)
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and it is conserved along time, i.e.

E(t) = E(0), ∀0 < t < T. (1.3)

It is by now well known that when T > 2L, the total energy of solutions can be estimated
uniformly by means of the energy concentrated on one extreme of the boundary, say, x = L.
More precisely, for any T > 2L there exists C(T ) > 0 such that

E(0) ≤ C(T )
∫ T

0
| ux(L, t) |2 dt (1.4)

for every finite energy solution of (1.1).
When the energy concentrated on the boundary is measured in both extremes x = 0 and L,

the inequality holds for all T > L.
In this paper we focus on inequality (1.4).
Inequalities of the form (1.4) are related to the boundary controllability of the wave equations.

We refer to [K] and [L] for a systematic analysis of these issues, both in the context of wave
equations and plate models.

In this paper we analyze the analogue of (1.4) for several space semi-discretizations of the
wave equation.

Let us consider first the finite-difference semi-discretization to illustrate the kind of problems
we habe in mind.

Given n ∈ IN we set h = L/(N + 1) and introduce the net

x0 = 0 < x1 = h < · · · < xN = Nh < xN+1 = L (1.5)

with xj = jh, j = 0, · · · , N + 1.
We then introduce the following finite-difference semi-discretization of (1.1)

u′′j (t) = [uj+1(t)+uj−1(t)−2uj(t)]
h2 , 0 < t < T, j = 1 · · ·N

u0(t) = uN+1(t) = 0, 0 < t < T
uj(0) = u0

j , u′j(0) = u1
j , j = 0, · · · , N + 1.

(1.6)

In (1.6) ′ denotes derivation with respect to time.
System (1.6) is a system of N linear differential equations with N unknowns u1, · · · , uN ,

since, in view of the boundary conditions, u0 ≡ uN+1 ≡ 0.
Obviously, uj(t) is an approximation of u(xj , t), u being the solution of (1.1), provided the

initial data
(
u0

j , u
1
j

)
, j = 0, · · · , N + 1 are an approximation of the initial data in (1.1).

The energy of system (1.6) is given by

Eh(t) =
h

2

N∑
j=0

[
| u′j(t) |2 +

∣∣∣∣uj+1(t)− uj(t)
h

∣∣∣∣2
]

(1.7)

which is a discretization of the continuous energy E.
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It is easy to see that the energy Eh is conserved along time for the solutions of (1.6), i.e.

Eh(t) = Eh(0), ∀0 < t < T. (1.8)

The main goal of this paper is to analyze the following discrete version of (1.4):

Eh(0) ≤ C(T, h)
∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt. (1.9)

Note that in (1.9), uN (t)/h represents an approximation of the normal derivative ux(L, t) of the
solution of the continuous system (1.1) since uN+1(t) ≡ 0.

In view of (1.4) one may except that, when T > 2L, there exists C = C(T ) > 0 independent
of h such that (1.9) holds for every solution of (1.6) and for every 0 < h < 1.

The first result of this paper asserts that this is false:

Theorem 1.1 For any T > 0, we have

sup
usolution of (1.6)

[
Eh(0)∫ T

0 | uN (t)/h |2 dt

]
→∞ as h → 0. (1.10)

As we shall see, this is due to the spurious modes that the numerical scheme introduces
at high frequencies. This was already observed by R. Glowinski et al. in [G], [GLL] and
[GL], in connection with the exact boundary controllability of the wave equation in several
space dimensions and the numerical implementation of the so-called HUM method (see J.L.
Lions [L]). In these works two methods were proposed to cure this high frequency pathology:
(a) A Tychonoff regularization procedure for the quadratic functional to be minimized when
computing the controls; (b) A filtering technique to eliminate the short wave length components
of the solutions of the discrete system. The efficiency of both methods was exhibited in these
works by various numerical experiments.

To prove Theorem 1.1 we analyze the spectrum of (1.6) and we use discrete multiplier
techniques to derive sharp observability inequalities of the form (1.9) which are uniform as
h → 0. As we mentioned above, in order for these inequalities to be uniform, one has to rule
out the high frequency spurious modes introduced by the numerical scheme. This will be done
by considering suitable classes of solutions of (1.6) generated by the low frequency eigenvectors
of (1.6), or, in other words, by a suitable truncation of the Fourier development of solutions of
(1.6). Thus, our approach is very close to the filtering technique mentioned above (we refer to
R. Glowinski [G] for a complete discussion of this issue).

To make our statements precise, let us consider the eigenvalue problem associated with (1.6):{
−
[

ϕj+1+ϕj−1−2ϕj

h2

]
= λϕj , j = 0, · · · , N + 1

ϕ0 = ϕN+1 = 0.
(1.11)

Let us denote by λ1(h), · · · , λN (h) the N eigenvalues of (1.11):

0 < λ1(h) < λ2(h) < · · · < λN (h). (1.12)

3



These eigenvalues can be computed explicetely. We have (see [IK], p. 456):

λk(h) =
4
h2

sin2
(

πkh

2L

)
, j = 1, · · · , N. (1.13)

The eigenfunction ϕk =
(
ϕk

1, · · · , ϕk
n

)
associated to the eigenvalue λk(h) can also be com-

puted explicitely:

ϕk
j = sin

(
j
πhk

2L

)
, j = 1, · · · , N. (1.14)

Solutions of (1.6) admit a Fourier development on the basis of eigenvectors of system (1.11).
More precisely, every solution u = (u1, · · · , uN ) of (1.6) can be written as

u(t) =
N∑

k=1

[
ak sin

(√
λk(h)t

)
+ bk cos

(√
λk(h)t

)]
ϕk (1.15)

for suitable coefficients ak, bk ∈ IR, k = 1, · · · , N , that can be computed explicitely in terms of
the initial data in (1.6).

Before getting into the discussion of the observability of solutions of (1.6) it is interesting
to analyze the boundary observability of the eigenvectors. The following Lemma provides the
answer:

Lemma 1.1 For any eigenvector ϕ = (ϕ1, · · · , ϕN ) of system (1.11) the following identity holds:

h
N∑

j=0

∣∣∣∣ϕj+1 − ϕj

h

∣∣∣∣2 =
2L

4− λh2

∣∣∣∣ϕN

h

∣∣∣∣2 . (1.16)

This identity provides an explicit relation between the total energy of the eigenvectors (the
left hand side of (1.16)) and the energy concentrated on the extreme x = L which is represented
by the quantity | ϕN/h |2.

On the other hand, it is easy to check that

λh2 < 4 (1.17)

for all h > 0 and all the eigenvalues of (1.11). But, obviously, (1.17) does not exclude the blow
up of the constant in the right hand side of (1.16). In fact, on can check that

λN (h)h2 → 4 as h → 0. (1.18)

Therefore blow-up occurs. This immediately yields the negative result of Theorem 1.1.
In order to obtain a positive counterpart to Theorem 1.1 we have to introduce suitable

subclasses of solutions of (1.6). Given any γ < 4 we introduce the class Ch(γ) of solutions of
(1.6) generated by eigenvectors of (1.11) associated with eigenvalues such that

λh2 ≤ γ. (1.19)
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More precisely,

Ch(γ) :=

u =
∑

λk(h)≤γh−2

[
ak sin

(√
λk(h)t

)
+ bk cos

(√
λk(h)t

)]
ϕk with ak, bk ∈ IR

 .

(1.20)
According to Lemma 1.1, the energy of every eigenvector entering in Ch(γ) can be estimated
uniformly in terms of the energy concentrated on the boundary.

The following result guarantees that this is in fact the case for all solutions of (1.6) in the
class Ch(γ) provided the length T of the time interval is large enough:

Theorem 1.2 Assume that γ < 4. Then, there exists T (γ) ≥ 2L such that for all T > T (γ)
there exists C = C(T, γ) such that (1.9) holds for every solution of (1.6) in the class Ch(γ),
uniformly as h → 0.

Moreover,

(a) T (γ) ↗∞ as γ ↗ 4 and T (γ) ↘ 2L as γ ↘ 0.

(b) C(T, γ) ↗ as γ ↗ 4 and C(T, γ) ↘ L
2(T−2L) as γ ↘ 0.

Remark 1.1 Theorem 1.2 asserts that the uniform observability inequality (1.9) holds in the
class Ch(γ) provided T is large enough. In fact, T (γ) → ∞ as γ → 4. This is due to the fact
that the gap between the roots of consecutive eigenvalues vanishes as they approach the critical
value. However, as γ → 0 the observability time T (γ) converges to 2L, which is the observability
time for system (1.1). Note that, according to this result, the uniform observability inequality
(1.9) holds for T > 2L for solutions of (1.6) of the form

u =
∑

λk(h)≤µ(h)

[
ak sin

(√
λk(h)t

)
+ bk cos

(√
λk(h)t

)]
ϕk (1.21)

with µ(h) such that
µ(h)h2 → 0 as h → 0. (1.22)

This allows to recover the observability of the original system (1.1) as the limit as h → 0 of
the observability of solutions of the form (1.21)-(1.22) of the semi-discrete system (1.6).

We also observe that the constant C(T, γ) of the observability inequality (1.9) converges to
L/2(T−2L), which is the constant that one obtains by multiplier techniques for the observability
of the continuous system (1.1).

Roughly speaking, Theorem 1.2 guarantees that the semi-discrete systems are uniformly
observable as h → 0 provided the high frequencies are filtered.

We shall give two proof of Theorem 1.2. The first one is an adaptation of the classical
multiplier techniques that are used to prove the observability of wave and plate equations (see
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[K] and [L]). The second one is based on the classical inequality by Inghan [I] for non-harmonic
Fourier series.

