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In this paper, the continuous adjointmethod to compute shape sensitivities in aerodynamic designwith turbulence

modeling is described and developed. The focus is on compressible flows described by the Reynolds-averaged

Navier–Stokes equations and the classical Spalart–Allmaras model for turbulence. Turbulence modeling usually

requires, in particular, computation of the distance to the surface. Here, this distance is incorporated to the system as

a new variable, solving the Eikonal equation. The accuracy of the sensitivity derivatives obtained with the complete

turbulent approach is assessed by comparison with finite difference computations and the classical continuous

adjoint with frozen viscosity, showing substantial improvements in the convergence properties of the method and in

the quality of the obtained gradients. The validity of the overall methodology is illustrated with several design

examples, including the optimization of three-dimensional geometries in combination with advanced freeform

techniques for mesh deformation.

Nomenclature

Add = adjoint operator of the Eikonal equation with
respect to distance to surface

AUU = adjoint operator of the flow equation with
respect to flow variables

A�̂U = adjoint operator of the flow equation with
respect to the turbulent variable

Ad�̂ = adjoint operator of the turbulent equation with
respect to distance to surface

AU�̂ = adjoint operator of the turbulent equation with
respect to flow variables

A�̂�̂ = adjoint operator of the turbulent equation with
respect to turbulent variable

BS = boundary terms of adjoint equation
Bi = Bernstein polynomial of order i
cd = drag coefficient
cl = lift coefficient
Cp = specific heat at constant pressure
cp = pressure coefficient
dS = distance to boundary of obstacle S
E = flow energy
f = Pn � �� � n; inviscid and viscous forces

Fc�U� = vector of convective fluxes
Fvk�U� = vector of viscous fluxes
H = flow enthalpy
Hm = mean curvature of S
J�S� = objective function defined on surface S
J �S� = Lagrangian
M1 = freestream Mach number
n = exterior normal to surface S
P = pressure of fluid
Prd = laminar or dynamic Prandtl number
Prt = turbulent Prandtl number
Re = Reynolds number
Rd�dS� = Eikonal equation
RU�U; �̂� = Reynolds-averaged Navier–Stokes equations
R�̂�U; �̂; dS� = Spalart–Allmaras equation
S = adiabatic wall boundary of physical domain
Tcv = convective and viscous terms of turbulence

model
Ts = source terms of turbulence model
U = vector of conservative variables
v = flow speed in a Cartesian system of reference
� = angle of attack
� = ratio of specific heats
�1 = far-field boundary of physical domain
�S = infinitesimal deformation of wall surface
rS = tangential gradient operator on S
�n = design variable step
@n = normal derivative to curve/surface
�Rd = variations of Rd
�RU = variations of RU
�R�̂ = variations of R�̂
��W�� = incoming characteristics on far-field

boundary
�̂ = scalar variable obtained from a one-equation

turbulence model
�dyn = dynamic viscosity
�tur = turbulent viscosity
�1

tot = sum of laminar and turbulent viscosities
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�2
tot = sum of laminar and turbulent viscosities divided

by corresponding Prandtl number
� = flow density
��’ = adjoint stress tensor
�� = second-order tensor of viscous stresses
’ = adjoint velocity vector
�U = vector of Lagrange multipliers of flow equations
 d = Lagrange multiplier of the Eikonal equation
 �̂ = Lagrange multiplier of the turbulent variable
� = physical domain

I. Introduction

T HIS paper contains a complete formulation of the continuous
adjoint approach for the shape optimization of an obstacle with

a boundary S immersed in a fluid governed by the Reynolds-
averaged Navier–Stokes (RANS) equations. We focus on the
Spalart–Allmaras turbulence model [1], due to its wide use in
aerodynamic industry. As a result, a system of partial differential
equations (PDEs), suitable for numerical simulation at a relatively
low cost but still retaining significant properties of the turbulent flow,
is obtained.

Shape optimization methods have grown in importance in
aerodynamic design within the last decade. In gradient-based
optimization techniques, the goal is to minimize a suitable cost or
objective function (drag coefficient, deviation from a prescribed
surface pressure distribution, etc.) with respect to a set of design
variables (defining, for example, an airfoil profile or aircraft surface).
Minimization is achieved by means of an iterative process that
requires the computation of the gradient or sensitivity derivative of
the cost function with respect to the design variables.

Gradients can be computed in a variety of ways, the most actively
pursued one being the adjoint method [2–5] due, among other
factors, to its ability of computing these derivatives at a cost
comparable with that of numerically solving the state PDEs. Adjoint
methods are conventionally subdivided into continuous and discrete
methods. In the continuous approach, the adjoint equations are
derived from the governing PDEs and subsequently discretized to
obtain a descent direction for the discrete cost functional, whereas in
the discrete approach, this descent direction is directly obtained from
the adjoint equations of the discretized PDEs [6].

