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Abstract
We build non-uniform numerical meshes for the finite difference and finite element approxi-

mations of the 1d wave equation, ensuring that all numerical solutions reach the boundary, as
continuous solutions do, in the sense that the full discrete energy can be observed by means of
boundary measurements, uniformly with respect to the mesh-size. The construction of the non-
uniform mesh is achieved by means of a concave diffeomorphic transformation of a uniform grid
into a non-uniform one, making the mesh finer and finer when approaching the right boundary.
For uniform meshes it is known that high-frequency numerical wave packets propagate very slowly
without never getting to the boundary. Our results show that this pathology can be avoided by
taking suitable non-uniform meshes. This also allows to build convergent numerical algorithms
for the approximation of boundary controls of the wave equation.

1 Introduction
The goal of this article is to build non-uniform numerical meshes for the numerical approximation of
the 1d wave equation, ensuring that all numerical solutions reach the boundary, as continuous solutions
do. This is relevant for boundary control problems, but also in the context of inverse problems where
detection from the boundary requires that waves get there.

For simplicity, we will focus on the constant coefficient 1d wave equation ∂ttu− ∂xxu = 0, (t, x) ∈ (0, T )× (0, 1),
u(t, 0) = u(t, 1) = 0, t ∈ (0, T ),
u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ (0, 1).
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To fix our ideas and better establish the requirements that we impose on the numerical mesh we
address the problem from the perspective of the so-called observability inequality according to which
the solutions of (1.1) satisfy∥∥(u0, u1)

∥∥
H1

0 (0,1)×L2(0,1)
≤ Cobs ‖∂xu(t, 1)‖L2(0,T ) , (1.2)

for a suitable constant Cobs = Cobs(T ) > 0 provided T ≥ 2.
Note that inequality (1.2) ensures that all waves propagating in space-time according to the wave

equation reach the extreme x = 1 in time T = 2. This is in agreement with the well-known properties
of solutions of the wave equation that can be proved easily based on the Fourier or d’Alembert
representation formulas.

This inequality, by duality, ensures the exact controllability of the wave equation when the control
acts on the boundary x = 1, see e.g. [18].

In the pioneering works [13, 14] on the numerical approximation of boundary controls for the
wave equation, it was shown that naive discretizations of the wave equation (1.1) may lead to the
divergence of numerical controls. This is due to the fact that discrete approximations of the wave
equation (1.1) are, in general, not uniformly observable. In other words, in general, discrete versions
of the observability inequality (1.2) do not hold uniformly with respect to the mesh-size parameter.

This phenomenon has been analysed and explained starting with the work [16] dealing with fi-
nite differences and finite element methods on uniform meshes, and later on generalized in several
directions. We refer to the survey articles [10, 28] for an account of the most recent developments.
But, until now, most often, the analysis was restricted to uniform meshes. More general meshes
were considered in [23] viewing numerical solutions as quasi-solutions of the continuous wave model.
Accordingly, severe filtering mechanisms on the numerical high-frequency components were required
to conclude uniform observability inequalities.

More recently, in [20], the problem of the propagation of high-frequency numerical solutions was
considered in non-uniform meshes built through a diffeomorphic deformation of a uniform one. Using
microlocal tools, the notions of numerical symbol and bicharacteristic rays were introduced and it
was shown both analytically and through numerical simulations, that high-frequency numerical wave
packets follow, in space-time, the path indicated by the bicharacteristics.

The present work complements previous ones, addressing the problem from a different perspective.
In here our aim is to design meshes so to ensure that all numerical waves reach the boundary. This
makes, accordingly, the discrete version of (1.2) to hold uniformly with respect to the mesh-size
parameter. In other words, the meshes we build are well-adapted to the boundary observability
property under consideration.

To our knowledge, this result is the first one in this direction and opens up new interesting
perspectives of development, for instance, to multi-dimensional problems or with inverse problem
applications in view.

To begin with, we introduce the space semi-discrete approximations of (1.1) on a non-uniform
mesh obtained by a diffeomorphic deformation of a uniform one.

Let g : [0, 1]→ [0, 1] denote a diffeomorphism of the interval [0, 1]. ForN ∈ N, we set h := 1/(N+1)
and consider the non-uniform mesh given by the nodes

xj := g(jh), ∀j ∈ {0, · · · , N + 1}, (1.3)

yielding the heterogeneous mesh-sizes

hj+1/2 := xj+1 − xj , ∀j ∈ {0, · · · , N}, and hj :=
hj−1/2 + hj+1/2

2
, ∀j ∈ {1, · · · , N}. (1.4)

In the following, we will use the notation M h,g to refer to the mesh given by (1.3)–(1.4), i.e., M h,g :=
{xj , j ∈ {0, · · · , N + 1}}.
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The space semi-discretization of the wave equation (1.1) obtained by finite differences on this
non-uniform mesh M h,g reads as follows:

hju
′′
j (t)−

(uj+1(t)− uj(t)
hj+1/2

− uj(t)− uj−1(t)

hj−1/2

)
= 0, t ∈ (0, T ), 1 ≤ j ≤ N,

u0(t) = uN+1(t) = 0, t ∈ (0, T ),
uj(0) = u0j , u

′
j(0) = u1j , 1 ≤ j ≤ N.

(1.5)

To avoid possible confusions, when needed, we will denote the solutions of (1.5) by uh,g(t) =
(ugj (t))0≤j≤N+1, where g stands for the diffeomorphic transformation from the uniform to the non-
uniform mesh and h := 1/(N + 1) is the mesh-size. But, in general, we will simply write down
uh(t) = (uj(t))0≤j≤N+1 for the solutions of (1.5).

System (1.5) enjoys the property of energy conservation. In other words, the energy

Eh,g(uh,g(t), ∂tu
h,g(t)) :=

1

2

N∑
j=1

hj |u′j(t)|2 +
1

2

N∑
j=0

hj+1/2

∣∣∣uj+1(t)− uj(t)
hj+1/2

∣∣∣2 (1.6)

is constant in time and coincides with the initial energy Eh,g(u0,h,u1,h). This ensures the stability of
the numerical scheme and also its convergence in the classical sense of numerical analysis.

The main result of this paper is the following:

Theorem 1.1. Given T > 2, there exists a smooth diffeomorphism g such that the solutions uh,g

of (1.5) are uniformly observable through x = 1 in time T . To be more precise, there exist h? =
h∗(T, g) > 0 and a constant Cgobs = Cgobs(T ) > 0 (independent of h) such that, for all h ∈ (0, h?), the
solutions uh,g on the mesh M h,g satisfy the observability inequality:

Eh,g(u0,h,u1,h) ≤ (Cgobs)
2

∫ T

0

∣∣∣∣ ugN (t)

hN+1/2

∣∣∣∣2 dt. (1.7)

More precisely, g can be chosen explicitly as

gθ(x) =
√

(2θ + 1)x+ θ2 − θ, for θ ∈
(

0,
T − 2

2

)
. (1.8)

Theorem 1.1 may appear surprising in view of the negative results in [16], and later on refined in
[22], showing the divergence of the observability constant Cgobs(T ) in (1.7) (of the order of exp(c/h)) for
the uniform mesh. On uniform meshes the cause of this divergence is the existence of high-frequency
numerical solutions that remain trapped within the computational domain without never getting to its
boundary. Theorem 1.1 shows that one can design a suitable mesh for a given observability problem,
so to assure that all numerical waves are guided towards the subset where the observation is being
done. In this sense, Theorem 1.1 is close to the works [5, 6], where a suitable (optimal) mesh was
designed in order to provide accurate results on the inverse Sturm-Liouville problem. In particular, in
these references it was shown that, when trying to recover the conductivity coefficient σ out of some
a priori guess σ0 of the unknown coefficient, using measurements of the Neumann-to-Dirichlet map
at x = 0, optimal grids need to be finer close to the point x = 0 where measurements are performed.

Actually, Theorem 1.1 is deduced from the following more general result:

Theorem 1.2. Let g : [0, 1]→ [0, 1] be a C3([0, 1]) diffeomorphism satisfying g(0) = 0, g(1) = 1, and
assume that g is strictly concave. Define θg by

θg := max
x∈[0,1]

{
g′(x)2 + g(x)g′′(x)

−g′′(x)

}
. (1.9)
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Then the solutions uh,g of (1.5) are uniformly observable through x = 1 in any time T > Tg, where
Tg is the multiplier time given by

Tg := 2(1 + θg). (1.10)

Note that the strict concavity condition in Theorem 1.2 implies that g′ is strictly decreasing on the
whole space interval [0, 1]. The corresponding mesh given by (1.3) therefore decreases gradually from
the coarsest scale h1/2 to the finest one hN+1/2 located at the endpoint x = 1 where the observation is
performed. This corresponds to the very natural fact that much more precise information is required
close to the observation set, which needs a refined mesh.

In any case, it is important to observe that the meshes under consideration involve only one single
scale. Indeed, if g satisfies the assumptions of Theorem 1.2, the mesh given by (1.3) is quasi-uniform,
the ratio h1/2/hN+1/2 between the largest and the smallest mesh sizes being uniformly bounded from
above:

1 ≤
h1/2

hN+1/2
≤ C :=

max g′

min g′
=
g′(0)

g′(1)
.

Note that, according to the assumption that g is a diffeomorphism of [0, 1], the derivative g′ cannot
vanish or blow up at any point x ∈ [0, 1] and then the above constant C is finite.

Outline of the paper. In Section 2, we provide the detailed proof of Theorems 1.1–1.2. We will first
present the proof of Theorem 1.2. It will be based on a suitable multiplier argument performed on the
discrete solutions uh,g of (1.5), mimicking the continuous multiplier technique (cf. [18]). While it is
well-known that the multiplier technique does not yield uniform observability results in the context of
uniform meshes [16], our computations will put in evidence a new reminder term involving the second-
order derivative of g. Once this is done, the proof of Theorem 1.2 consists in a suitable analysis of
that new term.

In Section 3, we then provide two insights on the results in Theorems 1.1 and 1.2, addressing them
from the spectral point of view and also from the microlocal perspective.
• The first interpretation will be based on the analysis of the spectrum of the discrete spatial

operator in (1.5). While the spectrum of the discrete Laplacian on a uniform mesh is equidistributed
on the domain (0, 1), being given by the restriction of the continuous eigenfunctions x 7→

√
2 sin(kπx)

to the discrete mesh, they are not uniformly distributed anymore when the domain (0, 1) is discretized
using the mesh (1.3) obtained by applying a strictly concave diffeomorphism g to a uniform mesh. To
be more precise, as we shall see for the specific examples of g = gθ as in (1.8) for various choices of
θ, the eigenvectors corresponding to the high-frequency eigenvalues concentrate on the refined part of
the mesh, namely close to x = 1 (see Figures 2–3). Actually, this phenomenon was already observed
in the work [7] corresponding to the case of a space discretization based on mixed finite elements.
One can furthermore check experimentally that the dispersion diagram presents a significant gap
when the domain (0, 1) is discretized using the mesh (1.3) corresponding to gθ in (1.8), while the
gap vanishes when the mesh is uniform. Ingham’s lemma [17] could then possibly be used to prove
Theorem 1.1. But this would require a careful description of the spectrum of the discrete Laplace
operator on non-uniform meshes of the form (1.3), that is to be done.
• The second one consists in analysing the behavior of the rays of Geometric Optics on meshes

obtained by applying a diffeomorphism g to a uniform mesh. It is well-known that, for the continuous
wave equation (1.1) all rays propagate at velocity one, but that the space semi-discrete wave equations
(1.5) may generate many more dynamics, with different propagation properties at high-frequencies.
For instance, on a uniform mesh, one can generate spurious high-frequency solutions traveling at
arbitrarily small velocities [26]. On a non-uniform mesh, the situation is even more intricate. As
indicated in [27] and [20], for some numerical grids, the rays of Geometric Optics may present internal
reflections generated by the mesh.