One may think that this results are due to the particular finite-difference discretization we
have considered. But this is not the case. We also consider the finite-element space semi-
discretization and obtain similar results, both, in what concerns the negative result of Theorem
1.1 but also the positive one of Theorem 1.2.

It is also worth mentioning that the phenomena we have described here for the discretizations
of the wave equation have been found earlier in the context of the observability of the 1−d wave
equation with rapidly oscillating periodic coefficients.

Roughly, in both cases, the interaction of waves with the microstructure or the discrete mesh
produces spurious high frequency vibrations that are not observed in the limit continuous model.

The rest of the paper is organized as follows. Section 2 is devoted to the analysis of the
finite-difference approximation. Inparticular, we develop and prove the results stated in this
introduction. Section 3 is enterely dedicated to the analysis of the finite-element discretization.

2 Finite-difference semi-discretization

In this section we analyze in detail the problem of the observability of the finite-difference space
semi-discretization (1.6) of the wave equation (1.1) that we have discussed in the introduction.

First of all we perform a careful analysis of the spectrum. In particular we prove Lemma 1.1
and, as an immediate consequence of it, Theorem 1.1. We then prove Theorem 1.2 in detail using
multiplier techniques. We also indicate how the same results can be recovered using well-known
results on non-harmonic Fourier series.

2.1 Spectral analysis

Let us recall the system that eigenfunctions ϕ = (ϕ1, · · · , ϕN ) and eigenvalues λ of system (1.6)
satisfy: {

−
[

ϕj+1+ϕj−1−2ϕj

h2

]
= λϕj , j = 1, · · · , N

ϕ0 = ϕN+1.
(2.1)

The eigenvalues and eigenvectors of system (2.1) can be computed explicitely. We have (see
[IK], p. 456):

λk(h) =
4
h2

sin2
(

πkh

2L

)
, j = 1, · · · , N (2.2)

and
ϕk =

(
ϕk

j

)
= sin

(
jπhk

2L

)
, k = 1, · · · , N, j = 1, · · · , N. (2.3)

Observe in particular that eigenvectors of the discrete system coincide with the eigenfunctions
sin
(

πkx
L

)
of the continuous one. On the other hand, for k fixed,

λk(h) → π2k2

L2
, as h → 0 (2.4)
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which is the k − th eigenvalue of the continuous system.
The gap between consecutive eigenvalues plays an important role on the analysis of the

boundary observability problem, since very eigenvalues produces time harmonics at x = L that
are almost indistinguisible. For the continuous model we have√

λk+1 −
√

λk =
(k + 1)π

L
− kπ

L
=

π

L
. (2.5)

Thus, the gap, π
L , is independent of the frequency.

However, as we shall see, the gap between consecutive eigenvalues in the discrete problem
decreases at high frequencies and it is of the order of h as h → 0.

We have√
λk+1(h)−

√
λk(h) =

2
h

[
sin
(

πh(k + 1)
2L

)
− sin

(
πhk

2L

)]
=

2
h

[
sin

πhk

2L

(
cos

(
πh

2L

)
− 1

)
+ sin

(
πh

2L

)
cos

(
πhk

2L

)]
≤ 2

h

∣∣∣∣1− cos
(

πh

2L

)∣∣∣∣+ π

L
cos

(
πhk

2L

)
and, taking into account that (N + 1)h = L,

cos
(

πhk

2L

)
= cos

(
π

2
+

(k − (N + 1))hπ

2L

)
= sin

(
((N + 1)− k)hπ

2L

)
and that

2
h

∣∣∣∣1− cos
(

πh

2L

)∣∣∣∣ ≤ π2h

2L2

we deduce √
λk+1(h)−

√
λk(h) ≤ π2h

2L2
+

π

L
sin
(

((N + 1)− k)hπ

2L

)
. (2.6)

Therefore, as soon as
N + 1− k ≤ j ⇔ k ≥ N + 1− j (2.7)

for some j ∈ IN we have√
λk+1(h)−

√
λk(h) ≤ π2h

2L2
+

π2jh

2L2
=

π2

2L2
h(j + 1) (2.8)

This shows that the gap between the roots of the largest j eigenvalues is of the order of h,
with a multiplicative factor that increases as j increases.
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Reciprocally, it can be shown that the gap remains bounded below for the low eigenvalues.
Indeed, √

λk+1(h)−
√

λk(h) ≥ 2
h

sin
(

πh

2L

)
cos

(
πhk

2L

)
− π2h

2L2
(2.9)

=
[
π

L
−O(h)

]
cos

(
πhk

2L

)
− π2h

2L2
.

The right hand side of this inequality converges to π
L as h → 0 when k remains bounded, or even

if k is unbounded but hk → 0. Recall that π/L is the gap between the roots of the eigenvalues
in the continuous model.

2.2 Boundary observability of eigenvectors

The goal of this section is to prove the identity (1.16) of Lemma 1.1.
In view of the explicit values of the eigenvalues and eigenvectors in (2.2) and (2.3) this

identity can be checked easily. However, we shall prove it using multiplier techniques.
We multiply in (2.1) by j(ϕj+1 − ϕj−1)/2 and add for j = 1, · · · , N . Note that this is a

discrete version of the multiplier xϕx. We obtain

1
h2

N∑
j=1

[ϕj+1 + ϕj−1 − 2ϕj ] j
(ϕj+1 − ϕj−1)

2

=
1
h2

N∑
j=1

j

2

[
|ϕj+1|2 − |ϕj−1|2

]
− 1

h2

N∑
j=1

j (ϕj+1 − ϕj−1) ϕj

= − 1
h2

N∑
j=1

|ϕj |2 +
N + 1
2h2

| ϕN |2 +
1
h2

N∑
j=1

ϕjϕj+1

On the other hand,

N∑
j=1

jϕj

(
ϕj+1 − ϕj−1

2

)
= −1

2

N∑
j=1

ϕjϕj+1.

Therefore

1
h2

 N∑
j=1

| ϕj |2 −
N + 1

2
| ϕN |2 −

N∑
j=1

ϕjϕj+1

 = −λ

2

N∑
j=1

ϕjϕj+1. (2.10)

On the other hand, multiplying by ϕj we get

− 1
h2

N∑
j=1

[ϕj+1 + ϕj−1 − 2ϕj ]ϕj = λ
N∑

j=1

ϕ2
j . (2.11)
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We also have
N∑

j=1

[ϕj+1 + ϕj−1 − 2ϕj ]ϕj = 2
N∑

j=1

(
ϕj+1ϕj − ϕ2

j

)
. (2.12)

Combining (2.11) and (2.12) we deduce that

2
h2

N∑
j=1

[
ϕ2

j − ϕjϕj+1

]
= λ

N∑
j=1

ϕ2
j . (2.13)

We normalize the eigenvector so that

h
N∑

j=1

ϕ2
j = 1. (2.14)

In view of (2.13) we deduce that

h

2

(
2
h2
− λ

)
=

N∑
j=1

ϕjϕj+1 =
∑

(2.15)

Going back to (2.10) we deduce that

1
h2

[
1
h
− N + 1

2
| ϕN |2 −h

2

(
2
h2
− λ

)]
= −λh

4

(
2
h2
− λ

)
.

In other words,

(N + 1)h
2

∣∣∣∣ϕN

h

∣∣∣∣2 =
L

2

∣∣∣∣ϕN

h

∣∣∣∣2 =
1
h2

[
1− h2

2

(
2
h2
− λ

)]
+

λh2

4

(
2
h2
− λ

)
(2.16)

= λ− λ2h2

4
= λ

(
1− λh2

4

)
.

On the other hand, taking into account that

2
N∑

j=1

[
ϕ2

j − ϕjϕj+1

]
=

N∑
j=0

| ϕj − ϕj+1 |2

and (2.13) we have

h
N∑

j=0

∣∣∣∣ϕj − ϕj+1

h

∣∣∣∣2 = λ. (2.17)

Combining (2.16) and (2.17) we deduce that

h
N∑

j=0

∣∣∣∣ϕj − ϕj+1

h

∣∣∣∣2 =
2L

(4− λh2)

∣∣∣∣ϕN

h

∣∣∣∣2 . (2.18)

This completes the proof of Lemma 1.1.
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2.3 Proof of the non-uniform observability

This section is devoted to prove Theorem 1.1. As indicated in the Introduction, it is an inmediate
consequence of Lemma 1.1. Indeed, let u be the solution of (1.6) associated to the N − th
eigenvectors, i.e.,

u = ei
√

λn(h)tϕN . (2.19)

According to Lemma 1.1 we have∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt = T

∣∣∣∣ϕN,N

h

∣∣∣∣2 =
Th

2L

(
4− λN (h)h2

) N∑
j=0

∣∣∣∣ϕN,j − ϕN,j+1

h

∣∣∣∣2 . (2.20)

On the other hand

Eh(0) =
h

2

N∑
j=0

[
|ϕN,j − ϕN,j+1|2

h2
+ λN (h) |ϕN,j |2

]
(2.21)

= h
N∑

j=0

[
|ϕN,j − ϕN,j+1|2

h2

]
.

In view of (2.20) and (2.21) we deduce that

Eh(0)∫ T

0
|uN (t)/h|2 dt

=
2L

T (4− λN (h)h2)
. (2.22)

Moreover, in view of (2.2):

λN (h)h2 = 4 sin2
(

πNh

2L

)
= 4 sin2

(
π

2
− hπ

2L

)
(2.23)

= 4 cos
(

hπ

2L

)
→ 4 as h → 0.

