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Abstract

In this paper, we analyze the null controllability of the one-dimensional heat equation with
non-smooth time-independent coefficients. We prove that this equation with BV coefficients
is null-controllable at any positive time in the context of boundary control. The argument
used in the proof relies on the exact controllability of the one-dimensional wave equation
with BV coefficients and Russell’s general method (which provides the null controllability of
a parabolic equation at any positive time as a consequence of the exact controllability, for
large time, of the corresponding wave equation).
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1 Introduction. The main result

Let us consider the following system for the one-dimensional heat equation with variable coeffi-
cients 

ρ(x)yt − (a(x)yx)x = 0, 0 < x < 1, 0 < t < T,
y(0, t) = v(t), y(1, t) = 0, 0 < t < T,
y(x, 0) = y0(x), 0 < x < 1.

(1.1)

In (1.1), y = y(x, t) is the state and v = v(t) is a control that acts on the system through the
extreme x = 0. The coefficients ρ and a are assumed to be (at least) measurable, bounded and
uniformly positive, i.e. such that

0 < ρ0 ≤ ρ(x) ≤ ρ1 , 0 < a0 ≤ a(x) ≤ a1 , a.e. in (0, 1). (1.2)

For any given y0 ∈ L2(0, 1) and any v ∈ C0([0, T ]), there exists exactly one solution y =
y(x, t) to (1.1), with

y ∈ C0([0, T ];L2(0, 1)). (1.3)

The solution y is defined by transposition and its precise form is given below, see section 4.
The main goal of this paper is to analyze the null controllability of (1.1). Specifically, we

want to solve the following problem:

Given T > 0 and y0 ∈ L2(0, 1), to find v ∈ C0([0, T ]) such that the corresponding
solution y satisfies

y(x, T ) = 0 a.e. in (0, 1). (1.4)

According to the results in [6], system (1.1) is null-controllable at any time T > 0 provided
the coefficients ρ and a satisfy

ρ, a ∈W 1,∞(0, 1) (1.5)

and (1.2). In that reference, the proof of null controllability is based on an appropriate observ-
ability inequality for the associate adjoint system. This is implied by some particular (global)
Carleman estimates that hold for the adjoint states.

When the coefficients ρ and a are sufficiently smooth, the observability inequality can also
be proved introducing Fourier series and using high frequency asymptotic formulæ for the eigen-
values of the corresponding Sturm-Liouville problem and classical results on the sums of real
exponentials, see [10]. We also refer to [7] and [8] for some results in this direction in several
space dimensions.
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As far as we know, there is no evidence in the literature of lack of null controllability for
(1.1) with bounded measurable coefficients satisfying (1.2). It is then natural to try to relax the
Lipschitz regularity assumption (1.5). This is the main goal in this paper.

We will adopt here the approach introduced by D.L. Russell in [12]. There, the main under-
lying idea is to obtain the null controllability of a parabolic equation as a consequence of the
exact controllability of the corresponding “similar” wave equation.

Thus, assume that, in addition to (1.2), the coefficients satisfy

ρ, a ∈ BV(0, 1) (1.6)

and consider the following system for the wave equation:
ρ(x)ztt − (a(x)zx)x = 0, 0 < x < 1, 0 < t < T0 ,
z(0, t) = w(t), z(1, t) = 0, 0 < t < T0 ,
z(x, 0) = z0(x), zt(x, 0) = z1(x), 0 < x < 1.

(1.7)

Now, z = z(x, t) is the state and the control is w = w(t). For any (z0, z1) with z0 ∈ L2(0, 1)
and ρz1 ∈ H−1(0, 1) and any w ∈ L2(0, T0), system (1.7) possesses exactly one solution z, with

z ∈ C0([0, T0];L2(0, 1)), ρzt ∈ C0([0, T0];G),

where G is an appropriate Hilbert space such that L2(0, 1) ↪→ G with a dense embedding. Again,
z is defined by transposition (see more details in section 3).