The analysis in [20] shows that the rays corresponding to frequencies of the order of 1/h obey the
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following Hamiltonian flow:

H(t, x, τ, ξ) = −g′(x)τ2 +
4

g′(x)
sin2

(
ξ

2

)
. (1.11)

We will check experimentally that, on the non-uniform meshes given by gθ in (1.8), these rays are
curved by the mesh in such a way that they all hit the boundary x = 1 in times less than Tg.

We will provide a formula for the computation of the characteristic time Tg,char on non-uniform
meshes given by any strictly concave diffeomorphisms g via microlocal analysis and we will compare
it numerically with the multiplier time Tg in (1.10) for g = gθ in (1.8).

In Section 4, as a consequence of the uniform observability inequality, we perform some numerical
experiments showing that the corresponding controllability problem for (1.1) can be solved without
any filtering, in contrast with the behaviour of classical numerical schemes on uniform meshes.

In Section 5, we extend Theorems 1.1 and 1.2 to the P1 finite element space semi-discretization on
non-uniform meshes given by strictly concave diffeomorphisms g. In particular, we show that the P1

finite element approximation of (1.1) enjoys uniform observability properties in time Tg as in (1.10),
see Theorem 5.1. Our study follows the discrete multiplier approach of the finite difference case,
though more technically involved.

In Section 6, we discuss some other closely related issues and indicate some possible directions of
future research.

2 Proof of Theorems 1.1–1.2
As indicated in the introduction, the proof of Theorem 1.2 is based on a multiplier technique mimicking
the proof in [18] for the continuous wave equation (1.1), which basically consists in multiplying
equation (1.1) by x∂xu and performing integrations by parts in both space and time variables.

Accordingly, we will multiply the equation (1.5) by a discrete version of the multiplier x∂xu,
namely

mj(t) :=
θj
2

(
uj+1(t)− uj(t)

hj+1/2
+
uj(t)− uj−1(t)

hj−1/2

)
, t ∈ (0, T ), j ∈ {1, · · · , N}, (2.1)

where uh(t) = (uj(t))0≤j≤N+1 solves (1.5) and the coefficients θj will be chosen later on.

2.1 A discrete multiplier identity
We start with the following result:

Proposition 2.1 (A discrete multiplier identity). If uh(t) solves the equation (1.5) and mh(t) denotes
the multiplier in (2.1), the following identity holds:

N∑
j=1

hju
′
j(t)mj(t)

∣∣∣∣T
0

+
1

4

N∑
j=1

∫ T

0

(
θj+1hj+1 + θjhj

hj+1/2
− θjhj + θj−1hj−1

hj−1/2

)
|u′j(t)|2 dt

− 1

4

N∑
j=0

∫ T

0

hj+1/2(θj+1hj+1 − θjhj)
∣∣∣∣u′j+1(t)− u′j(t)

hj+1/2

∣∣∣∣2 dt
+

1

2

N∑
j=0

∫ T

0

(θj+1 − θj)
∣∣∣∣uj+1(t)− uj(t)

hj+1/2

∣∣∣∣2 dt+
θ0
2

∫ T

0

∣∣∣∣u1(t)

h1/2

∣∣∣∣2 dt =
θN+1

2

∫ T

0

∣∣∣∣ uN (t)

hN+1/2

∣∣∣∣2 dt, (2.2)

where h0 and hN+1 can be set arbitrarily.
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Proof. Multiplying the equation (1.5) by mj in (2.1), summing on j ∈ {1, · · · , N} and integrating in
time, we obtain

A−B = 0, with A =

N∑
j=1

∫ T

0

hju
′′
j (t)mj(t) dt

and B =

N∑
j=1

∫ T

0

(
uj+1(t)− uj(t)

hj+1/2
− uj(t)− uj−1(t)

hj−1/2

)
mj(t) dt.

We now compute separately A and B.
Computation of A. By integration by parts in time, we get

A =

N∑
j=1

hju
′
j(t)mj(t)

∣∣∣∣∣
T

0

−A0, with A0 =

N∑
j=1

∫ T

0

hju
′
j(t)m

′
j(t) dt.

and easy computations yield

A0 =
1

2

N∑
j=1

∫ T

0

θjhju
′
j(t)

(
u′j+1(t)− u′j(t)

hj+1/2

)
dt+

1

2

N∑
j=1

∫ T

0

θjhju
′
j(t)

(
u′j(t)− u′j−1(t)

hj−1/2

)
dt

=
1

2

N∑
j=0

∫ T

0

θjhju
′
j(t)

(
u′j+1(t)− u′j(t)

hj+1/2

)
dt+

1

2

N∑
j=0

∫ T

0

θj+1hj+1u
′
j+1(t)

(
u′j+1(t)− u′j(t)

hj+1/2

)
dt

=
1

2

N∑
j=0

∫ T

0

(θjhju
′
j(t) + θj+1hj+1u

′
j+1(t))

(
u′j+1(t)− u′j(t)

hj+1/2

)
dt.

In the above computations, h0 and hN+1 can be chosen arbitrarily as they are multiplied by u′0(t) = 0
and u′N+1(t) = 0 and do not really appear in the computations. Writing

θjhju
′
j + θj+1hj+1u

′
j+1 =

1

2
(θj+1hj+1 + θjhj)(u

′
j+1 + u′j) +

1

2
(θj+1hj+1 − θjhj)(u′j+1 − u′j),

we get

A0 = A1 +
1

4

N∑
j=0

∫ T

0

hj+1/2(θj+1hj+1 − θjhj)
∣∣∣∣u′j+1(t)− u′j(t)

hj+1/2

∣∣∣∣2 dt,
with A1 =

1

4

N∑
j=0

∫ T

0

(θj+1hj+1 + θjhj)

(
|u′j+1(t)|2 − |u′j(t)|2

hj+1/2

)
dt,

and A1 can be simplified as:

A1 = −1

4

N∑
j=1

∫ T

0

(
θj+1hj+1 + θjhj

hj+1/2
− θjhj + θj−1hj−1

hj−1/2

)
|u′j(t)|2 dt.
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The computation of B is straightforward:

B =

N∑
j=1

∫ T

0

(
uj+1(t)− uj(t)

hj+1/2
− uj(t)− uj−1(t)

hj−1/2

)
θj
2

(
uj+1(t)− uj(t)

hj+1/2
+
uj(t)− uj−1(t)

hj−1/2

)
dt

=
1

2

N∑
j=1

∫ T

0

θj

(∣∣∣∣uj+1(t)− uj(t)
hj+1/2

∣∣∣∣2 − ∣∣∣∣uj(t)− uj−1(t)

hj−1/2

∣∣∣∣2) dt
= −

N∑
j=0

∫ T

0

θj+1 − θj
2

∣∣∣∣uj+1(t)− uj(t)
hj+1/2

∣∣∣∣2dt+
θN+1

2

∫ T

0

∣∣∣∣ uN (t)

hN+1/2

∣∣∣∣2dt− θ0
2

∫ T

0

∣∣∣∣u1(t)

h1/2

∣∣∣∣2dt. (2.3)

Putting together the above computations we immediately get the identity (2.2).

2.2 Choice of the multiplier θj
For the sake of clarity, it is convenient to employ the Landau notation O. In the following, for g a
diffeomorphism of [0, 1] satisfying g(0) = 0 and g(1) = 1, O(hα) will denote a function f(h, x) such
that there exist h∗ > 0 and C > 0 such that for all h ∈ (0, h∗) and xj ∈M h,g,

|f(h, xj)| ≤ Chα.

We claim the following result:

Proposition 2.2. Let g : [0, 1]→ [0, 1] be a C3-diffeomorphism with g(0) = 0, g(1) = 1. Let N ∈ N,
h = 1/(N + 1). To simplify notations, we extend g as a C3 function in a neighborhood of [0, 1] and
for h small enough, we set

h−1/2 = 0− g(−h), hN+3/2 = g((N + 2)h)− 1, hj =
hj−1/2 + hj+1/2

2
, j ∈ {0, N + 1}. (2.4)

Choosing θ0 > 0 and for j ∈ {0, · · · , N + 1},

θj = θ0 + xj , with xj = g(jh). (2.5)

we have, for j ∈ {0, · · · , N},

θj+1 − θj = xj+1 − xj = hj+1/2, (2.6)

hj+1/2(θj+1hj+1 − θjhj) = h3g′j+1/2

(
(θ0 + gj+1/2)g′′j+1/2 + (g′j+1/2)2

)
+O(h4), (2.7)

where we have used the notations

gj+1/2 = g((j + 1/2)h), g′j+1/2 = g′((j + 1/2)h), g′′j+1/2 = g′′((j + 1/2)h).

We also have, for j ∈ {1, · · · , N},

θjhj + θj+1hj+1

hj+1/2
− θj−1hj−1 + θjhj

hj−1/2
= 2hj +O(h2). (2.8)

Proof. Identity (2.6) directly derives from the choice (2.5) and the notations (1.3)–(1.4).
To derive (2.7), we perform Taylor expansions:

xj+1/2+α/2 = gj+1/2 + αg′j+1/2

h

2
+ α2g′′j+1/2

h2

8
+O(h3), for α ∈ {−3,−1, 1, 3},

hj+1/2+β/2 = g′j+1/2h+ βg′′j+1/2

h2

2
+O(h3), for β ∈ {−2,−1, 0, 1, 2}.

(2.9)
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Therefore, we obtain

hj+1/2(θj+1hj+1 − θjhj) = hj+1/2

(
θj + θj+1

2

)
(hj+1 − hj) + h2j+1/2

(
hj + hj+1

2

)
= (g′j+1/2h+O(h2))(θ0 + gj+1/2 +O(h))(g′′j+1/2h

2 +O(h3)) + (g′j+1/2h+O(h2))3

= h3g′j+1/2

(
(θ0 + gj+1/2)g′′j+1/2 + (g′j+1/2)2

)
+O(h4),

which concludes the proof of (2.7).
The proof of (2.8) can be done similarly using Taylor expansion. To begin with, we write

θjhj + θj+1hj+1

hj+1/2
− θj−1hj−1 + θjhj

hj−1/2
= θj

(
hj + hj+1

hj+1/2
− hj−1 + hj

hj−1/2

)
+ hj+1 + hj−1

=
θj
2

(
hj−1/2 + hj+3/2

hj+1/2
−
hj−3/2 + hj+1/2

hj−1/2

)
+

1

2

(
hj+3/2 + hj+1/2 + hj−1/2 + hj−3/2

)
.

Using the notations
gj = g(jh), g′j = g′(jh), g′′j = g′′(jh), (2.10)

similarly as in (2.9), Taylor expansions centered in jh yield:
xj+α = gj + αhg′j + α2g′′j

h2

2
+O(h3), for α ∈ {−2,−1, 0, 1, 2},

hj+β/2 = g′jh+ βg′′j
h2

2
+O(h3), for β ∈ {−3,−1, 1, 3}.

(2.11)

We therefore get

hj+3/2 + hj+1/2 + hj−1/2 + hj−3/2 = 4g′jh+O(h3) = 4hj +O(h3),

hj−1/2 + hj+3/2

hj+1/2
= 2 +O(h2),

hj−3/2 + hj+1/2

hj−1/2
= 2 +O(h2),

so that we immediately conclude (2.8).