Combining (2.22) and (2.23), Theorem 1.1 follows inmediately.

2.4 Boundary observability of the discrete wave equation: the multiplier
method

This section is devoted to prove Theorem 1.2 using the multiplier method. First of all we stablish
some basic identities.

Lemma 2.1 (Conservation of energy) For any h > 0 and u solution of (1.6) we have

Eh(t) = Eh(0), ∀t ∈ [0, T ]. (2.24)
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Proof. We multiply in (1.6) by u′j(t) and add for j = 1, · · · , N .
We have

N∑
j=1

u′′j u
′
j =

1
h2

N∑
j=1

(uj+1 + uj−1 − 2uj) u′j . (2.25)

On the other hand,
N∑

j=1

u′′j u
′
j =

1
2

d

dt

N∑
j=1

| u′j |2, (2.26)

and

−
N∑

j=1

(uj+1 + uj−1 − 2uj) u′j =
1
2

d

dt

N∑
j=0

| uj − uj+1 |2 (2.27)

Combining (2.25)-(2.27) we deduce that

d

dt

N∑
j=0

[
| u′j |2 + | uj − uj+1 |2

]
= 0

which is equivalent to (2.24).

Lemma 2.2 For any h > 0 and u solution of (1.6) we have

h

2

N∑
j=0

∫ T

0

[
u′ju

′
j+1 +

∣∣∣∣uj+1 − uj

h

∣∣∣∣2
]

dt + Xh(t)
∣∣∣∣T0 =

L

2

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt (2.28)

with

Xh(t) = h
N∑

j=1

j

(
uj+1 − uj−1

2

)
u′j . (2.29)

Remark. Identity (2.28) is the discrete analogue of the well-known identity for the 1− d wave
equation (1.1) obtained by multipliers that reads as follows (see [L]):

1
2

∫ T

0

∫ L

0

[
| ut |2 + | ux |2

]
dxdt + X(t)

∣∣∣∣T0 =
L

2

∫ T

0
| ux(1, t) |2 dt (2.30)

with

X(t) =
∫ L

0
xux ut dx. (2.31)

Note that main difference between (2.28)-(2.29) and (2.30)-(2.31) is that, in (2.28), we get

h
N∑

j=0

∫ T

0
u′ju

′
j+1dt

as a discretization of
∫ T
0

∫ L
0 u2

t dxdt, which is not a positive definite quantity.
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Proof of Lemma 2.2.
We multiply in (1.6) by j (uj+1 − uj−1) /2 which is a discrete version of the classical multiplier

xux for the wave equation. We obtain

N∑
j=1

∫ T

0
u′′j

(uj+1 − uj−1)
2

dt =
1
h2

N∑
j=1

∫ T

0
(uj+1 + uj−1 − 2uj) j

(uj+1 − uj−1)
2

dt. (2.32)

We now develop the two terms in this identity. For the first one we have:

N∑
j=1

∫ T

0
u′′j j

(uj+1 − uj−1)
2

dt = −
N∑

j=1

∫ T

0
u′jj

(
u′j+1 − u′j−1

)
2

dt (2.33)

+
N∑

j=1

u′jj
(uj+1 − uj−1)

2

∣∣∣∣T
0

=
1
2

N∑
j=1

∫ T

0
u′ju

′
j+1dt +

N∑
j=1

u′jj
(uj+1 − uj−1)

2

∣∣∣∣∣∣
T

0

.

On the other hand

N∑
j=1

∫ T

0
(uj+1 + uj−1 − 2uj) j

(uj+1 − uj−1)
2

dt =
1
2

N∑
j=1

∫ T

0
j
[
| uj+1 |2 − | uj−1 |2

]
dt (2.34)

−
N∑

j=1

∫ T

0
juj(uj+1 − uj−1)dt = −

N∑
j=1

∫ T

0
| uj |2 +

(N + 1)
2

∫ T

0
| uN |2 dt +

N∑
j=1

∫ T

0
ujuj+1dt

= −1
2

N∑
j=0

∫ T

0
| uj − uj+1 |2 dt +

(N + 1)
2

∫ T

0
| uN |2 dt.

Combining (2.32)-(2.34) we deduce that

h

2

N∑
j=0

∫ T

0

[
u′ju

′
j+1 +

| uj − uj+1 |2

h2

]
dt + Xh(t)

∣∣∣∣∣∣
T

0

=
(N + 1)h

2

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt =
L

2

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt.

This concludes the proof of the Lemma.
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Lemma 2.3 (Equipartition of energy) For any h > 0 and u solution of (1.6) the following
identity holds:

−h
N∑

j=1

∫ T

0
| u′j |2 dt + h

N∑
j=0

∣∣∣∣uj − uj+1

h

∣∣∣∣2 + Yh(t)

∣∣∣∣∣∣
T

0

= 0 (2.35)

with

Yn(t) = h
N∑

j=1

u′juj

∣∣∣∣∣∣
T

0

. (2.36)

Proof. We multiply in (1.6) by uj . Note that this is the discrete version of the classical
multiplier u for the wave equation. We obtain

N∑
j=1

∫ T

0
u′′j ujdt−

N∑
j=1

(uj+1 + uj−1 − 2uj)
h2

uj = 0. (2.37)

On the other hand,

N∑
j=1

∫ T

0
u′′j ujdt = −

N∑
j=1

∫ T

0
| u′j |2 dt +

N∑
j=1

u′juj

∣∣∣∣∣∣
T

0

(2.38)

and
N∑

j=1

(uj+1 − uj−1 − 2uj) uj = −
N∑

j=0

| uj − uj+1 |2 . (2.39)

Combining (2.37)-(2.39) we deduce that (2.35) holds.

We may now proceed to the proof of Theorem 1.2.
In view of the conservation of energy, identity (2.28) may be rewritten as

TEh(0) +
h

2

N∑
j=0

∫ T

0

[
u′ju

′
j+1− | u′j |2

]
dt + Xh(t)

∣∣∣∣∣
T

0

(2.40)

=
L

2

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt

On the other hand

N∑
j=0

∫ T

0

[
u′ju

′
j+1− | u′j |2

]
dt = −1

2

N∑
j=0

∫ T

0
| u′j − u′j+1 |2 dt (2.41)

13



The right hand side of (2.41) can be estimated as follows. Let Λ be the largest eigenvalue in
the Fourier development of u. Then

u =
∑

|µk|≤
√

Λ

ake
iµktϕk (2.42)

with µk =
√

λk for k > 0 and µ−k = −µk. Therefore

u′ = i
∑

|µk|≤
√

Λ

akµke
iµktϕk. (2.43)

Thus

N∑
j=0

∣∣∣u′j − u′j+1

∣∣∣2 =
N∑

j=0

∣∣∣∣∣∣∣
∑

|µk|≤
√

Λ

akµke
iµkt

(
ϕk,j − ϕk,j+1

)∣∣∣∣∣∣∣
2

(2.44)

N∑
j=0

∑
|µk|≤

√
Λ

µ2
k | ak |2

∣∣∣ϕk,j − ϕk,j+1

∣∣∣2

+
N∑

j=0

∑
|µk|≤

√
Λ

|µ`|≤
√

Λ
µk 6=µ`

µkµ`e
i(µk−µt)t (ϕk,j − ϕk,j+1) (ϕk,` − ϕk,`+1) .

The following identities holds:

Lemma 2.4 For any eigenvectors ϕ with eigenvalues λ of (2.1) the following identity holds:

N∑
j=0

∣∣∣∣ϕj − ϕj+1

h

∣∣∣∣2 = λ
N∑

j=1

| ϕj |2 . (2.45)

If ϕk and ϕ` are eigenvectors associated to eigenvalues λk 6= λ` it follows that

N∑
j=0

(ϕk,j − ϕk,j+1) (ϕ`,j − ϕ`,j+1) = 0. (2.46)

Proof. Multiplying in (2.1) by ϕj and adding for j = 1, · · · , N the identity (2.45) follows
inmediately.

In order to get (2.46) we multiply by ϕ`,j the equation satisfied by ϕk,j . It follows that

λk

N∑
j=1

ϕk,jϕ`,j = − 1
h2

N∑
j=1

(ϕk,j+1 + ϕk,j−1 − 2ϕk,j) ϕ`,j . (2.47)
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Now multiplying by ϕk,j the equation satisfied by ϕ`,j we deduce that

λ`

N∑
j=1

ϕk,j = − 1
h2

N∑
j=1

(ϕ`,j+1 + ϕ`,j−1 − 2ϕ`,j) ϕk,j . (2.48)

On the other hand,

N∑
j=1

(ϕ`,j+1 + ϕ`,j−1 − 2ϕ`,j) ϕk,j =
N∑

j=1

(ϕk,j+1 + ϕk,j−1 − 2ϕk,j) ϕ`,j . (2.49)

Therefore

(λ` − λk)
N∑

j=1

ϕk,jϕ`,j = 0.

Thus
N∑

j=1

ϕk,jϕ`,j = 0 (2.50)

and consequently

N∑
j=1

(ϕk,j+1 + ϕk,j−1 − 2ϕk,j) ϕ`,j =
N∑

j=1

(ϕk,j+1 + ϕk,j−1) ϕ`,j = 0.

Therefore
N∑

j=1

ϕk,j+1ϕ`,j = −
N∑

j=1

ϕk,j−1ϕ`,j = −
N∑

j=1

ϕk,jϕ`,j+1.