The problem of the null controllability of (1.7) can be formulated as follows:

Given T0 > 0 and (z0, z1) with z0 ∈ L2(0, 1) and ρz1 ∈ H−1(0, 1), to find w ∈
L2(0, T0) such that the corresponding solution z satisfies

z(x, T0) = 0, zt(x, T0) = 0, a.e. in (0, 1).

Notice that, in view of the fact that (1.7) is linear and reversible in time, this property holds
if and only if the system can be driven exactly at time T0 to any final state (Z0, Z1) in an
appropriate space. In other words, the null controllability and the exact controllability of (1.7)
are equivalent concepts.

The null controllability of (1.7) is known to hold under “reasonable” assumptions. In fact,
by means of J.L. Lions’ Hilbert uniqueness method [9], the proof of this controllability property
can be reduced to the proof of the following observability inequality:

To find a positive constant C1 = C1(ρ, a, T0) such that
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‖ϕ0‖2
H1

0
+ ‖ϕ1‖2

L2 ≤ C1

∫ T0

0
|ϕx(0, t)|2 dt (1.8)

for every solution of the adjoint system
ρ(x)ϕtt − (a(x)ϕx)x = 0, 0 < x < 1, 0 < t < T0 ,
ϕ(0, t) = ϕ(1, t) = 0, 0 < t < T0 ,
ϕ(x, T0) = ϕ0(x), ϕt(x, T0) = ϕ1(x), 0 < x < 1.

Inequality (1.8) can be easily proved when (1.2) and (1.6) are satisfied and T0 is sufficiently
large. In particular, this is the case if T0 > 2`, where

` = ess sup
[0,1]

√
ρ

a

(for completeness, we will sketch the proof below, in section 3; see [1] for more details).
It has been recently proved in [1] that there exist Hölder-continuous coefficients ρ and a

not in BV(0, 1) for which (1.8) and therefore the exact controllability property of the wave
equation (1.7) fail. Thus, the BV assumption on the coefficients is sharp in the context of the
exact controllability of the wave equation and it is a minimal requirement to apply the method
employed in the present paper. However, the analysis in [1] does not provide any counter-example
to the null controllability of the heat equation with non-smooth coefficients.

The main result in this paper is the following:

Theorem 1.1 Assume that the coefficients ρ = ρ(x) and a = a(x) in (1.1) satisfy (1.6) and
(1.2). Then (1.1) is null-controllable at time T for all T > 0, with controls v ∈ C0([0, T ]).

As we mentioned above, it will be seen that this result is a consequence of the exact control-
lability of the linear one-dimensional wave equation with coefficients in BV(0, 1) and the general
method developed by D.L. Russell in [12].

Let us repeat that there is no result in the literature asserting the lack of null controllability of
the linear heat equation with non-smooth coefficients. In particular, whether the BV assumption
on the coefficients in Theorem 1.1 is sharp or not is an open problem.

It will be seen below that we can find controls that drive the heat equation in (1.1) to zero
and depend continuously on the initial data y0 ∈ L2(0, 1). A consequence is that the following
observability inequality holds:

Corollary 1.1 There exists a positive constant C2 = C2(ρ, a, T ) such that

‖ψ(·, 0)‖2
L2 ≤ C2

∫ T

0
|ψx(0, t)|2 dt (1.9)
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for every solution of the adjoint system
−ρ(x)ψt − (a(x)ψx)x = 0, 0 < x < 1, 0 < t < T,
ψ(0, t) = ψ(1, t) = 0, 0 < t < T,
ψ(x, T ) = ψ0(x), 0 < x < 1,

(1.10)

where ψ0 ∈ L2(0, 1).

Properties of this kind have been recently investigated by A. Doubova, A. Osses and J.-
P. Puel in [2], in the context of the N -dimensional heat equation with non-smooth coefficients.
There, the authors use appropriate Carleman estimates to show that inequalities like (1.9) hold
under suitable monotonicity conditions on the coefficients. Our result is satisfied for general
time-independent coefficients in BV(0, 1) and consequently seems to indicate that, at least in
the one-dimensional case, the monotonicity conditions in [2] are not necessary.