2.3 Proof of Theorem 1.2
Let g : [0, 1] → [0, 1] be a C3 diffeomorphism with g(0) = 0 and g(1) = 1, and assume that g is
strictly concave on [0, 1]. Choosing θj as in Proposition 2.2 with θ0 = θg defined by (1.9), and using
Proposition 2.1, solutions uh,g of (1.5) satisfy

N∑
j=1

hju
′
j(t)mj(t)

∣∣∣∣∣
T

0

+
1

2

N∑
j=1

hj

∫ T

0

|u′j(t)|2 dt+

N∑
j=1

O(h2)

∫ T

0

|u′j(t)|2 dt

− 1

4

N∑
j=0

∫ T

0

(
h3g′j+1/2

(
(θg + gj+1/2)g′′j+1/2 + (g′j+1/2)2

)
+O(h4)

)(u′j+1(t)− u′j(t)
hj+1/2

)2

dt

+
1

2

N∑
j=0

hj+1/2

∫ T

0

(
uj+1(t)− uj(t)

hj+1/2

)2

dt ≤ 1 + θg
2

∫ T

0

(
uN (t)

hN+1/2

)2

dt. (2.12)

But, by construction, θg satisfies

(θg + gj+1/2)g′′j+1/2 + (g′j+1/2)2 ≤ 0, (2.13)
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so that

−1

4

N∑
j=0

∫ T

0

(
h3g′j+1/2

(
(θg + gj+1/2)g′′j+1/2 + (g′j+1/2)2

))(u′j+1(t)− u′j(t)
hj+1/2

)2

dt ≥ 0.

Besides, the energy Eh,g(t) = Eh,g(uh,g(t), ∂tu
h,g(t)) of solutions of (1.5) is preserved. Hence

1

2

N∑
j=1

hj

∫ T

0

|u′j(t)|2 dt+
1

2

N∑
j=0

hj+1/2

∫ T

0

(
uj+1(t)− uj(t)

hj+1/2

)2

dt = TEh,g(u0,h,u1,h).

We then remark that∣∣∣∣∣∣
N∑
j=1

O(h2)

∫ T

0

|u′j(t)|2 dt

∣∣∣∣∣∣+

∣∣∣∣∣∣
N∑
j=0

∫ T

0

O(h4)

(
u′j+1(t)− u′j(t)

hj+1/2

)2

dt

∣∣∣∣∣∣ ≤ CThEh,g(u0,h,u1,h),

so that we have

T (1− Ch)Eh,g(u0,h,u1,h) ≤ 1 + θg
2

∫ T

0

(
uN (t)

hN+1/2

)2

dt−
N∑
j=1

hju
′
j(t)mj(t)

∣∣∣∣∣
T

0

. (2.14)

To conclude, we only have to estimate the last term in (2.14):∣∣∣∣∣∣
N∑
j=1

hju
′
j(t)mj(t)

∣∣∣∣∣∣ ≤ 1 + θg
2

 N∑
j=1

hj |u′j |2
1/2∑

j=1

hj

∣∣∣2mj

θj

∣∣∣2
1/2

.

We remark that∑
j=1

hj

∣∣∣2mj

θj

∣∣∣2 =

N∑
j=1

hj

(
uj+1(t)− uj(t)

hj+1/2
+
uj(t)− uj−1(t)

hj−1/2

)2

≤ 2

N∑
j=0

(hj + hj+1)

(
uj+1(t)− uj(t)

hj+1/2

)2

≤ 4

N∑
j=0

hj+1/2

(
uj+1(t)− uj(t)

hj+1/2

)2

+ Ch2Eh,g(u0,h,u1,h). (2.15)

Therefore, we obtain∣∣∣∣∣∣
N∑
j=1

hju
′
j(t)mj(t)

∣∣∣∣∣∣
≤ (1 + θg)

 N∑
j=1

hj |u′j |2
1/2 N∑

j=0

hj+1/2

(
uj+1(t)− uj(t)

hj+1/2

)2

+ Ch2Eh,g(u0,h,u1,h)

1/2

.

≤ (1 + θg)(1 + Ch2)Eh,g(u0,h,u1,h).

Plugging this last estimate in (2.14), we obtain(
T (1− Ch)− 2(1 + θg)(1 + Ch2)

)
Eh,g(u0,h,u1,h) ≤ 1 + θg

2

∫ T

0

(
uN (t)

hN+1/2

)2

dt. (2.16)

Therefore, for T > Tg, with Tg defined as in (1.10), the solutions uh,g of (1.5) are uniformly observable.
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Remark 2.3. Theorem 1.2 can be generalized to meshes described by strictly concave functions g ∈
C2([0, 1]) satisfying g(0) = 0, g(1) = 1 belonging to C2,α([0, 1]) for some α > 0. The proof is
completely similar, except that the error terms in Proposition 2.2 should be replaced by O(h3+α) in
(2.7) and O(h1+α) in (2.8). Details of the proof are left to the reader.

Remark 2.4. In the case of a uniform mesh (corresponding to g(x) = x), taking θj = θ0 + jh in
Proposition 2.1, one obtains ([16]):

h

N∑
j=1

u′j(t)

(
uj+1(t)− uj−1(t)

2h

) ∣∣∣∣∣
T

0

+ TEh,g(x)=x(u0,h,u1,h) +
θ0
2

∫ T

0

(
u1(t)

h

)2

dt

=
(1 + θ0)

2

∫ T

0

(
uN (t)

h

)2

dt+
h3

4

N∑
j=0

∫ T

0

(
u′j+1(t)− u′j(t)

h

)2

dt. (2.17)

The last term in the right hand side has the wrong sign and cannot be absorbed by the left hand side,
even for T large. This indicates that the strict concavity condition on the diffeomorphism g assumed
in Theorem 1.2 is very likely necessary to get a uniform observability result for the solutions of (1.5),
see also Section 3.2 for further insights on this condition.

2.4 Proof of Theorem 1.1
If gθ is as in (1.8), one easily checks that gθ is strictly concave, gθ(0) = 0, gθ(1) = 1, and for all
x ∈ [0, 1],

g′θ(x)2 + gθ(x)g′′θ (x)

−g′′θ (x)
= θ.

Therefore, the critical time corresponding to gθ as in (1.8) given by Theorem 1.2 is Tgθ = 2(1 + θ), so
that if θ ∈ (0, T/2− 1), T > Tgθ . This concludes the proof of Theorem 1.1.

Actually, the functions gθ in (1.8) can be derived directly by observing that the leading term of
the expansion in (2.7) is used in (2.13). Given g, θg is defined such that

∀x ∈ [0, 1], (θg + g(x))g′′(x) + (g′(x))2 ≤ 0,

or equivalently, in such a way that x 7→ (θg + g(x))2 is concave. In particular, if we want to choose
θg = θ a priori, it is natural to look for gθ with x 7→ (θ + gθ(x))2 an affine function. The boundary
conditions gθ(0) = 0, gθ(1) = 1 then determine the function gθ in (1.8).

Remark 2.5. Theorem 1.1 suggests that the critical choice g0(x) =
√
x for x ∈ [0, 1] could be well-

adapted for getting uniform observability results for the corresponding solutions of (1.5). However,
the corresponding mesh is no more quasi-uniform as h1/2/hN+1/2 ' 2h−1/2, which goes to ∞ as
h→ 0. We have therefore chosen to avoid that case, which would have required an additional care in
the analysis close to the boundary x = 0.

3 Spectral and geometric interpretations
The goal of this section is to present some insights on Theorems 1.1–1.2. In particular, we will
discuss Theorem 1.1 from two complementary points of view: the spectral one, on the behavior of the
eigenfunctions and the eigenvalues of the discrete Laplace operator, and the dynamical one, on the
behavior of high-frequency rays.

Before going further, let us point out that the uniform mesh g(x) = x can be recovered as the limit
of the meshes gθ in (1.8) when θ →∞. It will therefore be helpful to also consider the uniform mesh
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as a limiting case. In the paragraphs below, most of our discussion is valid for general diffeomorphisms
g but our numerical simulations will be performed only for g of the form gθ in (1.8) for various choices
of θ to fix the ideas.

3.1 The spectral point of view
Studying spectrally the wave equation (1.1) amounts to discuss the spectrum of the Laplace operator
with homogenous boundary conditions. Similarly, given a diffeomorphism g : [0, 1] → [0, 1] with
g(0) = g(1) = 0, the spectral analysis of the semi-discrete wave equation (1.5) reduces to the spectral
analysis of the discrete operator Ah,g given by

(Ah,guh,g)j = − 1

hj

(uh,gj+1 − u
h,g
j

hj+1/2
−
uh,gj − uh,gj−1
hj−1/2

)
, j ∈ {1, · · · , N}, with uh,g0 = uh,gN+1 = 0,

on the mesh M h,g described by (1.3)–(1.4), which corresponds to a discretisation of the Laplacian.
The operator Ah,g is self-adjoint and positive definite on

`2(M h,g) = {uh,g defined on M h,g with uh,g0 = uh,gN+1 = 0}

endowed with the norm
∥∥uh,g∥∥2

`2(Mh,g)
=

N∑
j=1

hj |uh,gj |
2. (3.1)

In particular, we have the identity

〈Ah,guh,g,vh,g〉`2(Mh,g) =

N∑
j=0

hj+1/2

(
uh,gj+1 − u

h,g
j

hj+1/2

)(
vh,gj+1 − v

h,g
j

hj+1/2

)
.

Therefore, `2(M h,g) admits a basis of eigenfunctions wk,h,g (k ∈ {1, · · · , N}) of Ah,g with corre-
sponding eigenvalues λk,h,g such that 0 < λ1,h,g ≤ · · · ≤ λN,h,g. The spectral problem reads: −

(wkj+1 − wkj
hj+1/2

−
wkj − wkj−1
hj−1/2

)
= λkhjw

k
j , j ∈ {1, · · · , N},

wk0 = wkN+1 = 0.

(3.2)

One then immediately deduces that each eigenvalue is simple1.
The usual strategy to study the observability problem (1.7) is based on the use of Fourier series

expansions and Ingham type inequalities. The observability inequality (1.7) turns out to be, roughly,
equivalent to the following two spectral properties:

• A uniform observability property for all the eigenvectors wk,h,g, uniform with respect to the
mesh size. In our setting, this property would read as follows: there exists a constant C > 0 such
that for all N ∈ N (corresponding to h = 1/(N + 1)), for all k ∈ {1, · · · , N}, the eigenvectors
wk,h,g satisfy

λk,h,g
∥∥wk,h,g

∥∥2
`2(Mh,g)

≤ C

(
wk,h,gN

hN+1/2

)2

. (3.3)

1Indeed, if we have two different eigenvectors wh,g , w̃h,g corresponding to the same eigenvalue, we can find α ∈ R
such that wh,g

1 − αw̃h,g
1 = 0. As wh,g

0 − αw̃h,g
0 = 0, using the equation at j = 1 we obtain wh,g

2 − αw̃h,g
2 = 0 and so

forth, so that wh,g = αw̃h,g .

11



• A uniform gap condition on the eigenvalues, i.e.

lim inf
N→∞

inf
1≤k≤N−1

{ √
λk+1,h,g −

√
λk,h,g

}
> 0. (3.4)

Indeed, if both properties (3.3) and (3.4) are satisfied, then Ingham’s Lemma [17] applies and yields
the uniform observability property (1.7) in any time T > Tg,Ing with

Tg,Ing =
2π

γh,g,as
, (3.5)

γh,g,as being the asymptotic gap2, i.e.

γh,g,as = inf
K∈N

lim inf
N→∞

inf
K≤k≤N−1

{ √
λk+1,h,g −

√
λk,h,g

}
> 0. (3.6)

When g : [0, 1] → [0, 1] is a C3 diffeomorphism which is strictly concave and satisfies g(0) =
0, g(1) = 1, the uniform observability property (3.3) can be derived using a multiplier technique
on the spectral system (3.2). But it can be derived directly from the estimate (2.16) applied to
uh,g(t) = exp(i

√
λk,h,gt)wk,h,g, dividing the corresponding estimate by T and passing to the limit

T →∞.
However, the uniform gap condition (3.4) seems more delicate to obtain, as this would require a

careful description of the eigenvalues. As the mesh is non-uniform, this seems very intricate. In fact, to
our knowledge, the only case in which a spectral gap was proven for non-uniform meshes corresponds
to the case of the 1d wave equation (1.1) discretized in space using the mixed finite element method,
see [7].