In other words
N∑

j=1

[ϕk,j+1ϕ`,j + ϕk,jϕ`,j+1] = 0, (2.51)

which, in view of (2.50) is equivalent to (2.46).

In view of the identities (2.45)-(2.46) the term in (2.44) can be rewritten as

N∑
j=0

| u′j − u′j+1 |2 =
∑

|µk|≤
√

Λ

| ak |2 λ2
kh

2
N∑

j=1

|ϕk,j |2

≤ Λ
∑

|µk|≤
√

Λ

| ak |2 λkh
2

N∑
j=1

|ϕk,j |2

= Λh2
N∑

j=1

∣∣∣u′j∣∣∣2 .
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Therefore
N∑

j=0

∫ T

0

[
u′ju

′
j+1 −

∣∣∣u′j∣∣∣2] dt ≥ −Λh2

2

∑
j

∫ T

0

∣∣∣u′j∣∣∣2 dt. (2.52)

Combining (2.40) and (2.52) we deduce that

TEh(0)− Λh2

4
h

N∑
j=0

∫ T

0

∣∣∣u′j∣∣∣2 dt + Xh(t)

∣∣∣∣∣∣
T

0

≤ L

2

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt. (2.53)

In view of the equipartition of energy identity (2.35) it follows that

h
N∑

j=1

∣∣∣u′j∣∣∣2 dt =
∫ T

0
Eh(t) +

1
2
Yh(t)

∣∣∣∣T0 TEh(0) +
1
2
Yh(t)

∣∣∣∣T
0

. (2.54)

Combining (2.53) and (2.54) we deduce that

T

(
1− Λh2

4

)
Eh(0) + Zh(t)

∣∣∣∣∣
T

0

≤ L

2

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt (2.55)

with

Zh(t) = Xh(t)− Λh2

8
Yh(t) (2.56)

= h
N∑

j=1

u′j

[
(uj+1 − uj−1)

2
− Λh2

8
uj

]
,

for every solution of (1.6) in which Λ is the largest eigenvalue entering in its Fourier expansion.
The following provides an estimate on the term Zh:

Lemma 2.5 For any h > 0, t ∈ [0, T ] and u solution of (1.6) in which Λ is the upper bound on
the eigenvalues entering in its Fourier development, it follows that

| Zh(t) |≤

√
L2 − Λh4

16
+

3Λh2

16λ1
Eh(0). (2.57)

Proof. We do not make explicit the time dependence to simplify the notation. We have

| Zh |≤

 N∑
j=1

∣∣∣u′j∣∣∣2
1/2  N∑

j=1

∣∣∣∣j (uj+1 − uj−1)
2

+ ηuj

∣∣∣∣2
1/2

(2.58)

with η = −Λh2/8.
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On the other hand

h
N∑

j=1

∣∣∣∣(uj+1 − uj−1)
2

+ ηuj

∣∣∣∣2 = h
N∑

j=1

[
j2

4
|uj+1 − uj−1|2 + η2u2

j + ηj (uj+1 − uj−1) uj

]

≤ h
N∑

j=0

[
j2

2
|uj+1 − uj |2 +

j2

2
|uj − uj−1|2 + η2u2

j − ηujuj+1

]

≤ L2h
N∑

j=0

| uj − uj+1 |2

h2
− | η | h

N∑
j=1

(
u2

j − ujuj+1

)

+
[
η2+ | η |

]
h

N∑
j=1

u2
j =

(
L2 − | η | h2

2

)
h

N∑
j=0

∣∣∣∣uj − uj+1

h

∣∣∣∣2

+
[
η2+ | η |

]
h

N∑
j=1

u2
j =

[
L2 − | η | h2

2
+
(
η2+ | η |

)
λ1

]
h

N∑
j=0

∣∣∣∣uj − uj+1

h

∣∣∣∣2 ≤
≤
[
L2 − Λh4

16
+

3Λh2

16λ1

]
h

N∑
j=0

∣∣∣∣uj − uj+1

h

∣∣∣∣2 . (2.59)

In the last step we have used the fact that

h
N∑

j=1

u2
j ≤

1
λ1

h
N∑

j=0

∣∣∣∣uj − uj+1

h

∣∣∣∣2
which is the discrete version of Poincaré’s inequality and can be deduced easily from (2.45)-(2.46),
and also that η2+ | η |≤ 3

2 | η | which is a consequence of the fact that | η |= Λh2/8 ≤ 1/2 as it
is inmediately seen from (2.2).

Combining (2.58)-(2.59) we deduce that

| Zh |≤

√
L2 − Λh4

16
+

3Λh2

16λ1

h
N∑

j=1

∣∣∣u′j∣∣∣2
1/2h

N∑
j=0

∣∣∣∣uj+1 − uj

h

∣∣∣∣2
1/2

(2.60)

=

√
L2 − Λh4

16
+

3Λh2

16λ1
Eh(0).

Combining (2.55) and (2.57) we deduce thatT/1− Λh2/4)− 2

√
L2 − Λh4

16
+

3Λh2

16λ1

Eh(0) ≤ L

2

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt. (2.61)

As a consequence of (2.61) and taking into account that

Λ = γ/h2
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in the class of solutions Ch(γ) of sistem (1.6) we deduce that

Eh(0) ≤ L

2 (T (1− γ/4) − 2
√

L2 + γ(3/λ1 − h2)/16

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt (2.62)

provided

T > 2

√
L2 − γh2

16
+

3γ

16λ1
/(1− γ/4).

Taking into account that λ1 ≥ π2/2L2 for h sufficiently small, the statement of Theorem 1.2
holds with

T (γ) =
2
√

L2(1 + 3γ/8π2)− γh2/16
1− γ/4

and
C(T, γ) =

L

2 (T (1− γ/4) − 2
√

L2(1− 3γ/8π2)− γh2/16
. (2.63)

2.5 Boundary observability of the discrete wave equation: non-harmonic
Fourier series

In this section we prove Theorem 1.2 using well known results from the theory of nonharmonic
Fourier series.

To do that we need an estimate between the roots of consecutive eigenvalues entering in the
Fourier development of the solutions of (1.6) in the class Ch(γ). We have

Lemma 2.6 Assume that
γ = 4 sin2

(
πε

2

)
(2.64)

for some 0 ≤ ε < 1. Then √
λj+1(h)−

√
λj(h) ≥ π

L
cos

(
πε

2

)
(2.65)

for all eigenvalues in the range

λh2 ≤ γ. (2.66)

Remark. Note that every 0 ≤ γ < 4 can be written in the form (2.65) for some 0 ≤ ε < 1.
Note also that the gap given in (2.66) tends to π/L, the gap in the continuous wave equation, as
ε → 1, i.e., as γ → 4. This is consistent with the estimates of section 2.2 in which we observed
that gap for large eigenvalues is of the order of h.
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Proof. In view of the expression (2.2) the eigenvalues λ satisfy (2.66) with γ as in (2.64) if and
only if

(j + 1)h ≤ εL. (2.67)

Let us now compute the gap:√
λj+1(h)−

√
λj(h) =

2
h

[
sin
(

π(j + 1)h
2L

)
− sin

(
πjh

2L

)]
=

π

L
cos(ξ) (2.68)

for some ξ ∈
[

πjh
2L , π(j+1)h

2L

]
. In view of (2.67), 0 ≤ ξ ≤ πε

2 and therefore cos ξ ≥ cos(πε/2).
Therefore (2.65) holds.

According to Ingham’s inequality [I] and in view of Lemma 2.6 it follows that for any 0 <
ε < 1 and T > 2L

cos(πε/2) there exists positive constant C1(T, ε), C2(T, ε) > 0 such that

C1(T, ε)
∑

λh2≤γ(ε)

| ak |2 ≤
∫ T

0

∣∣∣∣∣∣
∑

λh2≤γ(ε)

ake
i
√

λkt

∣∣∣∣∣∣
2

dt (2.69)

≤ C2(T, ε)
∑

λh2≤γ(ε)

| ak |2,

with
γ(ε) = 4 sin2(πε/2). (2.70)

On the other hand, in the range of eigenvalues

λh2 ≤ γ(ε), (2.71)

according to the identity of Lemma 1.1 it follows that

h
N∑

j=0

∣∣∣∣ϕj+1 − ϕj

h

∣∣∣∣2 ≤ 2L

4− γ(ε)

∣∣∣∣ϕN

h

∣∣∣∣2 =
L

2 cos2(πε/2)

∣∣∣∣ϕN

h

∣∣∣∣2 (2.72)

for any eigenvector ϕ = (ϕ1, · · · , ϕN ) associated to an eigenvalue λ in the range (2.71).
Let us now consider a solution u of (1.6) in the class Ch(γ(ε)). It can be written as

u =
∑

|µh≤
√

γ(ε)

ake
iµk(h)tϕk. (2.73)

According to (2.69) and (2.72) we deduce that, for T > 2L/cos(πε/2),

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt =
∫ T

0

∣∣∣∣∣∣∣
∑

|µk|h≤
√

γ(ε)

ake
iµk(h)tϕk,N

∣∣∣∣∣∣∣
2

(2.74)

≥ C1(T, ε)
∑

|µk|h≤
√

γ(ε)

| ak |2| ϕk,N |2≥ C1(T, ε)L
2 cos2(πε/2)

∑
|µk|h≤

√
γ(ε)

| ak |2 h
N∑

j=0

∣∣∣∣ϕk,j+1 − ϕk,j

h

∣∣∣∣2 .
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Moreover,

Eh(0) =
1
2

∑
|µk|h≤

√
γ(ε)

| ak |2 λkh
N∑

j=1

| ϕk,j |2
+

1
2

∑
|µk|h≤

√
γ(ε)

| ak |2 h
N∑

j=0

∣∣∣∣ϕk,j+1 − ϕk,j

h

∣∣∣∣2


=
∑

|µk|h≤
√

γ(ε)

| ak |2 h
N∑

j=0

∣∣∣∣ϕk,j+1 − ϕk,j

h

∣∣∣∣2
 .