In several space dimensions the situation is much more complex and will not be considered
here. It will be the subject of a forthcoming paper. Let us however describe a particular case,
two-dimensional in space, for which the desired null controllability result can still be established.

Let Ω be the open set
Ω = (0, 1)× (0, 1)

and consider the following system:
ρ(x1)yt −∇ · (ρ(x1)∇y) = 0, (x, t) ∈ Ω× (0, T ),
y(x, t) = v(x2, t)1γ , (x, t) ∈ ∂Ω× (0, T ),
y(x, 0) = y0(x), x ∈ Ω.

(1.11)

Here, γ = { (0, x2) : x2 ∈ (0, 1) } and 1γ is the characteristic function of γ. In (1.11), we assume
that y0 ∈ L2(Ω) and v ∈ C0(γ × [0, T ]). As a consequence, this system possesses exactly one
solution y ∈ C0([0, T ];L2(Ω)). The following result holds for (1.11) (see [4] for the proof):

Theorem 1.2 Assume that the coefficient ρ = ρ(x1) in (1.11) satisfies

ρ ∈ BV(0, 1), 0 < ρ0 ≤ ρ(x1) ≤ ρ1 .

Then (1.11) is null-controllable at time T for all T > 0, with controls v ∈ C0(γ × [0, T ]).

The rest of this paper is organized as follows. In section 2, we will recall Russell’s method and
the key points of its proof. In section 3, we will briefly sketch the proof of the null controllability
of the one-dimensional wave equation with BV coefficients. Then, in section 4, the main result
of this paper (Theorem 1.1) will be proved. We will also include in this section several additional
comments.
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2 Russell’s principle

In this section, it will be assumed that L : D(L) ⊂ L2(0, 1) 7→ L2(0, 1) is a densely defined,
self-adjoint, maximal monotone operator with compact resolvent. Let ρ = ρ(x) be a measurable
function satisfying

0 < ρ0 ≤ ρ(x1) ≤ ρ1 , a.e. in (0, 1).

We will denote by λn and ϕn the following eigenvalues and associate eigenfunctions:
Lϕn = λnρ(x)ϕn , 0 < x < 1,

ϕn ∈ D(L), 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . ,∫ 1

0
ρ(x)ϕn(x)ϕm(x) dx = δn,m ∀n,m ≥ 1

(δn,m is the usual Kronecker’s symbol). Note that, in the context we will be working in sections 3
and 4, the eigenvalues of L will be simple. But this is irrelevant for the application of Russell’s
principle.

We will consider the following two systems:
ρ(x)yt + Ly = 0, 0 < x < 1, 0 < t < T,
y(0, t) = v(t), y(1, t) = 0, 0 < t < T,
y(x, 0) = y0(x), 0 < x < 1

(2.1)

and 
ρ(x)ztt + Lz = 0, 0 < x < 1, 0 < t < T0 ,
z(0, t) = w(t), z(1, t) = 0, 0 < t < T0 ,
z(x, 0) = z0(x), zt(x, 0) = z1(x), 0 < x < 1.

(2.2)

We will assume that exact controllability holds for (2.2) at large time:

System (2.2) is null-controllable at time T0 with controls w ∈ L2(0, T0) such that

‖w‖L2 ≤ C1 (‖z0‖L2 + ‖z1‖H−1) . (2.3)

Then, the following is satisfied:

Theorem 2.1 Under the previous hypotheses, system (2.1) is null-controllable at time T for all
T > 0.
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As mentioned above, this result says that, when the wave equation is exactly controllable at
some finite time, then the heat equation is null controllable at any positive time.

Sketch of the proof: The idea is to rewrite the exact controllability property of (2.2) as a first
moment problem that we are able to solve. Then, this moment problem is transformed into a
second (solvable) moment problem and, finally, the latter is shown to be in fact equivalent to
the null controllability problem for the heat equation (2.1). Accordingly, there are three main
steps in the proof.