We can nevertheless perform a numerical investigation of both properties (3.3) and (3.4). We
restrict ourselves to diffeomorphisms g of the form gθ as in (1.8) for various choices of θ > 0 to fix the
ideas.

In Figures 1–3, we plot the eigenvectors wk,h,g corresponding to gθ in (1.8) for θ = 0.1, θ = 1,
θ = 10 and compare them with the eigenvectors wk,h,g corresponding to the uniform case g(x) = x
(in that case, wk,h,g is explicit and equals (

√
2 sin(kπjh))j∈{1,··· ,N}) for various values of k. Several

comments are in order. The first eigenvectors nearly coincide, whatever the choice of g is, since they
correspond to low frequencies and are therefore close to the eigenvectors of the continuous Laplace
operator on (0, 1) - which are simply of the form

√
2 sin(kπx). For large k, an interesting phenomenon

appears. Though the eigenvectors corresponding to a uniform mesh are still equidistributed, the k-th
eigenvectors corresponding to the strictly concave meshes M gθ,h become more and more localized
close to x = 1 when k increases, and this is more and more the case when θ decreases. As expected,
this indicates that the eigenvectors corresponding to large eigenvalues are localized in the part of the
domain in which the mesh is the finest, and this phenomenon is amplified when the ratio between the
coarsest mesh and the finest one grows, as

supj hj+1/2

infj hj+1/2
=

h1/2

hN+1/2
'
h→0

g′θ(0)

g′θ(1)
= 1 +

1

θ
.

In Figure 4, we plot the dispersion diagrams, i.e. the graph k →
√
λk,h,g corresponding to gθ in

(1.8) with θ = 0, θ = 0.1, θ = 1, θ = 10 and compare them with the one corresponding to the case of a
uniform mesh, given by k → 2

h sin
(
kπh
2

)
. One easily sees that the dispersion diagrams corresponding

2The time needed by Ingham’s inequality is determined by the asymptotic gap, but the constants in the inequality
also depend on the minimal gap of the whole sequence, and also on how fast the sequence approximates the asymptotic
gap ([21]). But with our definition of the asymptotic gap, as the bottom of the discrete spectra converges to the bottom
of the spectrum of the continuous Laplacian, these low-frequency part will not yield any difficulty.
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Figure 1: Plot of the eigenvectors wk,h,g for k = 10, N = 2000, and various functions g: from left to
right and top to bottom, g = g0.1, g = g1, g = g10 and g(x) = x.

to the mesh gθ in (1.8) do not present any horizontal tangent, contrarily to the case of a uniform
mesh. Therefore, the corresponding spectral gaps

inf
1≤k≤N−1

{ √
λk+1,h,g −

√
λk,h,g

}
for gθ in (1.8) should be bounded away from 0. In Table 1, we report the computations of the spectral
gap for various values of N . We remark that the spectral gap seems to be independent of the number
of points for the meshes corresponding to gθ, while it goes very rapidly to zero in the case of a uniform
mesh. If we employ the gap computed numerically for the largest N to estimate the time Tg,Ing in
(3.5) by Tg,Ing,est given by

Tg,Ing,est =
2π

inf
1≤k≤N−1

{ √
λk+1,h,g −

√
λk,h,g

} , (3.7)

we get a rather good agreement with the time predicted by (1.10) at least for small θ. However, the
estimated time Tg,Ing,est in (3.7), which appear to be close to Tg,Ing in (3.5) in our experiments as
the spectral gap concerns the high-frequency part of the spectrum, seems to be significantly better
than the one in (1.10) for θ of the order of 1. Whether Tg,Ing is the sharp critical time for the uniform
observability property (1.7) for (1.5) is an open problem.
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Figure 2: Plot of the eigenvectors wk,h,g for k = 1000, N = 2000, and various functions g: from left
to right and top to bottom, g = g0.1, g = g1, g = g10 and g(x) = x.

3.2 A dynamical system approach
We now discuss the observability of the discrete wave equation (1.5) from the point of view of the
propagation properties of discrete bicharacteristic rays, which is the cornerstone of the analysis of the
observability properties of the continuous wave equation (1.1) in any space dimension, leading to the
so-called Geometric Control Condition (GCC) [1, 2].

Rays of geometric optics are defined as the projections on the physical space (t, x) of the bichar-
acteristic rays given by the Hamiltonian corresponding to the principal part of the operator. In the
case of the classical wave equation with unit velocity, the Hamiltonian is simply

Hc(t, x, τ, ξ) = −τ2 + |ξ|2, (3.8)

and the bicharacteristic rays are given by the curves s 7→ (t(s), x(s), τ(s), ξ(s)) solving
dt

ds
= ∂τHc(t(s), x(s), τ(s), ξ(s)) = −2τ(s),

dx

ds
= ∇ξHc(t(s), x(s), τ(s), ξ(s)) = 2ξ(s),


dτ

ds
= −∂tHc(t(s), x(s), τ(s), ξ(s)) = 0,

dξ

ds
= −∇xHc(t(s), x(s), τ(s), ξ(s)) = 0,

(3.9)

for an initial data belonging to the characteristic set, i.e. satisfying Hc(t(s0), x(s0), τ(s0), ξ(s0)) = 0.
This is so while the curve does not hit the boundary of the domain, where a reflection law has to be
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Figure 3: Plot of the eigenvectors wk,h,g for k = 1900, N = 2000, and various functions g: from left
to right and top to bottom, g = g0.1, g = g1, g = g10 and g(x) = x.

prescribed, the Descartes-Snell’s law. Thus, the projections on the physical space of these rays simply
are straight lines traveling at velocity one inside the domain Ω. The construction given in [25] yield
solutions of the wave equation which are localized in an arbitrary small neighborhood of these rays.

When discretizing the wave equation, the situation is more intricate. One needs to derive carefully
a discrete counterpart of the Hamiltonian and the corresponding bicharacteristics by means of the
discrete Fourier transform. This was done in [19] for the discrete wave equation in an infinite lattice
(i.e. with no boundary) and, more recently, this theory was extended to non-uniform meshes obtained
by means of a C2 diffeomorphism (not necessarily concave) of the uniform mesh (jh)j∈Z in [20].

To be more precise, in [20], solutions of (1.5) were constructed, with frequencies of the order of
1/h, localized around the rays of geometric optics given by the projection on the physical space of
the bicharacteristic curves provided by the Hamiltonian

H(t, x, τ, ξ) = −g′(x)τ2 +
4

g′(x)
sin

(
ξ

2

)2

, (3.10)

or equivalently

H(t, x, τ, ξ) = −τ2 + c(x)ω(ξ)2, with c(x) =
1

g′(x)2
, ω(ξ) = 2 sin

(
ξ

2

)
. (3.11)

The bicharacteristic rays corresponding to that Hamiltonian are now more intricate as the Fourier
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Figure 4: Dispersion diagram k →
√
λk,h,g for various g: from left to right and top to bottom, g = g0,

g = g0.1, g = g1, g = g10. The corresponding dispersion diagrams are plotted in magenta plain line,
the dispersion diagram k 7→ kπ corresponding to the continuous Laplace operator is plotted in blue
dashed line and the dispersion diagram k 7→ 2 sin(kπh/2)/h is plotted in green dotted line.

variable ξ may evolve in time:

dt

ds
(s) = ∂τH(t(s), x(s), τ(s), ξ(s)) = −2τ(s),

dx

ds
(s) = ∇ξH(t(s), x(s), τ(s), ξ(s)) = 2c(x(s))ω(ξ(s))∂ξω(ξ(s)),

dτ

ds
(s) = −∂tH(t(s), x(s), τ(s), ξ(s)) = 0,

dξ

ds
(s) = −∇xH(t(s), x(s), τ(s), ξ(s)) = −∂xc(x(s))ω(ξ(s))2,

(3.12)

with an initial condition at s = 0 given by (t0, x0, τ0, ξ0) satisfying H(t0, x0, τ0, ξ0) = 0.
To better understand the dynamics of the bicharacteristic rays, remark that for all s, τ(s) = τ0.

Besides, for all s, H(t(s), x(s), τ(s), ξ(s)) = 0, so that for all s,

τ20 = c(x(s))ω(ξ(s))2.

Now, as dt/ds does not vanish, we can parametrize the curve s 7→ (t(s), x(s), τ(s), ξ(s)) by t 7→
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(t, x(t), τ0, ξ(t)), and we obtain
dx

dt
(t) = − 1

τ0
c(x(t))ω(ξ(t))∂ξω(ξ(t)),

dξ

dt
(t) =

1

2τ0
∂xc(x(t))ω(ξ(t))2,

τ20 = c(x(t))ω(ξ(t))2.
(3.13)

This yields in particular

d2x

dt2
(t) = − 1

τ0
∂xc(x(t))

dx

dt
(t)ω(ξ(t))∂ξω(ξ(t))− 1

τ0
c(x(t))

(
(∂ξω(ξ(t)))2 + ω(ξ(t))∂ξξω(ξ(t))

) dξ
dt

(t)

=
1

2τ20
c(x(t))∂xc(x(t))ω(ξ(t))2

(
2(∂ξω(ξ(t)))2 −

(
(∂ξω(ξ(t)))2 + ω(ξ(t))∂ξξω(ξ(t))

))
=

1

2
∂xc(x(t))

(
(∂ξω(ξ(t)))2 − ω(ξ(t))∂ξξω(ξ(t))

)
.

With c and ω as in (3.11), we therefore obtain that for all t,

d2x

dt2
(t) =

1

2

d

dx

(
1

(∂xg)2

)∣∣∣∣
x=x(t)

= − g
′′(x(t))

g′(x(t))3
. (3.14)

Therefore, in the part of the domain in which g is strictly concave, the corresponding rays are curved
in the direction of increasing x. This gives a complementary interpretation of the strict concavity
assumption on g in Theorem 1.2.

Note that the above computation of d2x/dt2 indicates that the curvature of the rays of geometric
optics is driven by the product of the signs of ∂xc(x) and of (∂ξω(ξ))2 − ω(ξ)∂ξξω(ξ).

This later quantity is constant equal to one in the case of ω(ξ) = 1 (the continuous case) and in
the case of ω(ξ) = 2 sin(ξ/2) corresponding to the finite difference case we are considering. Though,
in the continuous case, the rays cannot turn without hitting the boundary. Indeed, thanks to (3.13),∣∣∣∣dxdt (t)

∣∣∣∣ =
1

|τ0|
c(x(t))|ω(ξ(t))∂ξω(ξ(t))| =

√
c(x(t)|∂ξω(ξ(t))|,

so that the velocity of rays can vanish only if ∂ξω vanishes for some ξ. When ω(ξ) = ξ, i.e. in the
continuous setting, this cannot happen, while when ω(ξ) = 2 sin(ξ/2), ∂ξω(ξ) = cos(ξ/2) vanishes for
ξ = ±π.

For the mesh corresponding to gθ as in (1.8), the rays are all curved towards x = 1, and this
curvature is more important when θ is small. In fact, formula (3.14) easily provides that the rays
traveling on a mesh M h,g for g = gθ as in (1.8) satisfy

d2x

dt2
(t) =

2

1 + 2θ
. (3.15)

To illustrate this result, we plot in Figure 5 the absolute value of the solutions of the discrete wave
equation (1.5) in meshes M h,g for various choices of g corresponding to an initial data given by

u0j = exp

(
− (jh− 1/2)2

h

)
exp

(
ig(jh)ξ0

h

)
,

u1j = exp

(
− (jh− 1/2)2

h

)
exp

(
ig(jh)ξ0

h

)
2i sin(ξ0/2)

hj
,

(3.16)

in the spirit of the Gaussian beams [25]. The oscillatory term localizes the solution in frequency in
a neighborhood of ξ0/h. This oscillatory term is modulated by a Gaussian envelope centered in a
neighborhood of size ' 1/

√
h of x = 1/2.
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Figure 5: Solutions of (1.5) with the initial data (u0,h, u1,h) as in (3.16) for various choices of g, with
N = 200, ξ0 = 0.8π. From left to right and top to bottom, g = g0,1, g = g1, g = g10 and g = g(x).
The abscissa represents the space variable x ∈ (0, 1) and the ordinate is the time variable t ∈ (0, 4).