In the continuous adjoint approach, the adjoint system is a linear
system of PDEs that can be discretized using any convergent
numerical scheme. One can take advantage of this, but it requires a
suitable numerical analysis of the underlying system of equations.
Note that the adjoint equations are not derived directly from a
physical model, and their numerical analysis is not similar to the one
required for the fluid equations. In particular, stability and
convergencemust be analyzed independently. It is worthmentioning
that this is not an easy problem when singularities appear. For
instance, consistency of adjoint problems in the presence of shock
waves is a difficult topic [7–10]. Moreover, mathematical and
physical understanding of the adjoint problem is aided by
considering the continuous approach, as exemplified by analytic
adjoint solutions for one-dimensional Euler problems [11].

On the contrary, the discrete adjoint provides the exact gradient of
the discretized objective function (as the finite differences method or
the complex step method [12]). The discrete adjoint is also often
considerably harder than the continuous one in terms of operation
counts and memory requirements, although some efficient codes
have been developed to mitigate these limitations [13–15]. Besides,
the discrete adjoint becomes complex for higher-order schemes (see
[6] and references therein), and it is not always well justified since it
requires the linearization of the underlying numerical scheme used to
approximate the flow system. Any efficient second-order numerical
scheme able to approximate the conservative part of the fluid system
in the presence of singular solutions is nondifferentiable in nature.
Thus, any approximation of the linearized discrete system should be
carefully analyzed from the mathematical point of view. Finally,
related with the discrete adjoint, it is interesting to highlight the
concept of dual consistency [16], which leads to a discrete adjoint

problem that is a consistent discretization of the continuous adjoint
problem that we are going to derive in this paper.

To the best of the authors’ knowledge, the only previous
contribution concerning such a continuous adjoint approach to the
RANS equations in conjunction with a turbulence model is the work
of Zymaris et al. [17]. Their work, however, is devoted to the
incompressible version of the Navier–Stokes equations, and it is
restricted to interior flows in duct geometries. Furthermore, only
sensitivities regarding the total pressure loss functional in the duct are
considered. Some other studies have also considered variations in
turbulent viscosity, although they are all based on the discrete adjoint
approach: Nielsen et al. [18], Dwight and Brezillon [19], Anderson
and Bonhaus [20], Lee and Kim [21], Mavriplis [22], and Kim et al.
[23]. We refer to the introduction of Zymaris et al. [17] for a more
detailed description of the previous literature on this subject.
Compared with the previously mentioned works, the present paper
develops the continuous adjoint method rather than the discrete one.
Also note that the present paper deals with the compressible steady-
state flow equations, with applications for external flows in
aerodynamic design.

From a practical point of view, a nontrivial question rises when
computing the distance to the surface, usually required by the
turbulence model. In this work, we solve this problem by char-
acterizing this distance as a solution of the Eikonal equation. Thus,
the final system of equations incorporates the Eikonal equation,
taking part of the continuous formulation of the problem.

The dependence of turbulence models with respect to the distance
to the surface is an additional difficulty in RANS aerodynamic
optimization problems. The very small deformations required to
approximate the gradient by finite differences might not be properly
seen by either an Eikonal or even a brute-force distance solver.
Moreover, some recent works [24,25] have posed some serious
concerns on the use of discrete methods in control problems
associated to Eikonal- and Hamilton–Jacobi-related problems. On
the contrary, our continuous formulation incorporates in a natural
way the dependence of the turbulence model with respect to the
distance to the surface by means of the linearization of the Eikonal
equation, thus also opening the door to consider functionals of
interest with an explicit dependence on this distance by means of
domain integrals.

The organization of the paper is as follows. In Sec. II, we describe
the model and state the optimization problem. In Sec. III, we derive
the continuous adjoint method to compute surface sensitivities of the
RANS equations. This derivation is done in a general framework,
totally independent of the choice of turbulence model, and
particularized for the Spalart–Allmaras one. The practical imple-
mentation of themethod is then described in Sec. IV. Some numerical
experiments illustrating the relevance of the developments described
in thiswork are presented in Sec. V. For purposes of clarity, equations
of the models and their linearization, as well as details on the
calculations of the surface sensitivity, are given in the appendices at
the end of this work.