Step 1: From our assumption (2.3), it is clear that, for each n ≥ 1, there exists a control
wn ∈ L2(0, T0) such that

‖wn‖L2(0,T0) ≤ C1λ
−1/2
n

and the solution to (2.2) associated to wn and the initial data

z0 = 0, z1 = ϕn

satisfies
z(x, T0) = 0, zt(x, T0) = 0, a.e. in (0, 1). (2.4)

On the other hand, we can also find controls w∗n ∈ L2(0, T0) such that

‖w∗n‖L2(0,T0) ≤ C1

and the solutions to (2.2) associated to the w∗n and the initial data

z0 = ϕn , z1 = 0

satisfy (2.4). Let us set

Wn =
1
2

(
wn −

i√
λn
w∗n

)
, W−n =

1
2

(
wn +

i√
λn
w∗n

)
for each n ≥ 1. Then the following properties hold:

W±n ∈ L2(0, T0), ‖W±n‖L2 ≤ C1λ
−1/2
n

and ∫ T0

0
h±n(t)W±m(t) dt = δn,m ∀n,m ≥ 1. (2.5)

Here, we have introduced the following functions:

hn(t) = −ϕ′n(0)ei
√

λnt, h−n(t) = −ϕ′n(0)e−i
√

λnt, for t a.e. in (0, T0) and n ≥ 1.
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Step 2: From (2.5), we notice that

−ϕ′n(0)Qm(iλn) = δn,m ∀n,m ≥ 1,

where the functions Qn are given as follows:

Qn(z) = W̃n(−i
√
z), W̃n(ζ) = W ∗

n(ζ) +W ∗
n(−ζ) (2.6)

and

W ∗
n(ζ) =

∫ T0

0
eiζtWn(t) dt ∀ζ ∈ C.

Obviously, we have
|Qn(z)| ≤ 2C1

√
T0 λ

−1/2
n

for all n ≥ 1.
Let T > 0 be given (arbitrary but fixed). A result by R.M. Redheffer [11] ensures the

existence of an entire function E = E(z) that is even, real for real z, has all its zeros in R+ and
satisfies

|E(ξ)| ≤ C(T, T0)
1 + |ξ|

e−2T0|ξ|1/2 ∀ξ ∈ R (2.7)

and also

|E(−iη)| ≤ C(T, T0)eTη, C(T, T0)e−Kη1/2 ≤ |E(iη)| ≤ 1 ∀η ∈ R+ . (2.8)

Here and in the sequel, C(T, T0) stands for a generic positive constant that depends only on T
and T0 . In (2.8), K only depends on T . Let us introduce the functions v∗n , given by

v∗n(z) =
1

E(iλn)
E(z)Qn(z) ∀z ∈ C.

It is then clear from (2.6), (2.7) and (2.8) that

|v∗n(ξ)| ≤ C1C(T, T0)eKλ
1/2
n λ−1/2

n e−T0|ξ|1/2 ∀ξ ∈ R. (2.9)

We also have
|v∗n(iη)| ≤ C1C(T, T0)eKλ

1/2
n λ−1/2

n (2.10)

and
|v∗n(−iη)| ≤ C1C(T, T0)eKλ

1/2
n λ−1/2

n eTη (2.11)
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for all η ∈ R+ . Let us finally set

vn(t) =
1
2π

∫ +∞

−∞
eiξtv∗n(ξ) dξ ∀t ∈ R.

For each n ≥ 1, vn is the Fourier transform of v∗n (a real-valued C∞ function, since v∗n(−ξ) ≡
v∗n(ξ) and (2.9) is satisfied). In view of (2.10), (2.11) and Paley-Wiener’s Theorem, the support
of vn satisfies

Supp vn ⊂ [0, T ].