In the uniform case, the ray simply is a straight line except when it hits the boundary. But its
velocity does not correspond to the velocity 1 of the continuous wave equation (1.1). Actually, the
equation (3.13) immediately yields in the case of a uniform mesh that, away from the boundary,
ξ(t) = ξ0 for all t and thus ∣∣∣∣dxdt

∣∣∣∣ = |∂ξω(ξ)| = cos

(
ξ0
2

)
.

Therefore, taking ξ0 close to π provides rays that travel arbitrarily slowly, making the observability
property to blow up in the case of a uniform mesh.

In Figure 5, we see that when θ decreases, the corresponding ray is more and more bent to the
right, as formula (3.15) shows.

We may also use this analysis to derive estimates on the characteristic time for the uniform
observability property (1.7) for (1.5). Indeed, similarly as in the continuous case [2], we may infer
that the critical time for the uniform observability property (1.7) is given by the longest characteristic
ray that does not meet the observation set x = 1.

We therefore display on Figure 6 the phase portraits (x, ξ) corresponding to the dynamical system
(3.13) (with the choice τ0 > 0 which can be done without loss of generality) for the functions g = gθ
in (1.8) for θ ∈ {0.1, 1, 10} and in the uniform case g(x) = x.
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On the boundary x = 0, we conjecture that the reflection occurs with the law ξ → 2π − ξ, in
agreement with the usual Descartes Snell’s law, corresponding to the constraint H(t, x, τ, ξ) = 0.

0  0.2 0.4 0.6 0.8 1  
0

π

2π

0  0.2 0.4 0.6 0.8 1  
0

π

2π

0 0.2 0.4 0.6 0.8 1

2π

π

0

0 0.2 0.4 0.6 0.8 1

π

0

2π

Figure 6: Phase portraits for various functions g: from left to right and top to bottom, g = g0.1,
g = g1, g = g10 and g(x) = x. In blue/magenta/red, we represent trajectories reflecting transver-
sally/diffractively/internally at the left endpoint and transversally at the right endpoint of the interval.
In green, the fixed points of the dynamical system for the case of the uniform mesh, g(x) = x.

We now compute the length of the longest characteristic ray which does not meet the observation
set x = 1. It is obvious that we may restrict ourselves to the characteristics starting with a negative
velocity at x0 = 1 so that we also impose ξ0 ∈ (0, π]. Then three cases occur:
• the “blue” case: In some time t1, the ray hits the boundary x = 0, is then reflected according to
Descartes Snell’s law, and goes back to x = 1. It corresponds to the trajectories in blue in Figure 6.
• the “magenta” case: The ray reflects diffractively a the boundary x = 0 and goes back to x = 1.
This corresponds to the (unique) trajectory in magenta in Figure 6.
• the “red” case: The ray does not hit the boundary x = 0 and is bent to x = 1. This corresponds to
the trajectories in red in Figure 6.
Each case is characterized by the initial frequency parameter ξ0. In order to determine the critical
value ξ∗ which determines each case, we focus on the magenta curve. As it is characterized by the
fact that at x = 0, its velocity vanishes, which occurs only for ξ = π, we must have

c(0)ω(π)2 = c(1)ω(ξ∗)2, i.e. ξ∗ = 2 arcsin

(
g′(1)

g′(0)

)
. (3.17)

Consequently, the blue case is characterized by ξ0 ∈ (0, ξ∗), the critical case by ξ0 = ξ∗, and the red
case by ξ0 ∈ (ξ∗, π].
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The blue case ξ0 ∈ (0, ξ∗). In this case, t 7→ x(t) starts by decreasing during a time interval (0, t1)
and hits the boundary at time t1(ξ0)− corresponding to (x, ξ) = (0, ξ1) with

ξ1 = 2 arcsin

(
g′(1)

g′(0)
sin

(
ξ0
2

))
, given by the relation c(0)ω(ξ1)2 = c(1)ω(ξ0)2.

At time t1(ξ0)+, the characteristic ray starts from (x, ξ) = (0, 2π − ξ1) and goes right until the time
t2(ξ0) in which it hits the boundary x = 1. Based on the the relation dx = (∂tx)dt along the trajectory,
the total time spent by the characteristic ray starting from (1, ξ0) to reach the boundary x = 1 is then
given by

Tb(ξ0) = t2(ξ0) =

∫ t1(ξ0)

0

dt+

∫ t2(ξ0)

t1(ξ0)

dt =

∫ 1

0

dx

|∂tx|
+

∫ 1

0

dx

|∂tx|
= 2

∫ 1

0

dx√
c(x)|∂ξω(ξ)|

.

Using that along the trajectory

c(x)ω(ξ)2 = c(1)ω(ξ0)2, and c(x) =
1

g′(x)2
,

we obtain that, along the ray,

|∂ξω(ξ)| =

√
1−

(
g′(x)

g′(1)
sin

(
ξ0
2

))2

,

so that

Tb(ξ0) = 2

∫ 1

0

g′(x) dx

|∂ξω(ξ)|
= 2

∫
1

0

g′(x) dx√
1−

(
g′(x)

g′(1)
sin

(
ξ0
2

))2
.

This quantity is obviously an increasing function of ξ0. We therefore obtain that the characteristic
time corresponding to the rays in the blue region is

Tb = sup
ξ0∈(0,ξ∗)

Tb(ξ0) = 2

∫
1

0

g′(x) dx√
1−

(
g′(x)

g′(1)
sin

(
ξ∗

2

))2
= 2

∫
1

0

g′(x) dx√
1−

(
g′(x)

g′(0)

)2
. (3.18)

The red case ξ0 ∈ (ξ∗, π]. When ξ0 ∈ (ξ∗, π], the ray does not hit the boundary x = 0 and its
velocity ∂tx changes of sign at some time t1(ξ0). At this time, we necessarily have ξ(t1(ξ0)) = π
which corresponds to the only possibility to cancel the velocity, so that the rays turns at the point
x1 = x(t1(ξ0)) given by the relation√

c(x1)ω(π) =
√
c(1)ω(ξ0), i.e. g′(x1) =

g′(1)

sin

(
ξ0
2

) .
Similar computations as in the blue case yield

Tr(ξ0) = 2

∫
1

x1

g′(x) dx√
1−

(
g′(x)

g′(1)
sin

(
ξ0
2

))2
= 2

∫
1

x1

g′(x) dx√
1−

(
g′(x)

g′(x1)

)2
.
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The magenta case ξ0 = ξ∗. This case can be recovered as a limit of the blue case or of the red case
and therefore does not need any further analysis.

Guess on the characteristic time. Based on the analysis above, we expect that the critical
time for the uniform observability property (1.7) for (1.5) for a given strictly concave function g is
given by

Tg,char = 2 sup
x1∈[0,1]

{∫ 1

x1

g′(x) dx√
1−

(
g′(x)

g′(x1)

)2

}
. (3.19)

But so far, this is still an open issue.
Actually, it is not straightforward from the above formula in (3.19) that the time Tg,char in (3.19)

is smaller than the time Tg in (1.10) for strictly concave functions g as in Theorem 1.2. It is not even
clear for which x1 ∈ (0, 1] this supremum is achieved for general strictly concave functions g.

Though, according to [20, Theorem 3.5], we can show that the time of uniform observability for
(1.5) is necessarily larger than the time Tg,char in (3.19): Otherwise, one could construct a sequence
of discrete rays localized around one ray of the discrete Hamiltonian (3.13) which does not touch the
boundary x = 0 and violating the uniformity of the discrete observability inequality (1.7).

To support our above conclusions, let us focus again on the case g = gθ in (1.8), in which case
explicit computations can be done:∫

1

x1

g′(x) dx√
1−

(
g′(x)

g′(x1)

)2
= 2
√

2θ + 1
√

1− x1.

so that
Tgθ,char = 2

√
2θ + 1, (3.20)

which is indeed strictly smaller than Tgθ = 2(1 + 2θ) in (1.10) for θ > 0 as claimed above. We report
the corresponding values in Table 1. As one easily checks, the values given by (3.20) are very close to
the ones given by the estimated Ingham time Tg,Ing,est in (3.7), thus supporting the idea that both
times coincide with the sharp critical time needed for the uniform observability (1.7) for (1.5).

N g0 g0.1 g1 g10 g(x) = x

500 3.1133 2.8780 1.837 0.7004 0.0148
1000 3.1213 2.8739 1.8247 0.6950 0.0074
2000 3.1272 2.8716 1.8208 0.6917 0.0037

Tg,Ing,est in (3.7) 2.01 2.19 3.45 9.08 ∞
Tg in (1.10) “2” 2.2 4 22 ∞

Tg,char in (3.20) “2” 2.19 3.46 9.17 ∞

Table 1: Spectral gaps for the meshes M h,g for g = g0, g = g0.1, g = g1, g = g10 and g(x) = x, and
for various values of N and estimated times Tg,Ing,est given by (3.7) for uniform observability and the
characteristic time Tg,char in (3.20) provided by micro-local analysis.

4 The controllability problem
In this section, we illustrate the interest of the observability property for controllability purposes.
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4.1 The continuous setting
In the continuous case, the controllability problem corresponding to the observability property (1.2)
for (1.1) is the following: Given (y0, y1) ∈ L2(0, 1) ×H−1(0, 1), find a control function v ∈ L2(0, T )
such that the solution y of ∂tty − ∂xxy = 0, (t, x) ∈ (0, T )× (0, 1),

y(t, 0) = 0, y(t, 1) = v(t), t ∈ (0, T ),
y(0, x) = y0(x), ∂ty(0, x) = y1(x), x ∈ (0, 1),

(4.1)

satisfies the controllability requirement

(y(T, x), ∂ty(T, x)) = (0, 0), x ∈ (0, 1). (4.2)

Thanks to the linearity and the time-reversibility of the wave equation (4.1), this controllability
property is equivalent to the a priori more general one: Given (y0, y1) ∈ L2(0, 1) × H−1(0, 1) and
(y0f , y

1
f ) ∈ L2(0, 1)×H−1(0, 1), find a control function v ∈ L2(0, T ) such that the solution y of (4.1)

satisfies
(y(T, x), ∂ty(T, x)) = (y0f , y

1
f ), x ∈ (0, 1). (4.3)

Let us focus on the controllability problem (4.1)–(4.2) and briefly recall how it can be solved by
using the observability property (1.2) for (1.1). Following [18] and the modified Hilbert Uniqueness
Method (HUM) proposed in [10], for T > 2 we first choose a smooth function η : [0, T ] → [0, 1] flat
at t = 0 and at t = T and equals to 1 on a sufficiently large interval of time so that the following
observability inequality is satisfied for all u solving (1.1) with initial data (u0, u1) ∈ H1

0 (0, 1)×L2(0, 1):

∥∥(u0, u1)
∥∥2
H1

0 (0,1)×L2(0,1)
≤ C2

obs

∫ T

0

η(t)|∂xu(t, 1)|2 dt. (4.4)

Then, given (y0, y1) ∈ L2(0, 1)×H−1(0, 1), we introduce the functional J defined by

J(u0, u1) =
1

2

∫ T

0

η(t)|∂xu(t, 1)|2 dt+

∫ 1

0

y0u1 − 〈y1, u0〉H−1,H1 , (4.5)

where u denotes the solution of (1.1) with initial data (u0, u1) ∈ H1
0 (0, 1)× L2(0, 1), and 〈·, ·〉H−1,H1

denotes the duality product between H−1(0, 1) and H1
0 (0, 1) given by

〈y1, u0〉H−1,H1 =

∫ 1

0

∂x((−∂dxx)−1y1)∂xu
0,

where (−∂dxx)−1 denotes the inverse of the Laplace operator on (0, 1) with homogeneous Dirichlet
boundary conditions.