Therefore, as a consequence of (2.74) it follows that

Eh(0) ≤ 2 cos2(πε/2)
LC1(T, ε)

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt (2.75)

for any T > 2L/ cos(πε/2) and for any u ∈ Ch(γ(ε)).
Therefore, Theorem 1.2 holds with

T (γ) =
2L√

1− γ/4
(2.76)

and
C(T, γ) =

2(1− γ/4)
LC1(T, ε)

(2.77)

provided γ = γ(ε).
Observe that the estimate (2.76) obtained by Ingham’s inequality for the observability time

is slightly better then (2.63) obtained by multipliers. However both expressions coincide in the
limit when h → 0.

Note also that, according to (2.69), the reverse inequality also holds, i.e.,∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣ dt ≤ C Eh(0). (2.78)

However, from the identity (2.28) it is easy to see that (2.78) holds for all h > 0, every solution
u of (1.6) and all T > 0 with C = C(T ) > 0.

3 Finite-element semi-discretization

3.1 Problem formulation

Let us consider the finite-element space semi-discretization of the wave equation (1.1):{
2
3u′′j + 1

6u′′j+1 + 1
6u′′j−1 = [uj+1+uu−1−2uj ]

h2 , 0 < t < T, j = 1, · · · , N
u0 = uN+1 = 0.

(3.1)
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Let us recall that system (3.1) is obtained by a Galerkin approximation of the wave equation
when the basis of H1

0 (0, L) is built by means of finite elements

ej(x) =
[
1− | x− xj |

h

]+
, j = 1, · · · , N (3.2)

with xj = jh.
The Galerkin approximation of (1.1) is given by

u =
N∑

j=1

uj(t)ej(x)∫ L

0
u′′, ekdx =

∫ L

0
uxek,xdx, 0 < t < T, ∀k = 1, · · · , N.

(3.3)

System (3.1) can be easily derived taking into account that
∫ 1

0
ejekdx =

h

6
if j = j + 1, j − 1,

∫ L

0
ejekdx = 0 if | k − j |≥ 2∫ L

0
| ej |2 dx =

2h

3
,∀j = 1, · · · , N,

(3.4)


∫ L

0
ej,xek,xdx = −1

h
if k = j − 1, j + 1;

∫ T

0
ej,xek,xdx = 0 if | k − j |≥ 2,∫ L

0
|ej,x|2 dx

2
h

.
(3.5)

The conserved energy for system (3.1) is given by

Eh(t) =
h

6

N∑
j=1

| u′j |2 +
h

12

N∑
j=0

∣∣∣u′j + u′j+1

∣∣∣2 +
h

2

N∑
j=0

∣∣∣∣uj+1 − uj

h

∣∣∣∣2 , (3.6)

i.e.,
Eh(t) = Eh(0), ∀0 < t < T (3.7)

for all h > 0 and for every solution of (3.1).
As in Section 2 above, the goal is to obtain observability inequalities of the form

Eh(0) ≤ C

∫ t

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt. (3.8)

Let us see first that the constant C in (3.8) may not be uniform when h → 0. For that we
analyze the eigenvectors of the system:{

−
[

ϕj+1+ϕj−1−2ϕj

h2

]
= λ

[
2
3ϕj + 1

6ϕj+1 + 1
6ϕj−1

]
, j = 1, · · · , N

ϕ0 = ϕN+1 = 0.
(3.9)

We denote by 0 < λ1 < λ2 < · · · < λN the eigenvalues of (3.9) and by {ϕk}N
k=1 the associated

eigenvectors.
The following identity holds:
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Lemma 3.1 For any h > 0 and any eigenvector of system (3.9) the following identity holds:

h
N∑

j=0

∣∣∣∣ϕj+1 − ϕj

h

∣∣∣∣2 =
6 + λh2

12− λh2
L

∣∣∣∣ϕN

n

∣∣∣∣2 . (3.10)

Moreover, as we shall see
λN (h)h2 → 12 as h → 0. (3.11)

Therefore, as in the case of the finite-difference it follows that:

Theorem 3.1 For any T > 0,

sup
u solution of (3.1)

 Eh(0)∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt

→∞ (3.12)

as h → 0.

In order to prove uniform observability results, for any 0 < γ < 12 we introduce the class of
solutions of (3.1) in which only the terms of the Fourier development corresponding to λh2 ≤ γ
do not vanish. More precisely,

Ch(γ) =

u solution of (3.1) : u =
∑

λh2≤γ

ake
i
√

λk(h)tϕk

 . (3.13)

The following holds:

Theorem 3.2 For any 0 < γ < 12 there exists T (γ) > 0 such that for any T > T (γ) there
exists a positive constant C(T, γ) such that

Eh(0) ≤ C(T, γ)
∫ T

0

[∣∣∣∣uN (t)
h

∣∣∣∣2 +
∣∣∣∣u′N (t)

6

∣∣∣∣2
]

dt (3.14)

for any solution u of (3.1) in the class Ch(γ).
Moreover,

(a) T (γ) ↗∞ as γ ↗ 12 and T (γ) ↘ 2L as γ ↘ 0,

(b) C(T, γ) → L/2(T − 2L) as γ ↘ 0.

Note that the extra term
∫ T
0 | u′N (t) |2 dt appears on the right hand side of the observability

inequality (3.14). This was not the case in the context of the finite-difference. We shall see
that, by using Ingham’s inequality, thiss extra term can be absorved by

∫ T
0 | uN (t)/h |2 dt by

increasing the observability constant.
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As in section 2, the observability inequality (3.14) can be proved by Ingham’s inequality.
However we shall derive it using multipliers.

The rest of this section is organized as follows. First we analyze the spectrum of the system.
Then we orive observability identity (3.10) for the eigenvectors. Then we prove Theorem 3.2 by
multipliers. Finally, using Ingham’s inequality we absorve the term

∫ T
0 | u′N (t) |2 dt from the

right hand side of (3.14).

3.2 Spectral analysis

Let us first compute the eigenvalues and eigenvectors of the system. We assume that the
eigenvectors is of the form ϕk = ϕ(kh) with ϕ(x) = αx. Then, the eigenvalue problem (3.9)
reduces to [

2− αh − α−h
]

h2
= λ

[
2
3

+
αh

6
+

α−h

6

]
,

or, by selting, µ = λh2 and ω = αh, to

ω

(
1 +

µ

6

)
+ ω−1

(
1 +

µ

6

)
−
(

2− 2µ

3

)
= 0. (3.15)

In view of the structure of equation (3.15) we see that if φ(x) = αx solves the discrete equation,
ϕ(x) = α−x is also a solution. Then ϕ(x) = aαx + bα−x is the general solution. Imposing the
boundary conditions ϕ(0) = ϕ(L) = 0 we get that a = −b and the equation

ωN+1 − ω−(N+1) = 0 ⇔ ω2(N+1) = 1.

The roots of unity that provide linearly independent eigenvectors are given by

ωj = eijπ/(N+1), j = 1, · · · , N.

The eigenvectors are then

ϕj(x) = sin
(

πjx

L

)
, j = 1, · · · , N

i.e.,

ϕj,k = sin
(

πjkh

L

)
, j, k = 1, · · · , N. (3.16)

From (3.15) we can obtain the values of µj = λjh
2:

µj =
2− ω − ω−1

ω
6 + ω−1

6 + 2
3

.

Therefore

λj =
1
h2

2− eijπ/(N+1) − e−ijπ/(N+1)

eijπ/(N+1)

6 + e−ijπ/(N+1)

6 + 2
3

=
6
h2

[
1− cos(jπh/L)
2 + cos(jπh/L)

]
(3.17)
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As we mentioned above
λN (h)h2 → 12. (3.18)

Indeed,

λN (h)h2 = 6
[
1− cos(Nπh/L)
2 + cos(Nπh/L)

]
= 6

[
1− cos(π − hπ/L)
2 + cos(π − hπ/L)

]
6
[
1 + cos(hπ/L)
2− cos(hπ/L)

]
→ 12, as h → 0.

It is also easy to see that, for j fixed,

λj(h) →
(

πj

L

)2

, as h → 0. (3.19)

Indeed,

lim
h→0

λj(h) = 2 lim
h→0

1− cos(jπh/L)
h2

=
jπ

L
lim
h→0

sin(jπh/L)
h

=
(

jπ

L

)2

.

Let us now analyze the gap between the roots of the eigenvalues. We have

√
λj+1(h)−

√
λj(h) =

√
6

h


1− cos

(
(j + 1)πh/L

)
2 + cos ((j + 1)πh/L)

1/2

−
(

1− cos(jπh/L)
2 + cos(jπh/L)

)1/2


√

6π

L

[
1
2

(
2 + cos(ξ)
1− cos(ξ)

)1/2 ( e sen ξ

(2 + cos ξ)2

)]
= 3

√
3
2

π

L

(1 + cos ξ)1/2

(2 + cos ξ)3/2
(3.20)

π√
2L

(1 + cos ξ)1/2

for some ξ ∈ [jπh/L, (j + 1)πh/L].
Assume we consider eigenvalues corresponding to the indexes (j + 1)h ≤ εL with 0 < ε < 1.