II. Description of the Problem

The Navier–Stokes equations [26,27] (see Appendix A) describe
the conservation of mass, momentum, and energy in a viscous fluid.
Classical aeronautical applications assume that the air is governed by
these Navier–Stokes equations on a domain � � R3 delimited by
disconnected boundaries divided into a far field �1 and adiabatic
walls that we denote by S. Their steady-state formulation (without
source terms) can be written in the following form:

8>>><
>>>:

RU�U; �̂� � r � Fc � r � ��1
totF

v1 � �2
totF

v2� � 0 in �

v� 0 on S

@nT � 0 on S

�W�� �W1 on �1

(1)

where U� ��; �v1; �v2; �v3; �E�T stands for the vector of
conservative variables, � is the density, E is the energy, v�
�v1; v2; v3� 2 R3 is the flow speed in a Cartesian system of reference,
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and T is the temperature. The last equation in Eq. (1) represents
classical far-field boundary conditions simulating the fluid behavior
at infinity. The vectorsFc�U� � �Fc1;Fc2; . . . ;Fc5�T are the convective
fluxes and Fvk�U� � �Fvk1 ;Fvk2 ; . . . ;Fvk5 �T, k� 1; 2, are the viscous
fluxes, where we have considered separately the contribution of the
viscous forces and the heat flux transfer. Here, ���T denotes
transposition.

As usual in turbulence modeling based upon the Boussinesq
hypothesis, which states that the effect of turbulence can be
represented as an increased viscosity, the viscosity is divided into
laminar�dyn and turbulent�tur components. The laminar or dynamic
viscosity is usually taken to be only dependent on the temperature
�dyn � �dyn�T�, whereas �tur is obtained from a suitable turbulence
model involving the flow and a set of new variables �̂, i.e.,
�tur � �tur�U; �̂�. Here, we assume that �̂ is a single scalar variable
obtained from a one-equation turbulence model, which in general
form can be written as

8><
>:
R�̂�U; �̂; dS� � r � Tcv � Ts � 0 in �

�̂� 0 on S

�̂1 � �1�1 on �1

(2)

where Tcv � Tcv�U; �̂; dS� stands for the convective and viscous
terms, Ts � Ts�U; �̂; dS� represents the source term, and dS is the
distance to the boundary of the obstacle S. In the particular case of the
Spalart–Allmaras model, the convective, viscous, and source terms
are given in Appendix B. The far-field boundary condition for the
turbulent viscosity in Eq. (2) imposes some fraction of the laminar
viscosity at the far field. This is usual in turbulence modeling [1],
where �1 is a turbulence model constant, usually ranging between 3
and 5. Onviscous walls, �̂ is set to zero, corresponding to the absence
of turbulent eddies very near to the wall.

Turbulence and mainstream flow then become coupled by
replacing the dynamic viscosity in the momentum and energy
equations in the Navier–Stokes equations with

�1
tot � �dyn � �tur; �2

tot �
�dyn

Prd
� �tur

Prt
(3)

where Prd and Prt are, respectively, the dynamic and turbulent
Prandtl numbers. Here, �2

tot represents the effective thermal
conductivity that we write in this nonstandard notation to obtain
reduced expressions in the calculus below.

Note that, in Eq. (2),we have incorporated the distancevariabledS,
which is common in turbulence modeling and, in particular, it
appears in the considered Spalart–Allmaras model. The new variable
dS�S� solves the so-called Eikonal equation:

�
Rd�dS� � jrdSj2 � 1� 0 in �

dS � 0 on S
(4)

Systems (1), (2), and (4), together with a suitable equation of state
to describe the fluid thermodynamics, constitute a complete system
of equations and boundary conditions for the flow variables [28,29].

A key element for the definition of an optimal shape design
problem is the objective function. In this case, we introduce an
objective function that is assumed to be only dependent on the values
of the flow variables at the boundary S. As shown in [5], for the
Navier–Stokes system, only objective functions depending on f and
the temperature T are allowed for continuous adjoint optimization,
with f given by

f � �f1; f2; f3� � Pn � �� � n; �� � �1
tot �� (5)

wheren denotes the exterior normal to the surfaceS,P is the pressure
of the fluid, and �� is the second-order tensor of viscous stresses, with
�� given in Appendix A. Note that this includes, in particular,
functionals depending only on the pressure P, since it can be written

as a function of f, using the fact thatn � �� � n� 0on the boundary [5].
More precisely,

P� n � �Pn � �� � n� � f � n on S (6)

In the presence of turbulencemodeling, a similar situation applies,
the only difference being that we can now add a dependence on the
unknown turbulence variable @n�̂ on S. Thus, for the purposes of the
present study, we will consider the following general choice of
objective function:

J�S� �
Z
S

j�f; T; @n�̂;n� ds (7)

III. Variation of the Objective Function:
The Adjoint Approach

As usual in the adjoint approach, flow equations are incorporated
to the cost functional as constraints by means of a Lagrange
multiplier for each equation,�T