Thanks to the observability property (4.4) for solutions of (1.1), one easily checks that the func-
tional J is coercive and strictly convex on H1

0 (0, 1)×L2(0, 1). Therefore, it admits a unique minimizer
(U0, U1) ∈ H1

0 (0, 1) × L2(0, 1). If we denote by U the corresponding solution of (1.1), one obtains
that, setting

v(t) = η(t)∂xU(t, 1), t ∈ (0, T ), (4.6)

the solution y of (4.1) with initial datum (y0, y1) and control function v as in (4.6) satisfies the control
requirement (4.2). Besides, the control v in (4.6) is the one of minimal L2(0, T ; dt/η)-norm.

Remark that the classical HUM method ([18]) uses η(t) = 1 for all t ∈ (0, T ), but the method
above presents the advantage of ensuring regular controls for regular data and therefore performs
better when adapted numerically, see [10, 11].

22



4.2 The discrete setting
When trying to compute an approximation of the discrete control v given by (4.6) associated to an
initial datum (y0, y1), the basic idea is to take a discrete approximation (y0,h,y1,h) of (y0, y1) and
then to compute the minimizer of a discrete counterpart Jh of the functional J in (4.5), namely

Jh(u0,h,u1,h) =
1

2

∫ T

0

η(t)

∣∣∣∣ uhN (t)

hN+1/2

∣∣∣∣2 dt+

N∑
j=1

hjy
0,h
j u1,hj −

N∑
j=1

hjy
1,h
j u0,hj , (4.7)

where uh denotes the solution of (1.5) with initial datum (u0,h,u1,h). If a minimizer (U0,h,U1,h) is
found, one may expect that

vh(t) = −η(t)
UhN (t)

hN+1/2
, t ∈ (0, T ), (4.8)

would produce a good approximation of v in (4.6). To support that idea, we could also remark that
the function vh obtained that way solves the following discrete controllability problem: the solution
yh of 

hjy
′′
j (t)−

(yj+1(t)− yj(t)
hj+1/2

− yj(t)− yj−1(t)

hj−1/2

)
= 0, t ∈ (0, T ), 1 ≤ j ≤ N,

y0(t) = 0, yN+1(t) = vh(t), t ∈ (0, T ),

yj(0) = y0,hj , y′j(0) = y1,hj , 1 ≤ j ≤ N,

(4.9)

satisfies
(yj(T ), ∂tyj(T )) = (0, 0), j ∈ {1, · · · , N}, (4.10)

that is a discrete version of the controllability problem (4.1)–(4.2).
But this process may fail to converge as Jh may not be uniformly coercive with respect to h.

Actually, even worse, as a consequence of Banach Steinhaus theorem, one can show that if the discrete
systems (1.5) are not uniformly observable, then there exists initial data in L2(0, 1)×H−1(0, 1) such
that the sequence of corresponding discrete controls vh in (4.8) is unbounded as h → 0, see [10,
Theorem 8]. It turns out that in the case of a uniform mesh, that is when g(x) = x, uniform
observability fails [16]. Therefore the above process, based on the minimization of Jh in (4.7), may
create divergent sequences of controls. This is due to the fact that uniform meshes generate spurious
high-frequency solutions that propagate arbitrarily slowly, recall Section 3.2. To recover uniform
observability properties on a uniform mesh, high-frequency components need to be filtered ([12, 14]),
either by Fourier ([16]), bi-grid techniques ([24]), or Tychonoff regularization ones ([28]).

As a consequence of the analysis of the present paper, a new remedy can be designed based on
the use of the non-uniform grids that we introduce here. Indeed, as a consequence of Theorems 1.1–
1.2, minimizing the corresponding discrete analogs of the functionals J above, the obtained discrete
controls vh in (4.8) are bounded. Basic convergence arguments show that, provided (y0,h,y1,h)
converge to (y0, y1) in a suitable sense, the discrete controls vh in (4.8) converge to the control v in
(4.6). One can also derive additional rates of convergence if we assume (y0, y1) to be slightly smoother
than L2(0, 1)×H−1(0, 1). We refer to [10, 11] for further developments on these issues.

To illustrate these ideas and facts, we perform some numerical experiments. We choose an initial
datum (y0, y1) to be controlled and a natural sequence of corresponding discrete approximations
(y0,h, y1,h). For T > 2 fixed, we choose θ = (T − 2)/2 and a mesh described by gθ as in (1.8). We
then compute vh as in (4.8) for this mesh. As initial datum (y0, y1) we choose the ones in Figure 7.
In Figure 8, left, we plot the control vh computed on the mesh M gθ,h with θ = (T − 2)/2, T = 4 and
h = 1/301. In the case of a uniform mesh, the computation of the minimizer of Jh does not converge
due to a bad conditioning of the functional [22]. Therefore, to compare the control vh computed on
the mesh M gθ,h, we plot in Figure 8, right, the controls obtained in time T = 4 on a uniform mesh

23



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Initial displacement

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Initial velocity

Figure 7: Initial datum to be controlled: left, the initial displacement y0, right, the initial velocity y1.

using the filtering mechanism of [16] which simply consists on minimizing the functional Jh in (4.7)
on the subspace (V h(γ))2 for some γ < 4, where V h(γ) is defined by

V h(γ) = Span

{
(sin(kπjh))1≤j≤N

∣∣∣ k ≥ 1 with
4

h2
sin

(
kπh

2

)2

≤ γ

h2

}
.

Minimizing Jh on (V h(γ))2 yields a minimizer (U0,h,γ ,U1,h,γ), and if Uh,γ denotes the corresponding
solution of (1.5),

vh,γ(t) = −η(t)
Uh,γN (t)

hN+1/2
, t ∈ (0, T ), (4.11)

is the corresponding filtered control. This filtered control is proved to converge in L2(0, T ) to the
corresponding control (4.6) in [16], see aso [10].
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Figure 8: Discrete controls. Left, the control given by vh in (4.8) computed on the mesh M gθ,h with
θ = (T − 2)/2, T = 4 and h = 1/301. Right, the control vh,γ in (4.11) computed on a uniform mesh
with γ = 1, T = 4, h = 1/301.

Figure 8 shows that the controls vh and vh,γ look exactly the same, therefore supporting the idea
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that choosing the mesh suitably as in this paper, one does not further need of any filtering process to
recover the convergence of the discrete controls.

5 Finite element approximations
This section aims at extending our approach to the study of uniform observability properties of the
space semi-discrete wave equation discretized using the finite element method.

5.1 Statements and results
Finite element methods for the approximation of the wave equations are based on the variational
formulation of (1.1): Find u(t, ·) ∈ H1

0 (0, 1) such that
d2

dt2
(u(t, ·), ϕ)L2(0,1) + (∂xu(t, ·), ∂xϕ)L2(0,1) = 0, ∀ϕ ∈ H1

0 (0, 1), ∀t ∈ (0, T ),

(u(0, ·), ∂tu(0, ·)) = (u0, u1).
(5.1)

Let g be a smooth diffeomorphism of the interval [0, 1] with g(0) = 0 and g(1) = 1. We introduce
the mesh M h,g as in (1.3)–(1.4), and the corresponding P1 finite element space

H1,h,g
0 (0, 1) =

{
fh ∈ C0([0, 1]), fh(0) = fh(1) = 0 ,

and fh is affine in each interval [xj , xj+1], j ∈ {0, · · · , N}
}
.

The P1 finite element approximation of (5.1) then reads as follows: Find uh(t, ·) ∈ H1,h,g
0 (0, 1) such

that
d2

dt2
(uh(t, ·), ϕh)L2(0,1) + (∂xu

h(t, ·), ∂xϕh)L2(0,1) = 0, ∀ϕh ∈ H1,h,g
0 (0, 1), ∀t ∈ (0, T ),

(uh(0, ·), ∂tuh(0, ·)) = (uh,0, uh,1).
(5.2)

As H1,h,g
0 (0, 1) is a finite dimensional space spanned by the “hat” functions

φj(x) =
x− xj−1
hj−1/2

1(xj−1,x](x) +
xj+1 − x
hj+1/2

1(xj ,xj+1](x),

we look for uh solution of (5.2) under the form

uh(t, x) =

N∑
k=1

uk(t)φk(x).

We then easily obtain that the vector of coefficients uh(t) = (uj(t))0≤j≤N+1 satisfies the following
second-order linear ODE system:

hj+1/2

6
u′′j+1(t) +

2hj
3
u′′j (t) +

hj−1/2

6
u′′j−1(t)−

(uj+1(t)− uj(t)
hj+1/2

− uj(t)− uj−1(t)

hj−1/2

)
= 0,

(t, j) ∈ (0, T )× {1, · · · , N},
u0(t) = uN+1(t) = 0, t ∈ (0, T ),
(uj(0), u′j(0)) = (u0j , u

1
j ), j ∈ {1, · · · , N}.

(5.3)
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The total energy for the solutions of (5.2), equivalently (5.3), given by

Eh,gf (uh(t), ∂tu
h(t)) :=

1

2

N∑
j=0

∫ xj+1

xj

(|∂tuh(t, x)|2 + |∂xuh(t, x)|2) dx

=
1

12

N∑
j=0

hj+1/2|u′j+1(t) + u′j(t)|2 +
1

6

N∑
j=1

hj |u′j(t)|2 +
1

2

N∑
j=0

hj+1/2

∣∣∣uj+1(t)− uj(t)
hj+1/2

∣∣∣2, (5.4)

is time independent.
Focusing on the observability inequality with an observation through x = 1, we get the following

counterpart to Theorem 1.2:

Theorem 5.1. Let g : [0, 1]→ [0, 1] be a C3([0, 1]) diffeomorphism satisfying g(0) = 0, g(1) = 1, and
assume that g is strictly concave. Set θg as in (1.9). Then, for any T > Tg as in (1.10), the space
semi-discrete equations (5.3) are uniformly observable through x = 1 in the following sense: There
exist h? > 0 and a constant Cgobs > 0 (independent of h) such that for all h ∈ (0, h?), the solutions
uh,g of (5.3) on the mesh M h,g satisfy the observability inequality:

Eh,gf (u0,h,u1,h) ≤ (Cgobs)
2

(∫ T

0

∣∣∣∣ ugN (t)

hN+1/2

∣∣∣∣2 dt+

∫ T

0

|(ugN )′(t)|2 dt

)
. (5.5)

The discrete observability inequality in (5.5) involves a reinforcement of the observation operator
ugN (t)/hN+1/2 corresponding to the spatial derivative ∂xu(t, 1) by the term (ugN )′(t). However, such
discrete uniform observability inequality (5.5) allows to recover the observability inequality (1.2) when
passing to the limit h→ 0. Besides, this reinforcement of the discrete observability inequality is still
localized close to x = 1, so that we can still interpret (5.5) as a discrete observability inequality
through x = 1.

As in the context of finite differences, one can immediately deduce from Theorem 5.1 the following
counterpart of Theorem 1.1:

Theorem 5.2. For any T > 2, there exists a smooth diffeomorphism g such that the solutions uh,g of
(5.3) are uniformly observable through x = 1 in time T . Such g can be chosen explicitly of the form
gθ as in (1.8) for θ ∈ (0, T/2− 1).

The proof of Theorem 5.2 is omitted as it is a straightforward consequence of Theorem 5.1. In
Section 5.2 below, we present the proof of Theorem 5.1. It is based on the same strategy as the one
in Section 2, though the proofs are more technically involved.