On the other hand,
|vn(t)| ≤ C1C(T, T0)eKλ

1/2
n λ−1/2

n ∀t ∈ R (2.12)

and

−ϕ′n(0)
∫ T

0
e−λntvm(t) dt = −ϕ′n(0)v∗m(iλn) = −ϕ′n(0)

E(iλn)Qm(iλn)
E(iλm)

= δn,m (2.13)

for all n,m ≥ 1.

Step 3: For any y0 ∈ L2(0, 1) and any v ∈ C0([0, T ]), there exists exactly one solution y = y(x, t)
to (2.1), with

y ∈ C0([0, T ];L2(0, 1)).

This is justified by the argument we present at the beginning of section 4. At least formally, we
can put

y(·, t) =
∑
n≥1

e−λnt(y0, ϕn)ρϕn +
∑
n≥1

(
−ϕ′n(0)

∫ t

0
e−λn(t−s)v(s) ds

)
ϕn , (2.14)

where (· , ·)ρ denotes the following scalar product in L2(0, 1):

(ϕ,ψ)ρ =
∫ 1

0
ρ(x)ϕ(x)ψ(x) dx ∀ϕ,ψ ∈ L2(0, 1).

The series in (2.14) converge, at least in the L2 sense, for all t. Let us see that v can be chosen
in such a way that the function in (2.14) satisfies (1.4).

It will suffice to find v ∈ C0([0, T ]) such that

−ϕ′n(0)
∫ T

0
e−λn(T−s)v(s) ds = −e−λnT (y0, ϕn)ρ ∀n ≥ 1. (2.15)

But this is now easy in view of the properties satisfied by the functions vn . Indeed, let us set

v =
∑
n≥1

βnvn(T − t), with βn = −e−λnT (y0, ϕn)ρ ∀n ≥ 1.
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Taking into account (2.12) and (2.13), we see that this series converges in C0([0, T ]) to a function
v satisfying (2.15). Furthermore, the following estimate of the L∞-norm of the control v is
guaranteed:

‖v‖L∞ ≤ C1C(T, T0)
∑
n≥1

|(y0, ϕn)ρ| e−Tλn+Kλ
1/2
n λ−1/2

n . (2.16)

This ends the proof of Theorem 2.1.

Remark 2.1 Let F be the space

F = { f ∈ L2(0, 1) :
∑
n≥1

|(f, ϕn)ρ| eKλ
1/2
n λ(r−1)/2

n < +∞}, (2.17)

where K is the constant (only depending on T ) that we have found in the previous proof. It is
not difficult to see that, under the assumptions of Theorem 2.1, (2.1) can be controlled exactly
to all final states y1 ∈ F . On the other hand, it is clear that the assumption y0 ∈ L2(0, 1) can
be considerably enlarged. We refer to [3] for other similar results in several space dimensions.

3 Exact controllability of the one-dimensional wave equation
with BV coefficients

In this section, we will consider again the following system for the one-dimensional wave equation
ρ(x)ztt − (a(x)zx)x = 0, 0 < x < 1, 0 < t < T0 ,
z(0, t) = w(t), z(1, t) = 0, 0 < t < T0 ,
z(x, 0) = z0(x), zt(x, 0) = z1(x), 0 < x < 1.

(3.1)

We will assume that
ρ, a ∈ BV(0, 1) (3.2)

and
0 < ρ0 ≤ ρ(x) ≤ ρ1 , 0 < a0 ≤ a(x) ≤ a1 , a.e. in (0, 1). (3.3)

For any (z0, z1) with z0 ∈ L2(0, 1) and ρz1 ∈ H−1(0, 1) and any w ∈ L2(0, T0), system (3.1)
possesses exactly one solution z, with

z ∈ C0([0, T0];L2(0, 1)) ρzt ∈ C0([0, T0];X−1−ε) ∀ε > 0. (3.4)
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Here, we have introduced the notation Xα = D(Lα/2), where L is the maximal monotone
operator defined by {

D(L) = {ψ ∈ H1
0 (0, 1) : (aψx)x ∈ L2(0, T ) },

Lψ = − (aψx)x ∀ψ ∈ D(L).
(3.5)