U � � 1;  2;  3;  4;  5�, �̂, and d.
In this way, the Lagrangian reads

J �S� �
Z
S

j�f; T; @n�̂;n� ds�
Z
�

��T
URU�U; �̂�

�  �̂R�̂�U; �̂; dS� �  dRd�dS�� d� (8)

Let us consider an arbitrary (but small) perturbation of the
boundary S that, without loss of generality, can be parameterized by
an infinitesimal deformation of size �S along the normal direction to
the surface S. The new surface obtained after the deformation is then
given by

S0 � fx� �Sn;x 2 Sg (9)

where for small deformations, the following holds [30]:

�
�n��rS��S�
��ds� � �2Hm�Sds

(10)

where Hm is the mean curvature of S computed as �	1 � 	2�=2, and
�	1; 	2� are curvatures in two orthogonal directions on the surface.
Here, rS represents the tangential gradient operator on S. Note that
rS��S� is a tangent vector to S that we write as a vector in R3 with a
null component normal to S.

Assuming a regular flow solution U and a smooth boundary S,
the variation of the functional J due to the deformation can be
evaluated as

�J �
Z
S

�j�f;T;@n�̂;n�ds�
Z
�S

j�f;T;@n�̂;n�ds

�
Z
�

��T
U�RU�U; �̂�� �̂�R�̂�U; �̂;dS�� d�Rd�dS��d� (11)

where �RU, �R�̂, and �Rd represent the variations of RU, R�̂, and Rd,
respectively. Using the convention of summation of repeated
indexes, i� 1; 2; 3, the two first terms in the previous equation read

�j�f; T; @n�̂;n� �
@j

@fi
�fi �

@j

@T
�T � @j

@�@n�̂�
��@n�̂� �

@j

@n
� rS��S�

� @j
@f
� ��Pn � � �� � n� � @j

@T
�T � @j

@�@n�̂�
��@n�̂�

�
�
@j

@n
� @j
@f
P� @j

@f
� ��
�
� rS��S� (12)

Z
�S

j�f; T; @n�̂;n� ds�
Z
S

�
@j

@fi
@nfi �

@j

@T
@nT

� @j

@�@n�̂�
@2n�̂ � 2Hmj

�
�S ds (13)
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Note that, in Eq. (12), we have written the variation �f in terms of
�P and � ��, and we have used formula (10) for �n. The variations
�Pn � � �� � n, �T, and ��@n�̂� appearing in Eq. (12) can be computed
from the following linearized system:

8>>><
>>>:

�RU�U; �̂� � @RU
@U
�U� @RU

@�̂
��̂� 0 in �

�v��@nv�S on S

@n��T� � �rT� � rS��S� � @2nT�S on S

��W�� � 0 on �1

(14)

8><
>:
�R�̂�U; �̂; dS� � @R�̂

@U
�U� @R�̂

@�̂
� ~�� @R�̂

@dS
�dS � 0 in �

��̂��@n�̂�S on S

��̂� �1�� on �1

(15)

�
�Rd�dS� � rdS � r�dS � 0 in �

�dS � �S on S
(16)

where ��W�� represents the incoming characteristics on the far-field
boundary. Linearization of the Navier–Stokes and the Spalart–
Allmaras equations are, respectively, given in Appendices C and D.
In the last formula of Eq. (16), we have used the fact that @ndS ��1;
therefore, �dS ��@ndS�S� �S.

Domain integrals in Eq. (11) are eliminated using integration by
parts and introducing the associated adjoint operators. This
integration by parts also provides some boundary terms, which are
combined with the boundary terms in Eq. (11) depending on
�Pn � �� � n, �T, and ��@n�̂�, yielding the boundary conditions for
the adjoint operators. We describe this process below.

From Eqs. (14–16), the last three terms in Eq. (11) read

Z
�

�T
U

�
@RU
@U

�U�@RU
@�̂

��̂

�
�
Z
�

 �̂

�
@R ~�

@U
�U�@R�̂

@�̂
��̂�@R�̂

@dS
�dS

�

�
Z
�

 d
@Rd
@dS

�dS�
Z
�

�AUU�U�AU�̂  �̂�T�U�
Z
�

�A�̂U�U�A�̂�̂ �̂���̂

�
Z
�

�Ad�̂ �̂�Add d��dS�
Z
S

BSds (17)

where AUU � �@RU=@U�T, AU�̂ � �@R�̂=@U�T, A�̂U � �@RU=@�̂�T,
A�̂�̂ � @R�̂=@�̂, Ad�̂ � @R�̂=@dS, and Add � @Rd=@dS are the adjoint
operators and BS stands for the boundary terms coming from the
integration by parts