Before going further, let us mention that the insights given in Section 3 for the finite difference
method are completely similar for the finite element method. From a spectral point of view, the
eigenvectors corresponding to high eigenvalues concentrate close to the set where the mesh is refined,
similarly to Figures 1–2–3, and numerical evidences show that the eigenvalues enjoy a uniform gap
condition when the mesh transformation is strictly concave. From a dynamical point of view, the
computation of the dynamics of the rays can still be done but with a more intricate dispersion
relation ω, and one can construct Gaussian beam solutions curved towards the set in which the mesh
is finer as in Figure 5.

5.2 Proof of Theorem 5.1
Similarly as in Section 2, we start with a multiplier identity:
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Proposition 5.3 (A discrete multiplier identity). If uh(t) solves (5.3) and mh(t) denotes the multi-
plier in (2.1), we have the following identity:

N∑
j=1

(hj+1/2

6
u′j+1(t) +

2hj
3
u′j(t) +

hj−1/2

6
u′j−1(t)

)
mj(t)

∣∣∣∣∣
T

0

+
1

24

N∑
j=1

∫ T

0

[
θj+1

(3hj+3/2

hj+1/2
− 1
)

+ 3θj

(hj−1/2
hj+1/2

−
hj+1/2

hj−1/2

)
− θj−1

(3hj−3/2

hj−1/2
− 1
)]
|u′j(t)|2 dt

+
1

12

N∑
j=0

∫ T

0

(θj+1 − θj)|u′j+1(t) + u′j(t)|2 dt+
1

2

N∑
j=0

∫ T

0

(θj+1 − θj)
∣∣∣∣uj+1(t)− uj(t)

hj+1/2

∣∣∣∣2 dt
+

1

24

N∑
j=1

∫ T

0

θj

(hj−1/2
hj+1/2

−
hj+1/2

hj−1/2

)
|u′j+1(t)− u′j−1(t)|2 dt

− 1

24

N∑
j=0

∫ T

0

[
θj+1

(hj+1/2

hj+3/2
+

2hj+3/2

hj+1/2
− 1
)

+ θj

(
1−

2hj−1/2

hj+1/2
−
hj+1/2

hj−1/2

)]
|u′j+1(t)− u′j(t)|2 dt

+
θ0
24

(h−1/2
h1/2

−
h1/2

h−1/2

)∫ T

0

|u′1(t)|2 dt+
θN+1

24

(hN+1/2

hN+3/2
−
hN+3/2

hN+1/2

)∫ T

0

|u′N (t)|2 dt

+
θ0
12

∫ T

0

|u′1(t)|2 dt+
θ0
2

∫ T

0

∣∣∣u1(t)

h1/2

∣∣∣2 dt =
θN+1

12

∫ T

0

|u′N (t)|2 dt+
θN+1

2

∫ T

0

∣∣∣∣ uN (t)

hN+1/2

∣∣∣∣2 dt, (5.6)

where h−1/2 and hN+3/2 can be set arbitrarily.

Proof. We use the multipliermh in (2.1): we multiply the equation (5.3) bymj , sum on j ∈ {1, · · · , N}
and integrate in time to obtain

Af −Bf = 0, with Af =

N∑
j=1

∫ T

0

(hj+1/2

6
u′′j+1(t) +

2hj
3
u′′j (t) +

hj−1/2

6
u′′j−1(t)

)
mj(t) dt

and Bf =

N∑
j=1

∫ T

0

(uj+1(t)− uj(t)
hj+1/2

− uj(t)− uj−1(t)

hj−1/2

)
mj(t) dt.

The term Bf coincides with B in the finite difference case and we refer to (2.3) for its computation.
We thus focus on the computation of the term Af . By integration by parts in time, we get

Af =

N∑
j=1

(hj+1/2

6
u′j+1(t) +

2hj
3
u′j(t) +

hj−1/2

6
u′j−1(t)

)
mj(t)

∣∣∣∣∣
T

0

−A0
f

with A0
f = −

N∑
j=1

∫ T

0

(hj+1/2

6
u′j+1(t) +

2hj
3
u′j(t) +

hj−1/2

6
u′j−1(t)

)
m′j(t) dt.

We now put the term in A0
f in a suitable form:

(hj+1/2

6
u′j+1 +

2hj
3
u′j +

hj−1/2

6
u′j−1

)
m′j =

θj
12
aj

with aj =
(
hj+1/2u

′
j+1 + 4hju

′
j + hj−1/2u

′
j−1
)(u′j+1 − u′j

hj+1/2
+
u′j − u′j−1
hj−1/2

)
.
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Using

hj+1/2u
′
j+1 + 4hju

′
j + hj−1/2u

′
j−1 = hj+1/2(u′j+1 + u′j) + hj−1/2(u′j + u′j−1) + 2hju

′
j ,

u′j+1 − u′j
hj+1/2

+
u′j − u′j−1
hj−1/2

=
u′j+1 + u′j
hj+1/2

−
u′j + u′j−1
hj−1/2

− 2

(
1

hj+1/2
− 1

hj−1/2

)
u′j ,

we derive

aj =
(

(u′j+1 + u′j)
2 − (u′j + u′j−1)2

)
+ (u′j+1 + u′j)(u

′
j + u′j−1)

(
hj−1/2

hj+1/2
−
hj+1/2

hj−1/2

)
− 2u′j

(
1

hj+1/2
− 1

hj−1/2

)(
hj+1/2(u′j+1 + u′j) + hj−1/2(u′j + u′j−1)

)
+ 2hju

′
j

(
u′j+1 − u′j
hj+1/2

+
u′j − u′j−1
hj−1/2

)
.

By discrete integration by parts, the first term will yield a term in |u′j+1 + u′j |2, so we leave it under
that form for the moment.

We write the other terms in terms of u′j and differences of the form u′j+1 − u′j and u′j − u′j−1 only.
We thus write

(u′j+1 + u′j)(u
′
j + u′j−1) = −1

2

(
|u′j+1 − u′j−1|2 − |u′j+1 − u′j |2 − |u′j − u′j−1|2

)
+ 2u′j(u

′
j+1 − u′j)− 2u′j(u

′
j − u′j−1) + 4|u′j |2,

and

u′j
(
hj+1/2(u′j+1 + u′j) + hj−1/2(u′j + u′j−1)

)
= hj+1/2u

′
j(u
′
j+1 − u′j)− hj−1/2u′j(u′j − u′j−1) + 4hj |u′j |2.

so that aj becomes

aj =
(

(u′j+1 + u′j)
2 − (u′j + u′j−1)2

)
+ |u′j |2

(
4

(
hj−1/2

hj+1/2
−
hj+1/2

hj−1/2

)
− 8hj

(
1

hj+1/2
− 1

hj−1/2

))
− 1

2

(
hj−1/2

hj+1/2
−
hj+1/2

hj−1/2

)(
|u′j+1 − u′j−1|2 − |u′j+1 − u′j |2 − |u′j − u′j−1|2

)
+ u′j(u

′
j+1 − u′j)

(
2

(
hj−1/2

hj+1/2
−
hj+1/2

hj−1/2

)
− 2

(
1

hj+1/2
− 1

hj−1/2

)
hj+1/2 + 2

hj
hj+1/2

)
+ u′j(u

′
j − u′j−1)

(
−2

(
hj−1/2

hj+1/2
−
hj+1/2

hj−1/2

)
+ 2

(
1

hj+1/2
− 1

hj−1/2

)
hj−1/2 + 2

hj
hj−1/2

)
=
(

(u′j+1 + u′j)
2 − (u′j + u′j−1)2

)
− 1

2

(
hj−1/2

hj+1/2
−
hj+1/2

hj−1/2

)(
|u′j+1 − u′j−1|2 − |u′j+1 − u′j |2 − |u′j − u′j−1|2

)
+ u′j(u

′
j+1 − u′j)

(
3
hj−1/2

hj+1/2
− 1

)
+ u′j(u

′
j − u′j−1)

(
3
hj+1/2

hj−1/2
− 1

)
.
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Using this last identity, we derive

A0
f = A1

f +A2
f +A3

f +A4
f with

A1
f =

1

12

N∑
j=1

∫ T

0

θj
(
|u′j+1(t) + u′j(t)|2 − |u′j(t) + u′j−1(t)|2

)
dt,

A2
f = − 1

24

N∑
j=1

∫ T

0

θj

(
hj−1/2

hj+1/2
−
hj+1/2

hj−1/2

)
|u′j+1 − u′j−1|2 dt,

A3
f =

1

24

N∑
j=1

∫ T

0

θj

(
hj−1/2

hj+1/2
−
hj+1/2

hj−1/2

)(
|u′j+1 − u′j |2 + |u′j − u′j−1|2

)
dt,

A4
f =

1

12

N∑
j=1

∫ T

0

θj

(
u′j(u

′
j+1 − u′j)

(
3
hj−1/2

hj+1/2
− 1

)
+ u′j(u

′
j − u′j−1)

(
3
hj+1/2

hj−1/2
− 1

))
dt.

Computation of A1
f :

A1
f =

θN+1

12

∫ T

0

|u′N (t)|2 dt− θ0
12

∫ T

0

|u′1(t)|2 dt− 1

12

N∑
j=0

∫ T

0

(θj+1 − θj)|u′j+1(t) + u′j(t)|2 dt.

The term A2
f does not require any further computation.

Computation of A3
f :

A3
f =

1

24

N∑
j=0

∫ T

0

[
θj+1

(hj+1/2

hj+3/2
−
hj+3/2

hj+1/2

)
+ θj

(hj−1/2
hj+1/2

−
hj+1/2

hj−1/2

)]
|u′j+1(t)− u′j(t)|2 dt

− θ0
24

(h−1/2
h1/2

−
h1/2

h−1/2

)∫ T

0

|u′1(t)|2 dt− θN+1

24

(hN+1/2

hN+3/2
−
hN+3/2

hN+1/2

)∫ T

0

|u′N (t)|2 dt,

Computation of A4
f :

A4
f =

1

12

N∑
j=0

∫ T

0

[
θj+1

(3hj+3/2

hj+1/2
− 1
)
u′j+1(t) + θj

(3hj−1/2

hj+1/2
− 1
)
u′j(t)

]
(u′j+1(t)− u′j(t)) dt

=
1

24

N∑
j=0

∫ T

0

[
θj+1

(3hj+3/2

hj+1/2
− 1
)
− θj

(3hj−1/2

hj+1/2
− 1
)]
|u′j+1(t)− u′j(t)|2 dt

+
1

24

N∑
j=0

∫ T

0

[
θj+1

(3hj+3/2

hj+1/2
− 1
)

+ θj

(3hj−1/2

hj+1/2
− 1
)] (
|u′j+1(t)|2 − |u′j(t)|2

)
dt

=
1

24

N∑
j=0

∫ T

0

[
θj+1

(3hj+3/2

hj+1/2
− 1
)
− θj

(3hj−1/2

hj+1/2
− 1
)]
|u′j+1(t)− u′j(t)|2 dt

− 1

24

N∑
j=1

∫ T

0

[
θj+1

(3hj+3/2

hj+1/2
− 1
)

+ 3θj

(hj−1/2
hj+1/2

−
hj+1/2

hj−1/2

)
− θj−1

(3hj−3/2

hj−1/2
− 1
)]
|u′j(t)|2 dt.

Combining all the above computations yields the identity (5.6).

We then derive the counterpart of Proposition 2.2:
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Proposition 5.4. Let g : [0, 1]→ [0, 1] be a C3-diffeomorphism with g(0) = 0, g(1) = 1. Let N ∈ N,
h = 1/(N + 1). To simplify notations, we extend g as a C3 function in a neighborhood of [0, 1]
and for h small enough, we set h−1/2, h0, hN+3/2, hN+1 as in (2.4). We choose θ0 > 0 and for
j ∈ {0, · · · , N + 1}, we set θj as in (2.5).