The solution z to (3.1) is defined by transposition. More precisely, z is the unique function
in L∞(0, T0;L2(0, 1)) satisfying

∫ T0

0

∫ 1

0
zg dx dt =

∫ T0

0
(aϕx) (0, t)w(t) dt

−
∫ 1

0
ρ(x)z0(x)ϕt(x, 0) dx+ 〈ρ(x)z1, ϕ(·, 0)〉

(3.6)

for all g ∈ L1(0, T0;L2(0, 1)), where 〈· , ·〉 is the duality pairing associated to H−1(0, 1) and
H1

0 (0, 1) and ϕ is the solution to
ρ(x)ϕtt − (a(x)ϕx)x = g(x, t), 0 < x < 1, 0 < t < T0 ,
ϕ(0, t) = ϕ(1, t) = 0, 0 < t < T0 ,
ϕ(x, T0) = 0, ϕt(x, T0) = 0, 0 < x < 1.

Notice that, if g ∈ L1(0, T0;L2(0, 1)), then ϕ satisfies

ϕ ∈ C0([0, T0];H1
0 (0, 1)), ϕt ∈ C0([0, T0];L2(0, 1))

and
(aϕx) (0, ·) ∈ L2(0, T0).

Thus, all terms in (3.6) have a sense and the definition of z is correct. It can also be seen that
z satisfies (3.4).

Our main goal in this section is to recall the main steps of the proof of the following con-
trollability result:

Theorem 3.1 Assume that T0 > 2`, with

` = ess sup
[0,1]

√
ρ

a
. (3.7)

Then, for every (z0, z1) with z0 ∈ L2(0, 1) and ρz1 ∈ H−1(0, 1), there exist controls w ∈ L2(0, T0)
such that the corresponding solution z of (3.1) satisfies

z(x, T0) = 0, zt(x, T0) = 0, a.e. in (0, 1).

Furthermore, there exists a positive constant C1 = C1(ρ, a, T0), independent of the initial data
to be controlled, such that w can be chosen satisfying

‖w‖L2 ≤ C1 (‖z0‖L2 + ‖z1‖H−1) . (3.8)
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Proof: It will be sufficient to prove this result when the coefficients ρ and a are smooth, provided
the constant C1 in (3.8) only depends on the coercivity constants in (3.3) and the BV-norms of
ρ and a. Indeed, the result can be later extended to cover the case of general BV coefficients
satisfying (3.3) by means of a classical regularization argument.

Secondly, observe that, applying J.L. Lions’ Hilbert uniqueness method [9], the proof of the
controllability property stated here is equivalent to the proof of the observability inequality

‖ϕ0‖2
H1

0
+ ‖ϕ1‖2

L2 ≤ C1

∫ T0

0
|ϕx(0, t)|2 dt (3.9)

for the solutions to the adjoint system
ρ(x)ϕtt − (a(x)ϕx)x = 0, 0 < x < 1, 0 < t < T0 ,
ϕ(0, t) = ϕ(1, t) = 0, 0 < t < T0 ,
ϕ(x, T0) = ϕ0(x), ϕt(x, T0) = ϕ1(x), 0 < x < 1.

(3.10)

In order to prove (3.9), we will use “sidewise energy estimates”. Thus, assume that (ϕ0, ϕ1) ∈
H1

0 (0, 1)× L2(0, 1) and T0 > 2` (` is given by (3.7)) and set

F (x) =
1
2

∫ T0−`x

`x

(
ρ(x)|ϕt(x, t)|2 + a(x)|ϕx(x, t)|2

)
dt.

For each x ∈ [0, 1], F (x) represents the amount of energy concentrated at x during the time
interval [`x, T0 − `x]. Obviously, because of the Dirichlet boundary conditions satisfied by ϕ at
x = 0, we have

F (0) =
a(0)
2

∫ T0

0
|ϕx(0, t)|2 dt.