Z
S

BS ds��
Z
S

’ � ��Pn � � �� � n� ds

�
Z
S

�g1 � ’� g2@n 5 �  �̂g5��T ds �
Z
S

g3 �̂��@n�̂� ds

�
Z
S

 �̂g4�P ds�
Z
S

 d�S ds�
Z
S

ĝ�S ds (18)

where’� � 2;  3;  4� and g1, gi, i� 2; 3; 4; 5, are some functions
that do not depend on the adjoint variables�U, �̂, d, and ĝ, which
does not depend on d. The analytical expression of these terms and
the adjoint operators above are given in detail in Eqs. (E4–E13) in
Appendix E.

We now observe that, due to the relation Eq. (6), the first and third
terms on the right-hand side of Eq. (18) can be written together. In
fact, the linearization of Eq. (6) provides

�P� ��Pn � n � n � �� � n� � n � ��Pn � � �� � n�
� 2�Pn � n � ��� � rS��S� on S (19)

wherewe have used the symmetry of the tensor �� and the formula for
�n in Eq. (10). Therefore, Eq. (18) can be written as

Z
S

BS ds�
Z
S

��’�  �̂g4n� � ��Pn � � �� � n� ds

�
Z
S

�g1 � ’� g2@n 5 �  �̂g5��T ds

�
Z
S

g3 �̂��@n�̂� ds �
Z
S

 d�S ds�
Z
S

ĝ�S ds

� 2

Z
S

 �̂g4�Pn � n � ��� � rS��S� ds (20)

To eliminate domain integrals in Eq. (11) when replacing the last
three terms by using Eq. (17), we assume that the adjoint variables
satisfy

0� AUU�U � AU�̂  �̂ (21)

0� A�̂U�U � A�̂�̂ �̂ (22)

0� Ad�̂ �̂ � Add d (23)

Analogously, all boundary terms in Eq. (17) without explicit
dependence on �S can be eliminated by considering the following
choice of boundary conditions for the adjoint variables:

 �̂ �
1

g3

@j

@�@n�̂�
on S (24)

’i �
@j

@fi
�  �̂g4ni on S (25)

@n 5 �
1

g2

�
@j

@T
� g1 � ’�  �̂g5

�
on S (26)

 d � 0 on S (27)

Note that this choice for the boundary conditions must be done in
an ordered manner; that is, the value of �̂ on the right-hand sides of
Eqs. (25) and (26) is obtained fromEq. (24),whereas thevalue of’ in
Eq. (26) is computed from Eq. (25).

Combining Eqs. (11–13) and (17–20), adjoint equations (21–23),
and the boundary conditions in Eqs. (24–27), we finally obtain

�J �
Z
S

�
@j

@fi
@nfi �

@j

@T
@nT �

@j

@�@n�̂�
@2n�̂

�
�S ds

�
Z
S

�
@j

@n
� @j
@f
P� @j

@f
� ��
�
� rS��S� ds

�
Z
S

�ĝ� 2Hmj��S ds � 2

Z
S

 �̂g4�Pn � n � ��� � rS��S� ds

(28)

In this expression, the adjoint variables are obtained by solving
the closed system of PDEs and boundary conditions given by
Eqs. (21–27).

It is important to recall here that neither the Navier–Stokes adjoint
equation in Eq. (21) nor the Spalart–Allmaras adjoint equation in
Eq. (22) depends on the adjoint distance variable d. This is also the
case of the functional sensibility equation (28), since typical
objective functionals in aerodynamics do not depend explicitly on
the distance to the surface. In this situation, it is therefore not
necessary to solve Eq. (23), and the adjoint system simply reduces to
Eqs. (21) and (22). One could consider, however, more sophisticated
situations that would require the solution of Eq. (23). This could be,
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for instance, the case of functionals with an explicit dependence on
the distance to the surface by means of a domain integral.

Some particular but still interesting situations provide a more
simplified formula for the variation of J, as described in [5] for the
Navier–Stokes equations. Assume that the objective function
depends only on f in the following way:

j�f� � f � d (29)

where d is a constant vector (the choice d� n is also possible with
somemodifications, but for simplicity, we focus on constantd). Note
that this is the case in drag or lift optimization problems. The adjoint
boundary conditions in this situation simply become

 �̂ �  d � 0; ’� d; @n 5 � g1 � d=g2 (30)

and the variation of J is given by

�J �
Z
S

d � @nfi�S ds �
Z
S

�Pd � d � ��� � rS��S� ds

�
Z
S

�ĝ� 2Hmj��S ds (31)