Then ξ ≤ επ and therefore cos ξ ≥ cos(επ). Going back to (3.20) we deduce the following
Lemma:

Lemma 3.2 For any 0 < ε < 1 the gap between the roots of consecutive eigenvalues associated
to indexes such that

(j + 1)h ≤ εL (3.21)

satisfies √
λj+1(h)−

√
λj(h) ≥ π

L

(
1 + cos(επ)

2

)1/2

. (3.22)

Observe that the lower bound on the gap vanishes as ε → 1. However, it converges to π/L
when ε → 0.
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3.3 Boundary observability of eigenvectors

This section is devoted to prove identity (3.10).
We multiply in both sides of (3.9) by j (ϕj+1 − ϕj−1) /2. Proceeding is in the proof of Lemma

1.1 we obtain:

1
h2

N∑
j=1

[ϕj+1 + ϕj−1 − 2ϕj ] j (ϕj+1 − ϕj−1) /2 = (3.23)

= − 1
h2

N∑
j=1

| ϕj |2 +
N + 1
2h2

| ϕN |2 +
1
h2

N∑
j=1

ϕjϕj+1.

On the other hand,

N∑
j=1

[
2
3
ϕj +

1
6
ϕj+1 +

1
6
ϕj−1

]
j
(ϕj+1 − ϕj−1)

2
=

1
3

N∑
j=1

jϕj (ϕj+1 − ϕj−1) (3.24)

+
1
12

N∑
j=1

j
(
|ϕj+1|2 − |ϕj−1|2

)
= −1

3

N∑
j=1

ϕjϕj+1 −
1
6

N∑
j=1

|ϕj |2 +
N + 1

12
| ϕN |2

Combining (3.23) and (3.24) we deduce that

1
h2

N∑
j=1

| ϕj |2 −
N + 1
2h2

| ϕN |2 − 1
h2

ϕjϕj+1

λ
(N + 1)

12
| ϕN |2 −λ

3

N∑
j = 1ϕjϕj+1 −

λ

6

N∑
j=1

| ϕj |2,

or, in other words,

(N + 1)
[

1
2h2

+
λ

12

]
| ϕN |2 =

(
1
h2

+
λ

6

) N∑
j=1

[
| ϕj |2 −ϕjϕj+1

]
+

λ

2

N∑
j=1

ϕjϕj+1 (3.25)

=
(

1
2h2

+
λ

12

) N∑
j=0

| ϕj − ϕj+1 |2 +
λ

2

N∑
j=1

ϕjϕj+1.

We now multiply in (3.9) by ϕj . It follows that

−
N∑

j=1

[ϕj+1 + ϕj−1 − 2ϕj ]
h2

ϕj = λ
N∑

j=1

[
2
3
ϕj +

1
6
ϕj+1 +

1
6
ϕj−1

]
ϕj . (3.26)

We also have
N∑

j=1

[
2
3
ϕj +

1
6
ϕj+1 +

1
6
ϕj−1

]
ϕj =

2
3

N∑
j=1

| ϕj |2 +
1
3

N∑
j=1

ϕjϕj+1 (3.27)
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and

N∑
j=1

[ϕj+1 + ϕj−1 − 2ϕj ]ϕj = 2
N∑

j=1

[
ϕjϕj+1− | ϕj |2

]
= −

N∑
j=0

|ϕj − ϕj+1|2 . (3.28)

Combining (3.26)-(3.28) we obtain

1
h2

N∑
j=0

|ϕj − ϕj+1|2 =
2λ

3

N∑
j=1

| ϕj |2 +
λ

3

N∑
j=1

ϕjϕj+1

= −λ

6

N∑
j=0

|ϕj − ϕj+1|2 + λ
N∑

j=1

| ϕj |2

i.e., (
1
h2

+
λ

6

) N∑
j=0

|ϕj − ϕj+1|2 = λ
N∑

j=1

| ϕj |2,

or, equivalently, (
1
h2
− λ

3

) N∑
j=1

| ϕj |2=
(

1
h2

+
λ

6

) N∑
j=1

ϕjϕj+1. (3.29)

We normalize the eigenvalues so that

h
N∑

j=1

| ϕj |2= 1.

Then
N∑

j=1

ϕjϕj+1 =
6h

6 + λh2

(
1
h2
− λ

3

)
;

(
6 + λh2

6

)
h

N∑
j=0

∣∣∣∣ϕj − ϕj+1

h

∣∣∣∣2 = λ (3.30)

which, combined with (3.25), gives

L

[
1
2

+
λh2

12

] ∣∣∣∣ϕN

h

∣∣∣∣2 =

(
1
2

+
λh2

12

)
h

N∑
j=0

∣∣∣∣ϕj − ϕj+1

h

∣∣∣∣2 +
λh

2

N∑
j=1

ϕjϕj+1

=

(
1
2

+
λh2

12

)
h

N∑
j=0

∣∣∣∣ϕj − ϕj+1

h

∣∣∣∣2 +
3λh2

6 + λh2

(
1
h2
− λ

3

)

or, equivalently, in view of (3.30),

L

∣∣∣∣ϕN

h

∣∣∣∣2 = h
N∑

j=0

∣∣∣∣ϕj − ϕj+1

h

∣∣∣∣2 +
36λh2

6 + λh2)2

(
1
h2
− λ

3

)
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= h
N∑

j=0

∣∣∣∣ϕj − ϕj+1

h

∣∣∣∣2
(

1 +
6h2

(6 + λh2)

(
1
h2
− λ

3

))

=

(
12− λh2

6 + λh2

)
h

N∑
j=0

∣∣∣∣ϕj − ϕj+1

h

∣∣∣∣2 ,

which is equivalent to (3.10).

As an inmediate consequence of the identity (3.10) and (3.18) we deduce that Theorem 3.1
holds.

3.4 Boundary observability of the discrete wave equation

The main goal of this section is to prove Theorem 3.2. To do that we first prove some basic
identities.

Lemma 3.3 (Conservation of energy) For any h > 0 and any solution of (3.1) it follows
that

Eh(t) = Eh(0), ∀0 < t < T. (3.31)

Proof. Multiplying in (3.1) by u′j we deduce that

N∑
j=1

(
2
3
u′′j +

1
6
u′′j+1 +

1
6
u′′j−1

)
u′j =

N∑
j=1

(uj+1 + uj−1 − 2uj)
h2

u′j . (3.32)

The right hand side term of (3.32) can be treated as in section 2. This yields
N∑

j=1

(
uj+1 + uj−1 − 2uj

h2

)
u′j =

1
2

d

dt

N∑
j=0

∣∣∣∣uj − uj+1

h

∣∣∣∣2 . (3.33)

The left hand side term can be handeled as follows:
N∑

j=1

(
2
3
u′′j +

1
6
u′′j+1 +

1
6
u′′j−1

)
u′j =

2
3

N∑
j=1

u′′j u
′
j +

1
6

N∑
j=1

(
u′′j+1u

′
j + u′′j−1u

′
j

)
(3.34)

=
1
3

d

dt

N∑
j=1

| u′j |2 +
1
6

d

dt

N∑
j=1

u′ju
′
j+1 =

1
6

d

dt

N∑
j=1

| u′j |2

+
1
12

d

dt

N∑
j=1

∣∣∣u′j + u′j+1

∣∣∣2 .

Combining (3.32)-(3.34) we deduce that

dEh(t)
dt

= 0

which is equivalent to (3.31).
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Lemma 3.4 For any h > 0 and any solution u of (3.1) the following identity holds:

TEh(0)− h

12

N∑
j=0

∫ T

0

∣∣∣u′j − u′j+1

∣∣∣2 dt + Xh(t)

∣∣∣∣∣
T

0

=
L

2

∫ T

0

[∣∣∣∣uN (t)
h

∣∣∣∣2 +
|u′N (t)|2

6

]
dt (3.35)

with

Xh(t) = h
N∑

j=1

j (uj+1 − uj−1)
(

1
3
u′j +

1
12

u′j+1 +
1
12

u′j−1

)
. (3.36)

Proof. We multiply in (3.1) by j (uj+1 − uj−1) /2. It follows that∫ N

j=1

∫ T

0

[
2
3
u′′j +

1
6
u′′j+1 +

1
6
u′′j−1

]
j

(
uj+1 − uj−1

2

)
dt (3.37)

−
N∑

j=1

∫ T

0

[
uj+1 + uj−1 − 2uj

h2

]
j

(
uj+1 − uj−1

2

)
dt = I1 − I2 = 0.