We can compute the derivative of F with respect to x. In fact, we have:
dF

dx
(x) = − `

2

∑
t=`x,T0−`x

[
ρ(x)|ϕt(x, t)|2 + a(x)|ϕx(x, t)|2

]

+
∫ T0−`x

`x

(
ρ(x)ϕtϕtx + a(x)ϕxϕxx +

ρ′(x)
2

|ϕt(x, t)|2 +
a′(x)

2
|ϕx(x, t)|2

)
dt.

(3.11)

Integrating by parts and using the equation satisfied by ϕ, we have
∫ T0−`x

`x
(ρ(x)ϕtϕtx + a(x)ϕxϕxx) dt

= −
∫ T0−`x

`x
a′(x)|ϕx|2 dt+ ρ(x)ϕtϕx|t=T0−`x − ρ(x)ϕtϕx|t=`x .

(3.12)
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Combining (3.11) and (3.12), together with the fact that

|ρ(x)ϕtϕx| ≤
`

2

[
ρ(x)|ϕt|2 + a(x)|ϕx|2

]
,

we deduce that 

dF

dx
(x) ≤ 1

2

∫ T0−`x

`x

(
ρ′(x)|ϕt|2 − a′(x)|ϕx|2

)
dt

≤ 1
2

max
[ |ρ′|
ρ
,
|a′|
a

] ∫ T0−`x

`x

(
ρ(x)|ϕt|2 + a(x)|ϕx|2

)
dt

= max
[ |ρ′|
ρ
,
|a′|
a

]
F (x).

Integrating this differential inequality with respect to x, we deduce that
F (x) ≤ exp

(∫ x

0
max

[ |ρ′(s)|
ρ(s)

,
|a′(s)|
a(s)

]
ds

)
F (0)

=
a(0)
2
eh(x)

∫ T0

0
|ϕx(0, t)|2 dt,

where

h(x) =
∫ x

0
max

[ |ρ′(s)|
ρ(s)

,
|a′(s)|
a(s)

]
ds ≤ TV(ρ)

ρ0
+

TV(a)
a0

.

Hence,

F (x) ≤ a(0)
2

exp
[
TV(ρ)
ρ0

+
TV(a)
a0

] ∫ T0

0
|ϕx(0, t)|2 dt ∀x ∈ (0, 1). (3.13)

Let us now integrate (3.13) with respect to x in (0, 1) and let us remember that T0 > 2`. The
following is found: 

1
2

∫ T0−`

`

∫ 1

0

[
ρ(x)|ϕt|2 + a(x)|ϕx|2

]
dx dt

≤ a(0)
2

exp
[
TV(ρ)
ρ0

+
TV(a)
a0

] ∫ T0

0
|ϕx(0, t)|2 dt.

Finally, taking into account that the energy

E(t) =
1
2

∫ 1

0

(
ρ(x)|ϕt|2 + a(x)|ϕx|2

)
dx

is constant in time for the solutions of (3.10), we find that

(T0 − 2`)E(T0) ≤
a(0)
2

exp
[
TV(ρ)
ρ0

+
TV(a)
a0

] ∫ T0

0
|ϕx(0, t)|2 dt. (3.14)
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It is now immediate to deduce from (3.14) the observability inequality (3.9) with

C1 =
a(0)

(T0 − 2`) min(ρ0, a0)
exp

[
TV(ρ)
ρ0

+
TV(a)
a0

]
.

Thus, Theorem 3.1 is proved.

Remark 3.1 Arguing as in the previous proof, a similar exact controllability result can be
established for more general wave equations with variable coefficients depending both of space
and time. This is the case in particular for the slightly more general system

ρ(x)ztt − (a(x)zx)x +m(x)z = 0, 0 < x < 1, 0 < t < T0 ,
z(0, t) = w(t), z(1, t) = 0, 0 < t < T0 ,
z(x, 0) = z0(x), zt(x, 0) = z1(x), 0 < x < 1,

where ρ and a are as above and m ∈ L∞(0, 1). In this case, the requirement on T0 is the same
(T0 > 2`), but the constant C1 in (3.9) also depends on ‖m‖L∞ .