Using the same notations as in Proposition 2.2 and (2.10), we get the straightforward identities:

θN+1 = 1 + θ0, θj ≥ 0, θj+1 − θj = hj+1/2, ∀j ∈ {0, · · · , N + 1},

and the following Taylor expansions:

hj−1/2

hj+1/2
−
hj+1/2

hj−1/2
= −

2g′′j
g′j

h+O(h2), (5.7)

θj+1

(hj+1/2

hj+3/2
+

2hj+3/2

hj+1/2
− 1
)

+ θj

(
1−

2hj−1/2

hj+1/2
−
hj+1/2

hj−1/2

)
(5.8)

=
2h

g′j+1/2

(
(θ0 + gj+1/2)g′′j+1/2 + (g′j+1/2)2

)
+O(h2),

θj+1

(3hj+3/2

hj+1/2
− 1
)

+ 3θj

(hj−1/2
hj+1/2

−
hj+1/2

hj−1/2

)
− θj−1

(3hj−3/2

hj−1/2
− 1
)

= 4hj +O(h2). (5.9)

Proof. The proof of (5.7)–(5.8)–(5.9) is based on the Taylor expansions in (2.9), (2.11) and explicit
computations. The detailed computations are very similar to the ones in Proposition 2.2 and are
therefore left to the reader.

We are now in position to prove Theorem 5.1.

Proof of Theorem 5.1. Let g be a smooth strictly concave function, in which case (5.7) can be rein-
forced in

hj−1/2

hj+1/2
−
hj+1/2

hj−1/2
≥ 0.

We then take the multiplier (2.1) with θ as in (2.5). Using Proposition 5.3 and Proposition 5.4, we
derive:

N∑
j=1

(hj+1/2

6
u′j+1(t) +

2hj
3
u′j(t) +

hj−1/2

6
u′j−1(t)

)
mj(t)

∣∣∣∣∣
T

0

+
1

6

N∑
j=1

∫ T

0

(
hj +O(h2)

)
|u′j(t)|2 dt

+
1

12

N∑
j=0

∫ T

0

hj+1/2|u′j+1(t) + u′j(t)|2 dt+
1

2

N∑
j=0

∫ T

0

hj+1/2

∣∣∣∣uj+1(t)− uj(t)
hj+1/2

∣∣∣∣2 dt
− 1

12

N∑
j=0

∫ T

0

( h

g′j+1/2

(
(θ0 + gj+1/2)g′′j+1/2 + (g′j+1/2)2

)
+O(h2)

)
|u′j+1(t)− u′j(t)|2 dt

≤
(

1 + θ0
12

)∫ T

0

|u′N (t)|2 dt+

(
(1 + θ0

2

)∫ T

0

∣∣∣∣ uN (t)

hN+1/2

∣∣∣∣2 dt. (5.10)
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Taking into account the conservation in time of the total energy, we get

1

6

N∑
j=1

∫ T

0

hj |u′j(t)|2 dt+
1

12

N∑
j=0

∫ T

0

hj+1/2|u′j+1(t) + u′j(t)|2 dt

+
1

2

N∑
j=0

∫ T

0

hj+1/2

∣∣∣∣uj+1(t)− uj(t)
hj+1/2

∣∣∣∣2 dt = TEh,gf (u0,h,u1,h). (5.11)

Besides, choosing θ0 = θg as in (1.9), we have (θ0 + gj+1/2)g′′j+1/2 + (g′j+1/2)2 ≤ 0, so that

− 1

12

N∑
j=0

∫ T

0

( h

g′j+1/2

(
(θ0 + gj+1/2)g′′j+1/2 + (g′j+1/2)2

)
+O(h2)

)
|u′j+1(t)− u′j(t)|2 dt

+
1

6

N∑
j=1

∫ T

0

O(h2)|u′j(t)|2 dt ≥ −CThE
h,g
f (u0,h,u1,h).

In order to conclude, we then simply have to estimate the time boundary terms in (5.10). By Cauchy
Schwartz inequality, we have∣∣∣∣∣∣

N∑
j=1

(hj+1/2

6
u′j+1(t) +

2hj
3
u′j(t) +

hj−1/2

6
u′j−1(t)

)
mj(t)

∣∣∣∣∣∣
≤ 1 + θg

2

 N∑
j=1

1

hj

(hj+1/2

6
u′j+1(t) +

2hj
3
u′j(t) +

hj−1/2

6
u′j−1(t)

)21/2  N∑
j=1

hj

∣∣∣2mj

θj

∣∣∣2
1/2

.

The first term can be bounded as follows:

N∑
j=1

1

hj

(hj+1/2

6
u′j+1(t) +

2hj
3
u′j(t) +

hj−1/2

6
u′j−1(t)

)2
=

N∑
j=1

1

hj

(hj+1/2

6
(u′j+1 + u′j) +

hj
3
u′j +

hj−1/2

6
(u′j + u′j−1)

)2
≤ 3

2

N∑
j=1

1

hj

(hj+1/2

6
(u′j+1 + u′j) +

hj−1/2

6
(u′j + u′j−1)

)2
+ 3

N∑
j=1

hj
9
|u′j |2

≤ 3

N∑
j=1

1

hj

(hj+1/2

6
(u′j+1 + u′j)

)2
+ 3

N∑
j=1

1

hj

(hj−1/2
6

(u′j + u′j−1)
)2

+
1

3

N∑
j=1

hj |u′j |2

≤ 1

6

N∑
j=0

hj+1/2(u′j+1 + u′j)
2 +

1

3

N∑
j=1

hj |u′j |2 + Ch2Eh,gf (u0,h,u1,h).

Recalling (2.15), we then easily get∣∣∣∣∣∣
N∑
j=1

(hj+1/2

6
u′j+1(t) +

2hj
3
u′j(t) +

hj−1/2

6
u′j−1(t)

)
mj(t)

∣∣∣∣∣∣ ≤ (1 + θg)(1 + Ch2)Eh,gf (u0,h,u1,h).
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Putting together all the above estimates in (5.10), we obtain

(T (1− Ch)− 2(1 + θg)(1 + Ch2))Eh,gf (u0,h,u1,h)

≤
(

1 + θ0
12

)∫ T

0

|u′N (t)|2 dt+

(
1 + θ0

2

)∫ T

0

∣∣∣∣ uN (t)

hN+1/2

∣∣∣∣2 dt. (5.12)

This concludes the proof of Theorem 5.1.

6 Further comments and open problems
In this section we discuss some issues, closely related to the topics addressed in this paper and that
would be worth to investigate in the future.
Unstructured meshes. Our analysis suggests that a suitable way to re-establish uniform observ-
ability for space semi-discrete wave equations is to work with meshes which are refined close to the
observation set. So far, we performed our analysis on meshes which can be obtained as the image
of a diffeormorphism from [0, 1] to itself to be able to perform Taylor expansions in Proposition 2.2.
But one can easily check from the proof in Section 2 that uniform observability properties can be
recovered for sequences of meshes M h, not necessarily obtained as the diffeomorphic image of the
uniform mesh, given by N (h = 1/(N + 1)) points {0 < xh1 < · · · < xhN < 1} characterized by two
constants M and r independent of h as follows:

• an almost uniform mesh size: for all h > 0,

supj hj+1/2

infj hj+1/2
≤ r, (6.1)

• the existence of a discrete function θ = (θhj )j∈{0,··· ,N+1} for which

θjhj + θj+1hj+1

hj+1/2
− θj−1hj−1 + θjhj

hj−1/2
≥ 2hj − o(h), j ∈ {1, · · · , N}.

θj+1hj+1 − θjhj ≤ o(h3), j ∈ {0, · · · , N},
θj+1 − θj ≥ hj+1/2 − o(h), j ∈ {0, · · · , N},
θ0 ≥ 0, θN+1 ≤M.

(6.2)

In that case, the corresponding equations (1.5) are uniformly observable in any time T > 2M .
Note that in the above condition (6.2), we assume, for all j ∈ {0, · · · , N}, that

θj+1 ≥ θj + hj+1/2 − o(h), and θj+1 ≤ θj
hj
hj+1

+ o(h2), j ∈ {0, · · · , N},

so that necessarily such meshes satisfy hj/hj+1 ≥ 1. This implies that sequence of meshes satisfying
(6.1)–(6.2) necessarily are refined close to the observation set x = 1.
Note however that a complete characterization of all the sequences of meshes satisfying (6.1)–(6.2)
seems difficult to establish.
Time discrete and fully discrete approximation schemes of (1.1). In this article, we focused
on the space semi-discrete approximation of (1.1). In order to extend our analysis to the case of fully
discrete approximation schemes of (1.1), we can apply the results in [8] decoupling the effects of the
time and space semi-discretizations. In our context for instance, this would imply that if we consider
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a fully discrete approximation of (1.1) obtained from (1.5) for a concave function g : [0, 1]→ [0, 1] and
discretized in time using the midpoint approximation scheme with time step ∆t, the fully discrete
systems obtained that way are uniformly observable in any time T satisfying

T > Tg

(
1 +

δ2

4

)
, with δ ≥ (∆t)

√
λN,h,g,

where λN,h,g is the largest eigenvalue of the elliptic problem (3.2) corresponding to the mesh M h,g.
Easy estimates show that λN,h,g ≤ 4/ infj h

2
j+1/2 ≤ 4/(hg′(1))2. Thus, the condition δ ≥ (∆t)

√
λN,h,g

can be replaced by the more usual Courant-Friedrichs-Levy (CFL) type condition

2∆t

h
≤ δg′(1).

We refer to [8, Section 5.2] for more extensive details.
Rates of convergence of the discrete controls. Following the proofs in [10] or [11] one could also
analyse the rate of convergence of the numerical schemes developed in this article, and, in particular,
obtain the rate of convergence of the controls. But, even if major new difficulties are not expected
with respect to the work previously developed in the context of uniform meshes, this requires further
investigation.
Higher dimensional settings. So far, our results are restricted to the 1d case. However, it is very
likely that our approach can be generalized to higher dimensional setting under the condition that
the mesh has to be finer close to the observation set. But this requires further work. In particular,
we should recall that, in 2d, even the classical property of unique continuation of eigenfunctions may
fail at the discrete level (see the counterexample of O. Kavian described in [28]).
Inverse problems. Observability estimates can also be used directly to recover the initial datum
of solutions of (1.5) from a measurement of the flux on the boundary x = 1, thus indicating a first
possible use of the results in this paper in the context of Inverse problems.

To be more precise, assume that the flux ∂xu(t, 1) for some unknown solution of the wave equation
(1.1) is known, by means of some measurement device, and let us build a numerical algorithm allowing
to obtain numerical approximations of the corresponding initial datum (u0, u1) in (1.1). We proceed
by minimizing the functional

Jh(u0,h,u1,h) =
1

2

∫ T

0

η(t)

∣∣∣∣ uhN (t)

hN+1/2
+ ∂xu(t, 1)

∣∣∣∣2 dt,
for all solutions uh of (1.5), which shares the same features of the functional in (4.7) introduced to
compute the discrete controls corresponding to some initial data.

When uniform observability properties hold for (1.5) in time T and the observation is done during
a period T , the discrete minimizers (U0,h,U1,h) (or, to be more precise, their continuous extension)
converge to (u0, u1) in H1

0 (0, 1) × L2(0, 1) as h → 0 (see [11, Section 1.8]). This fact provides a first
example of the use of these non-uniform grids in the context of inverse problems. We also refer to
the works [15] for another strategy (based on the used of back and forth observers) in a situation in
which the observability property does not necessarily hold uniformly with respect to the discretization
parameters.

This idea of using suitable non-uniform grids could also be helpful for proving convergence results
for other inverse problems, similar to the ones developed in [3, 4] in the context of uniform grids. In
these works, the convergence of discrete inverse problems is proved by adding some penalization on
the high-frequency components of the solutions, which was needed to avoid to deal with the spurious
high-frequency waves created by uniform meshes. It would be interesting to investigate whether, using
these non-uniform grid, these extra penalization terms could be avoided.
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