Let us develop the two terms in (3.37). The second one I2 can be treated as in the proof of
Lemma 2.2. It follows that

I2 = −1
2

N∑
j=0

∫ T

0

∣∣∣∣uj − uj+1

h

∣∣∣∣2 dt +
(N + 1)

2

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt. (3.38)

On the other hand, in view of (2.33),

I1 =
N∑

j=1

∫ T

0

[
2
3
u′′j +

1
6
u′′j+1 +

1
6
u′′j−1

]
j
(uj+1 − uj−1)

2
dt (3.39)

=
1
3

N∑
j=1

∫ T

0
u′ju

′
j+1dt +

2
3

N∑
j=1

u′jj
(uj+1 − uj−1)

2

∣∣∣∣∣∣
T

0

+
1
12

∫ N

j=1

∫ T

0

(
u′′j+1 + u′′j−1

)
j (uj+1 − uj−1) dt

=
1
3

N∑
j=1

∫ T

0
u′ju

′
j+1dt +

1
3

N∑
j=1

u′jj (uj+1 − uj−1)

∣∣∣∣∣∣
t

0

− 1
12

N∑
j=1

∫ T

0
j

(∣∣∣u′j+1

∣∣∣2 − ∣∣∣u′j−1

∣∣∣2) dt +
1
12

N∑
j=1

(
u′j+1 + u′j−1

)
j (uj+1 − uj−1)

∣∣∣∣∣∣
T

0

=
1
3

N∑
j=1

∫ T

0
u′ju

′
j+1dt +

1
6

N∑
j=1

∫ T

0

∣∣∣u′j∣∣∣2 dt− N + 1
12

∫ T

0

∣∣u′N (t)
∣∣2 dt
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+
N∑

j=1

j (uj+1 − uj−1)
[
1
3
u′j +

1
12

u′j+1 +
1
12

u′j−1

]∣∣∣∣∣∣
T

0

.

Combining (3.37)-(3.39) we deduce that

L

2

∫ T

0

[∣∣∣∣uN (t)
h

∣∣∣∣2 +
|u′N (t)|2

6

]
dt =

h

2

N∑
j=0

∫ T

0

∣∣∣∣uj − uj+1

h

∣∣∣∣2 dt +
h

3

N∑
j=1

∫ T

0
u′ju

′
j+1dt (3.40)

+
h

6

∫ N

j=1

∫ T

0

∣∣∣u′j∣∣∣2 dt + Xn(t)

∣∣∣∣∣
T

0

= TEh(0) +
h

3

N∑
j=0

∫ T

0

u′ju
′
j+1 −

∣∣∣u′j + u′j+1

∣∣∣2
4

 dt + Xh(t)

∣∣∣∣∣∣∣
T

0

.

Finally we observe that

N∑
j=0

∫ T

0

u′ju
′
j+1 −

∣∣∣u′j + u′j+1

∣∣∣2
4

 dt = −
N∑

j=0

∫ T

0

∣∣∣u′j − u′j+1

∣∣∣2
4

dt. (3.41)

Combining (3.40) and (3.41) we obtain (3.35).

Lemma 3.5 (Equipartition of energy) For any h > 0 and any solution u of (3.1) the
following identity holds:

h

∫ T

0

N∑
j=0

∣∣∣∣uj+1 − uj

h

∣∣∣∣2 dt = h

∫ T

0

N∑
j=0

[
1
3

∣∣∣u′j∣∣∣2 +
1
6

∣∣∣u′j + u′j+1

∣∣∣2] dt− Yh(t)

∣∣∣∣∣∣
T

0

(3.42)

with

Yh(t) = h
N∑

j=1

(
2
3
u′j +

1
6
u′j+1 +

1
6
u′j−1

)
uj . (3.43)

Proof. We multiply in (3.1) by uj . It follows that

h
N∑

j=1

∫ T

0

(
2
3
u′′j +

1
6
u′′j+1 +

1
6
u′′j−1

)
ujdt = h

N∑
j=1

∫ T

0

[
uj+1 + uj−1 − 2uj

h2

]
ujdt. (3.44)
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We have

h
N∑

j=1

∫ T

0

(
2
3
u′′j +

1
6
u′′j+1 +

1
6
u′′j−1

)
ujdt = h

N∑
j=1

(
2
3
u′′j +

1
6
uj+1 +

1
6
uj−1

)
uj

∣∣∣∣∣∣
T

0

(3.45)

− h
N∑

j=1

∫ T

0

(
2
3
u′j +

1
6
u′j+1 +

1
6
u′j−1

)
u′jdt

= Yh(t)|T0 − h
N∑

j=1

∫ T

0

(
2
3
| u′j |2 +

1
3
u′ju

′
j+1

)
dt = Yh(t)

∣∣∣∣T
0

− h

N∑
j=1

∫ T

0

(
1
3
| u′j |2 +

1
6
| u′j + u′j+1 |2

)
dt

On the other hand,

h
N∑

j=1

∫ T

0

(
uj+1 − uj−1 − 2uj

h2

)
ujdt = −h

N∑
j=0

∫ T

0

∣∣∣∣uj − uj+1

h

∣∣∣∣2 dt. (3.46)

Combining (3.44)-(3.46) we deduce (3.42).

Let us now estimate the term
N∑

j=0

∫ T

0

∣∣∣u′j − u′j+1

∣∣∣2 dt in (3.35). Let Λ be the largest eigenvalue

entering in the Fourier development of the solution u of (3.1), i.e.,

u =
∑

|µk|≤
√

Λ

ake
iµktϕk (3.47)

with µk =
√

λk for k > 0 and µk = −µ−k when k < 0. Therefore

u′ = i
∑

|µk|≤Λ

akµke
iµktϕk.

Thus

N∑
j=0

∣∣∣u′j − u′j+1

∣∣∣2 =
N∑

j=0

∣∣∣∣∣∣∣
∑

|µk|≤
√

Λ

akµke
iµkt (ϕk,j − ϕk,j+1)

∣∣∣∣∣∣∣
2

(3.48)

=
n∑

j=0

∑
|µk|≤

√
Λ

| ak |2 µ2
k (ϕk,j − ϕk,j+1)

2 +
N∑

j=0

∑
|µk|≤

√
Λ

|µ`≤
√

Λ
µk 6=µ`

µkµ`akā`e
i(µk−µ`)t (ϕk,j − ϕk,j+1) (ϕ`,j − ϕ`,j+1) .

The following identities hold:
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Lemma 3.6 For any eigenvectors ϕ with eigenvalue λ of (3.9) the following identity holds:

N∑
j=0

∣∣∣∣ϕj − ϕj+1

h

∣∣∣∣2 = λ
N∑

j=1

(
2
3
| ϕj |2 +

1
3
ϕjϕj+1

)
= λ

N∑
j=1

[
1
3
| ϕj |2 +

1
6
| ϕj + ϕj+1 |2

]
(3.49)

Moreover, if ϕk and ϕ` are eigenvectors associated to eigenvalues λk 6= λ` it follows that

N∑
j=0

(ϕk,j − ϕk,j+1) (ϕ`,j − ϕ`,j+1) = 0. (3.50)

Proof. Identity (3.49) can be derived easily multiplying in (3.9) by ϕj and adding for j =
1, · · · , N .

To prove (3.50) we multiply by ϕ`,j the equation satisfied by ϕk,j . It follows that

−
N∑

j=1

(ϕk,j+1 − ϕk,j−1 − 2ϕk,j) ϕ`,j = λkh
2

N∑
j=1

(
2
3
ϕk,j +

1
6
ϕk,j+1 +

1
6
ϕk,j−1

)
ϕ`,j . (3.51)

On the other hand,

N∑
j=1

(ϕk,j+1 + ϕk,j−1 − 2ϕk,j) ϕ`,j =
N∑

j=1

(ϕ`,j+1 + ϕ`,j−1 − 2ϕ`,j) ϕk,j . (3.52)

Reversing the role of ϕk and ϕ` in (3.51) we also have:

−
N∑

j=1

(ϕ`,j+1 + ϕ`,j−1 − 2ϕ`,j) ϕk,j = λ`h
2

N∑
j=1

(
2
3
ϕ`,j +

1
6
ϕ`,j−1 +

1
6
ϕ`,j+1

)
ϕk,j . (3.53)

On the other hand,

N∑
j=1

(
2
3
ϕk,j +

1
6
ϕk,j−1 +

1
6
ϕk,j+1

)
ϕ`,j =

N∑
j=1

(
2
3
ϕ`,j +

1
6
ϕ`,j+1 +

1
6
ϕ`,j−1

)
ϕk,j . (3.54)

Combining (3.51)-(3.54) and taking into account that λk 6= λ` we deduce that all the terms
entering in these identities vanish. In particular,

N∑
j=1

(
2
3
ϕk,j +

1
6
ϕk,j+1 +

1
6
ϕk,j−1

)
ϕ`,j = 0;

N∑
j=1

(ϕk,j+1 + ϕk,j−1 − 2ϕk,j) ϕ`,j = 0. (3.55)

Combining the two identities in (3.55) it is easy to see that

N∑
j=1

ϕk,jϕ`,j = 0;
N∑

j=1

(ϕk,j+1 + ϕk,j−1) ϕ`,j = 0. (3.56)

From (3.56) we easily deduce that (3.50) holds.
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In view of Lemma 3.6 the term in (3.48) can be estimated as follows:

N∑
j=0

∣∣∣u′j − u′j+1

∣∣∣2 =
N∑

j=0

∑
λk≤Λ

λk | ak |2 |ϕk,j − ϕk,j+1|2 (3.57)

= h2
N∑

j=1

∑
|µk|≤

√
Λ

λ2
k | ak |2

(
2
3
| ϕk,j |2 +

1
3
ϕk,jϕk,j+1

)

≤ h2Λ
N∑

j=1

∑
|µk|≤

√
Λ

λk | ak |2
(

2
3
| ϕk,j |2 +

1
3
ϕk,jϕk,j+1

)

= h2Λ
N∑

j=1

∑
|µk|≤

√
Λ

λk | ak |2
(

1
3
| ϕk,j |2 +

1
6

(ϕk,j + ϕk,j+1)
2
)

= h2Λ
N∑

j=0

[
1
3
| u′j |2 +

1
6

∣∣∣u′j + u′j+1

∣∣∣2] .