4 Null controllability of the one-dimensional heat equation with
BV coefficients

In this section, we will come back to the following system for the one-dimensional heat equation:
ρ(x)yt − (a(x)yx)x = 0, 0 < x < 1, 0 < t < T,
y(0, t) = v(t), y(1, t) = 0, 0 < t < T,
y(x, 0) = y0(x), 0 < x < 1.

(4.1)

We will assume again that the coefficients ρ and a satisfy (3.2) and (3.3).
As mentioned above, for any y0 ∈ L2(0, 1) and any v ∈ C0([0, T ]), this system possesses

exactly one solution y = y(x, t), with

y ∈ C0([0, T ];L2(0, 1)). (4.2)

The solution is defined by transposition as follows: y is the unique function in L2(0, T ;L2(0, 1))
satisfying ∫ T

0

∫ 1

0
yf dx dt =

∫ T

0
(aψx) (0, t)v(t) dt+

∫ 1

0
ρ(x)y0(x)ψ(x, 0) dx (4.3)
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for all f ∈ L2(0, T ;L2(0, 1)), where ψ is the solution of the system
−ρ(x)ψt − (a(x)ψx)x = f(x, t), 0 < x < 1, 0 < t < T,
ψ(0, t) = ψ(1, t) = 0, 0 < t < T,
ψ(x, T ) = 0, 0 < x < 1.

It can be shown that, for any such f , the associated solution ψ satisfies

ψ ∈ C0([0, T ];L2(0, 1)), (aψx) (0, ·) ∈ L2(0, T ).

Hence, y is well defined by (4.3). It can also be seen that (4.2) holds.
Combining the exact controllability result in section 3 and Russell’s general principle de-

scribed in section 2, we obtain the following:

Theorem 4.1 Assume that T > 0. Then, for every y0 ∈ L2(0, 1), there exist controls v ∈
C0([0, T ]) such that the corresponding solution y of (4.1) satisfies

y(x, T ) = 0, a.e. in (0, 1).

Furthermore, there exists a positive constant C3 = C3(ρ, a, T ) such that v can be chosen satisfying

‖v‖L∞ ≤ C3‖y0‖L2 . (4.4)

Actually, the unique information we find in this result and not in Theorem 2.1 is the estimate
(4.4). But this is an almost straightforward consequence of (2.16) written for instance for T0 = 3`
and the fact that C1 = C1(ρ, a, T0).

Remark 4.1 We can argue as in Remark 2.1 and deduce the exact controllability of (4.1) to
final states in a (small) space. More precisely, let λn and ϕn be the eigenvalues and associate
eigenfunctions corresponding to the operator L in (3.5), that is,

− (a(x)ϕn,x)x = λnρ(x)ϕn , 0 < x < 1,

ϕn(0) = ϕn(1) = 0,∫ 1

0
ρ(x)ϕn(x)ϕm(x) dx = δn,m ∀n,m ≥ 1.

Let F be the space in (2.17), where K is the constant (only depending on T ) found in the proof
of Theorem 2.1. Then, (4.1) can be controlled exactly to all final states y1 ∈ F .
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Remark 4.2 As stated in Corollary 1.1, we can use Theorem 4.1 to prove the observability
inequality (1.9) for the solutions of the adjoint system (1.10). In fact, since we have found
controls in C0([0, T ]) and we are able to estimate their L∞-norms, (1.9) can be improved: there
exists a positive constant C4 = C4(ρ, a, T ) such that

‖ψ(·, 0)‖2
L2 ≤ C4

(∫ T

0
|ψx(0, t)| dt

)2

for all ψ0 ∈ L2(0, 1), where ψ is the solution to (1.10).

Remark 4.3 Up to our knowledge, the null controllability of the one-dimensional heat equation
with non-smooth coefficients ρ and a that may depend on x and t is an open problem. The
case of Lipschitz-continuous coefficients has been treated in [6]; remember that, under suitable
monotonicity assumptions, the problem has been analyzed in [2].
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