Integrating now by parts, and assuming that either S is smooth or
�S� 0 at its singular points, yields

�J �
Z
S

@n�Pd � n � d � �� � n��S ds�
Z
S

rS � �Pd � d � ����S ds

�
Z
S

�ĝ� 2Hmj��S ds�
Z
S

r � �Pd � d � ����S ds

�
Z
S

ĝ�S ds��
Z
S

ĝ�S ds (32)

Here, we have used the fact that the divergence operator, on local
coordinates of S, is given by

r � q� @n�q � n� � rS � q � 2Hmq � n (33)

for a general vector field q, and the identity

r � �Pd � d � ��� � �rP � r � ��� � d� 0 on S (34)

which is obtained assuming that the momentum equations in the
Navier–Stokes system are satisfied on the boundary, i.e.,rP�r � ��
on S.

The final expression in Eq. (32) involves the function ĝ that, as
shown inAppendix E, is reduced to ĝ� h, given byEq. (E12), due to
the boundary conditions in Eq. (30). In this way, the expression for
the total variation of the functional can be simplified as follows:

�J ��
Z
S

h�S ds�
Z
S

�n � ��’ � @nv � �2
totCprS 5 � rST��S ds

(35)

with ��’ depending on the gradient of the adjoint variables ’. Note
that we are supposing a smooth flow solution; a complete Euler
adjoint formulation with shock waves can be found in [31].

IV. Numerical Implementation of the Shape
Optimization Framework

An appropriate rearrangement of terms in the vector-matrix
multiplications in Eqs. (21) and (22) leads to a more suitable
formulation for the numerical evaluation of the residuals of the
adjoint system. Compact expressions for the evaluation of these
terms, as well as a description of the other components of the whole
shape optimization framework, are presented in this section.

A. Spatial Discretization

A finite volume discretization is used to solve both the direct and
adjoint equations. As usual, the finite volume discretization is
obtained by applying the integral formulation of the governing

equations to a control volume �h, consisting of a cell of the dual
mesh surrounding each node.

To avoid any possible confusion, the standard Latin indexes i, j
will be reserved here to indicate spatial coordinates. For those
residuals computed as the addition of severalfluxes through the faces
of a dual mesh cell, the central node of the cell will be denoted with
the local index 0, and its set of neighboring points labeled as
N 0 � f1; . . . ; N0g, with N0 representing the size of the set.

1. Reynolds-Averaged Navier–Stokes Equations

The solution of flow equation (1) and turbulence model
equation (2) enter on the adjoint equations as the coefficients of the
adjoint system. For the flow equations, a central scheme with a
Jameson–Schmidt–Turkel (JST)-type scalar artificial dissipation
[32,33] is used for the discretization of the convective flux. The
convection of the turbulent variable �̂ is discretized using a fully
upwinded scheme. Second-order accuracy is easily achieved via
reconstruction of variables on the cell interfaces by using a MUSCL
approach with limitation of gradients [34]. In both cases, viscous
fluxes are computed with the node-gradient-based approach due to
Weiss et al. [35] that, apart from reducing the truncation error of the
scheme, avoids the odd–even decoupling of mesh nodes in the
computation of residuals, resulting in second-order spatial accuracy.
Source terms are approximated via piecewise reconstruction in the
finite volume cells.

The solution of turbulence model equation (2) also requires the
numerical approximation of the Eikonal Eq. (4), in order to compute
the distance field to the boundary of the obstacle. Our imple-
mentation makes use of an efficient fast-marching solver for
unstructured grids [36] based on a finite element approximation to
the Eikonal equation in eachmesh element. Second-order accuracy is
recovered by using not only the information of the nodal values of the
distance field but incorporating the direction of the computed rdS
into the solver [37].

2. Adjoint Flow Equation

a. Convective Residuals. A modified version of the JST
schemewithout low-order dissipation is used for the discretization of
the convective term [5]. This is given by

R U;conv �
Z
�h

r�T
U � Ac d��

X
n2N 0

RU;conv
0n (36)

with Ac defined in Eq. (C6), which unfortunately is not written in
conservative form, thus avoiding the direct application of the Green–
Gauss theorem. However, this flux can be seen as a convection with
nonconstant coefficients, given by the evaluation of matrices Ac at
the different mesh nodes. Hence, across the face of the control
volume separating two mesh nodes with local indexes 0 and n, the
component of the convective residual for node 0 can be computed as

R U;conv
0n �

�v � S� 1 � jvj
2

2
�� � 1�l1 � �v � S�l2 

�v � S� 2 � v1�� � 1�l1 � S1l2 
�v � S� 3 � v2�� � 1�l1 � S2l2 
�v � S� 4 � v3�� � 1�l1 � S3l2 