In the last step we have used the fact that

N∑
j=0

[
1
3
ϕk,jϕ`,j +

1
6

(ϕk,j + ϕk,j+1) (ϕ`,j + ϕ`,j+1) = 0

if ϕk and ϕ` are eigenvectors associated to eigenvalues λk 6= λ`, which is a consequence of (3.56).
On the other hand, combining the conservation of energy identity (3.31) and the equipartition

of energy (3.42) we deduce that

h

∫ T

0

N∑
j=0

(
1
3

∣∣∣u′j∣∣∣2 +
1
6

∣∣∣u′j + u′j+1

∣∣∣2) dt = TE(0) +
Yh(t)

2

∣∣∣∣T
0

. (3.58)

Combining (3.40)-(3.41) with (3.57)- (3.58) we deduce that

T

(
1− Λh2

12

)
E(0) + Zh(t)

∣∣∣∣∣
T

0

≤ L

2

∫ T

0

[∣∣∣∣uN (t)
h

∣∣∣∣2 +
|u′N (t)|2

6

]
dt (3.59)

with

Zh(t) = Xh(t)− Λh2

24
Yh(t). (3.60)

The following holds:

Lemma 3.7 For any h > 0 and any solution u of (3.1) it follows that

|Zh(t)| ≤

√
L2 − Λh4

48
− 3Λh2

16λ1
, ∀′ < t < T. (3.61)

32



Proof. To simplify the notation we do not make explicit the dependence on t. We have

Zh8t) = Xh(t)− Λh2

24
Yh(t) = h

N∑
j=1

(
j
(uj+1 − uj)

2
− Λh2

24
uj

)(
2
3
u′j +

1
6
u′j+1 +

1
6
u′j−1

)
=

N∑
i,j=1

mijaibj

with

ai = i
(ui+1 − ui)

2
− Λh2

24
ui; bi = u′i

and
mii =

2h

3
,mij =

h

6
if j = i + 1 or i− 1,mij = 0 if | i− j |≥ 2.

Therefore

| Zh |≤

 N∑
i,j=1

mijaiaj

1/2 N∑
i,j=1

mijbibj

1/2

. (3.62)

On the other hand,

N∑
i,j=1

mijbibj = h
N∑

j=1

[
2
3

∣∣∣u′j∣∣∣2 +
1
6

(
u′j+1 − u′j−1

)
u′j

]
= h

 N∑
j=0

1
3

∣∣∣u′j∣∣∣2 +
1
6

∣∣∣u′j + u′j+1

∣∣∣2
 (3.63)

and

N∑
i,j=1

mijaiaj ≤ h
N∑

j=1

| ai |2=
h

4

N∑
j=1

[
j (uj+1 − uj−1)−

Λh2

12
uj

]2

(3.64)

=
h

4

N∑
j=1

[
2j2 |uj+1 − uj |2 + 2j2 | uj − uj−1 |2 +

Λ2h4

144
u2

j −
Λh2

6
juj (uj+1 − uj−1)

]

≤ L2h
N∑

j=0

∣∣∣∣uj+1 − uj

h

∣∣∣∣2 +
Λ2h5

576

N∑
j=1

| uj |2 +
Λh3

24

N∑
j=1

ujuj+1

= L2h
N∑

j=0

∣∣∣∣uj+1 − uj

h

∣∣∣∣2 − ηh2

2
h

N∑
j=0

∣∣∣∣uj+1 − uj

h

∣∣∣∣2 +
(
η2 + η

) N∑
j=1

| uj |2

≤
(

L2 − ηh2

2
+

3(η2 + η)
λ1

)
h

N∑
j=0

∣∣∣∣uj+1 − uj

h

∣∣∣∣2 ≤
(

L2 − ηh2

2
+

9η

2λ1

)
h

N∑
j=0

∣∣∣∣uj+1 − uj

h

∣∣∣∣2 .

We have used the notation η = Λh2/24, the fact that η ≤ 1/2 and also that

1
3
h

N∑
j=1

| uj |2≤
1
λ1

h
N∑

j=0

∣∣∣∣uj+1 − uj

h

∣∣∣∣2
which is a consequence of (3.49).
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Combining (3.62)-(3.64) we deduce that

| Zh | ≤

h
N∑

j=1

(
1
3
| u′j |2 +

1
6

∣∣∣u′j + u′j+1

∣∣∣2)
1/2 (L2 − ηh2

2
+

9η

2λ1

)
h

N∑
j=0

∣∣∣∣uj+1 − uj

h

∣∣∣∣2
1/2

≤

√
L2 − ηh2

2
+

9η

2λ1
Eh(0).

which is equivalent to (3.61).

Let us now set Λ = γ/h2. Combining (3.59) and (3.61) we obtainT (1− γ/12)− 2

√
L2 − γh2

48
+

3γ

16λ1

Eh(0) ≤ L

2

∫ T

0

[∣∣∣∣uN (t)
h

∣∣∣∣2 +
|u′N (t)|2

6

]
dt. (3.65)

Therefore, the statement of Theorem 3.2 holds with

T (γ) =
2
√

L2 + γ
16

(
3
λ1
− h2

3

)
1− γ/12

and
C(T, γ) =

L

2
(

T (1− γ/12)− 2
√

L2 + γ
16

(
3
λ1
− h2

3

)) .

3.5 Boundary observability of the discrete wave equation: improved esti-
mates

The goal of this section is to get rid of the term
∫ T
0 | u′N (t) |2 dt on the right hand side of (3.14).

Note that the solution u of (3.1) can be written as

u =
∑

ake
iµktϕk

and therefore
u′N (t) = i

∑
akµke

iµktϕk.

Thus ∫ T

0

∣∣u′N (t)
∣∣2 dt =

∫ T

0

∣∣∣∑ akµke
iµktϕk,N

∣∣∣2 dt. (3.66)

We now restrict our analysis to the solutions in the class Ch(γ) that are generated by the
eigenvectors associated to eigenvalues

λ ≤ γ/h2 (3.67)
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with 0 < γ < 12. Restriction (3.67) is equivalent to

(j + 1)h ≤ ε(γ)L (3.68)

for a suitable 0 < ε(γ) < 1. We shall return later to the explicit computation of ε(γ).
Then, according (3.22) the gap between the roots of consecutive eigenvalues in the range

(3.67) is given by
π

L

(
1 + cos(ε(γ)π)

2

)1/2

. (3.69)

Then, according to Ingham’s inequality [I] we deduce that, provided,

T >
2L

((1 + cos(ε(γ)π))/2)1/2
, (3.70)

it follows that

∫ T

0

∣∣∣∣∣∣
∑

|µk|≤
√

γ/h

akµke
iµktϕk,N

∣∣∣∣∣∣
2

(3.71)

≤ C2(T, ε(γ))
∑

|µk|≤
√

γ/h

| ak |2 λk | ϕk,N |2

≤ C2(T, ε(γ))γ
∑

|µk|≤
√

γ/h

| ak |2
∣∣∣∣ϕk,N

h

∣∣∣∣2

≤ C2(T, ε(γ))γ
C1(T, ε(γ))

∫ T

0

∣∣∣∣∣∣
∑

|µk|≤
√

γ/h

ake
iµkt ϕk,N

h

∣∣∣∣∣∣
2

dt

=
γC2(T, ε(γ))
C1(T, ε(γ))

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt.

Combining Theorem 3.2 and (3.71) it follows that:

Theorem 3.3 For any 0 < γ < 12 and

T > max
(

T (γ),
2L

((1 + cos(ε(γ)π))/2)1/2

)
(3.72)

it follows that

Eh(0) ≤
[
C(T, γ) +

γC2(T, ε(γ))
6C1(T, ε(γ))

] ∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt (3.73)

for any solution u of (3.1) inthe class Ch(γ).
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Remark. The time of observability in Theorem 3.3 is the maximum between the time T (γ)
in Theorem 3.2 and the time (3.70) needed to apply Ingham’s inequality to the eigenvalues
corresponding to the class of solutions Ch(γ). The observability constant in (3.73) is the addition
of the constant C(T, γ) of Theorem 3.2 and the constant needed to absorve the term

∫ T
0 | u′N (t) |2

dt by Ingham’s inequality as in (3.71).
Note that ε(γ) → 0 as γ → 0 while the constants C1(T, ε) and C2(T, ε) in Ingham’s inequality

converge to 1. Thus, according to Theorem 3.2, the observability constant in (3.73) converges
to L/2(T − 2L) as γ → 0.

Observe that an inequality of the form (3.73) can also be obtained directly by Ingham’s
inequality. However we have prefered to obtain the weaker form of observability inequality in
Theorem 3.2 by multipliers since this method can be more easily adapted to other situations.

Let us now compute ε(γ). According to the explicit value of the eigenvalues obtained in
(3.17) we have to estimate j so that

6 (1− cos ((j + 1)πh/L)) ≤ γ (2 + cos((j + 1)πh/L)) ,

or, taking into account that (j + 1)h ≤ εL, we have to estimate ε > 0 such that

6(1− cos(επ)) ≤ γ(2 + cos(επ)),

or, equivalently,
6− 2γ ≤ (γ + 6) cos(επ),

i.e.,

ε(γ) =
1
π

arc cos
(

6− 2γ

γ + 6

)
. (3.74)

Obviously ε(γ) → 0 as γ → 0 and ε(γ) → 1 as γ → 12.
According to (3.70) and (3.74) the time needed to apply Ingham’s inequality is:

2L

((1 + cos(ε(γ)π))/2)1/2
= 2L

(
12 + 2γ

12− γ

)1/2

.
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