�v � S� 5 � �� � 1�l1 

0
BBBB@

1
CCCCA�D0n

(37)

where the adjoint variables are reconstructed at the cell face as
�U � 1

2
��Uj0 ��Ujn�, whereasflowvariables are evaluated at node

0 (equivalently for node n). In Eq. (37), S� Si � �Sx; Sy; Sz�
denotes the normal vector of the face located at the edge going from
node 0 to node n such that its length coincides with the face area, and
we have introduced the following notation:

l1 � �’ � S� � �v � S� 5 (38)
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l2 �  1 � �’ � v� �H 5 (39)

The artificial dissipation between two nodes, 0 and 1 for example,
can be expressed as

D 01 � 	̂�4�"�4��r2�Uj0 � r2�Uj1�!01
01 (40)

"�4� �
�
3
N0 � N1

N0N1

�
2

(41)


0 � jv0 � Sj � c0jSj (42)


01 � jv01 � Sj � c01jSj (43)

!0 �
�

0
4
01

�1
2

(44)

!01 �
!0!1

!0 � !1

(45)

where

r2�Uj0 �
X
nN 0

��Ujn � �Uj0�

denotes the undivided Laplacian operator, N1 represents the size of
the set of neighboring points to node 1, v01 � 1

2
�vj0 � vj1� and

c01 � 1
2
�cj0 � cj1� are the fluid and sound speeds at the cell face,

and 	̂�4� is an adjustable parameter. An artificial dissipation of
upwind type could have been used as well, for which we refer the
reader to [5].

b. Viscous Residuals. Theviscous residuals of the adjoint flow
equation are discretized using the Green–Gauss integral relation:

RU;visc �
Z
�h

r�r�T
U � �ktotDvk� d�

�
Z
@�h

r�T
U � �ktotDvk dS�

X
n2N 0

RU;visc
0n (46)

withDvk defined in Eq. (C6), which yields the following form for the
viscous flux:

R U;visc
0n � 1

�

�vi�ijSj �
�
jvj2
2
� P
���1��

�
�5

�1jSj � v1�5

�2jSj � v2�5

�3jSj � v3�5

�5

0
BBBBBB@

1
CCCCCCA

(47)

where the following abbreviations have been used:

�ij ��
’
ij ��5

ij (48)

�
’
ij � �1

tot�@j’i � @i’j � 2
3
�ijr � ’� (49)

�5
ij � �1

tot�vj@i 5 � vi@j 5 � 2
3
�ijv � r 5� (50)

�5
i � ��2

tot@i 5 (51)

�5 � ��2
totr 5 � S (52)

For coherence with the discretization of the convective residuals,
the gradients of the adjoint variables are averaged (making use of the
Weiss correction) at the cell face, whereas flow variables are
evaluated at node 0.

c. Source Terms Residuals. The remaining terms in Eq. (E4)
are treated as source terms and approximated via piecewise
reconstruction of the solution in each finite volume cell. After some
manipulations, the residual vector can be written as

R U;source � j�hj

� 1
�
vi�ij@j 5 ��ij@i

�
vj
�

�
�
�
jvj2
2
�j � �j

�
@j 5 � 1

�
�5
jvi@jvi � ��jvj2 � E� � 

1
�
�1j@j 5 ��1j@j

�
1
�

�
� v1�j@j 5 � 1

�
�5
j@jv1 � �v1

1
�
�2j@j 5 ��2j@j

�
1
�

�
� v2�j@j 5 � 1

�
�5
j@jv2 � �v2

1
�
�3j@j 5 ��3j@j

�
1
�

�
� v3�j@j 5 � 1

�
�5
j@jv3 � �v3

�j@j 5 � �

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

(53)

where j�hj denotes the cell measure, and

�i � ��2
tot@i

�
1

�

�
(54)

�i �
�

� � 1
�2

tot@i

�
P

�2

�
(55)

	 � ��: r’� v � �� � r 5 �
Cp
Prt
rT � r 5 (56)

��
�
	 

�
1 � �tur

�dyn

3c3v1
�3 � c3v1

�

�
Cp
Prt
rT � r 5

�
1 � Prt

Prd

��
�� � 1�
R�

@�dyn

@T
(57)

� 	 
�
1� 3c3v1

�3 � c3v1

�
�tur

�
(58)

and ��: r’� �ij@i’j, with @�dyn=@T given by Eq. (C3).
d. Coupling Residuals. Coupling between the Navier–Stokes

and the Spalart–Allmaras adjoint equations is obtained by means of
Eq. (E5). Its two first terms are integrated using piecewise (p.w.)
reconstruction, yielding a combined residual
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R U;couplingjp:w: � j�hj

� �
�

�
~��jvj2 � E� � �dyn

�

�
� �̂

�
vj@j �̂ �  �̂ �

j!j �@jvi � @ivj�@j
�
vi
�

�

�
�
~�v1 � �̂

�
@1 �̂ �  �̂ �

j!j �@jv1 � @1vj�@j
�

1
�

�

�
�
~�v2 � �̂

�
@2 �̂ �  �̂ �

j!j �@jv2 � @2vj�@j
�

1
�

�

�
�
~�v3 � �̂

�
@3 �̂ �  �̂ �

j!j �@jv3 � @3vj�@j
�

1
�

�

� �
�
~�

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(59)

with the abbreviations

~�� �� � 1�
R�

@�dyn

@T
(60)

��  �̂�Ŝfv2�f�v2 � fv1v2f
�
v1��� �

1

�
r�̂ � r �̂ (61)

and all partial derivatives appearing in these formulas are given in
Appendix D.

The third term of Eq. (E5) is, however, written in conservative
form. Hence, this part of the residual is evaluated by means of the
Green–Gauss theorem as

R U;couplingjcons �
X
n2N 0

 �̂
�

�

j!j

�vi�@jvi � @ivj�Sj
�@jv1 � @1vj�Sj
�@jv2 � @2vj�Sj
�@jv3 � @3vj�Sj

�

0
BBB@

1
CCCA (62)

3. Adjoint Turbulent Equation

a. Convective Residuals. To preserve consistency with the
direct solver, the turbulent adjoint variable  �̂ is discretized using a
second-order upwind schemewith face reconstruction and limitation
of gradients. This convection is also given as a nonconservative flux
in the form

R �̂;conv �
Z
�h

r �̂ � Bcv d��
X
n2N 0

R�̂;conv
0n (63)

where the analytical expression for the fluxBcv is given by Eq. (D4).
Supposing a regular solution of the adjoint equations, the convective
flux for node 0 across the face of the control volume separating nodes
0 and n is then approximated as

R �̂;conv
0n � 1

2
	Bcv

0 � S� �̂j0 �  �̂jn� � jBcv
0n � Sj� �̂jn �  �̂j0�
 (64)

b. Viscous Residuals. Viscous residuals are newly discretized
using the Green–Gauss integral relation:

R �̂;visc �
Z
�h

r�r �̂ � Ecv� d��
Z
@�h

r �̂ � Ecv dS�
X
n2N 0

R�̂;visc
0n

(65)

withEcv defined in Eq. (D5), yielding for node 0 the following flux:

R �̂;visc
0n �� �� �̂

�
r �̂ � S (66)

where all the variables and the gradients of the turbulent adjoint
variable, including theWeiss correction, are averaged at the cell face.

c. Source Terms Residuals. The rest of the terms in Eq. (E7)
constitute the source contributions to the adjoint turbulent equation.
As for the coupling residuals of the adjoint Navier–Stokes equation,
the two first terms are integrated using piecewise reconstruction,
resulting in a residual in the form

R �̂;sourcejp:w: � j�hj�� �̂Bs� (67)

with Bs given by Eq. (D7). The Es term is evaluated by the Green–
Gauss integral relation, yielding

R �̂;sourcejcons �
X
n2N 0

2cb2
�
 �̂r�̂ � S (68)

d. Coupling Residuals. Finally, residuals coming from the
coupling with the adjoint flow equation, given by Eq. (E6), can be
written as

R �̂;coupling � j�hj	 
@�tur

@�̂
(69)

with 	 and @�tur=@�̂ given by Eqs. (56) and (C5).

4. Adjoint Eikonal Equation

As previously stated, neither the adjoint flow nor the adjoint
turbulent equations depend on the adjoint distance variable  d.
Furthermore, this adjoint variable is not needed either to compute the
functional sensitivity, since typical objective functionals in
aerodynamics do not depend explicitly on the distance to the
surface. Hence, for the functionals considered here, there is no need
to implement and numerically solve Eq. (23).

5. Boundary Conditions

Boundary conditions for a solid wall can be imposed in twoways:
either by using a ghost cell scheme adapted to unstructuredmeshes or
by directly enforcing the boundary conditions on the analytical flux
expressions. On the far field, characteristic boundary conditions are
used.

B. Steady-State Time Integration

A time-marching strategy in pseudotime [33,38] is used to obtain
the steady solution of the flow equations and the adjoint system
equations (21) and (22). Although the two sets of equations are
coupled over the turbulent viscosity �tur, and it would be more
efficient in terms of operation counts to formulate and solve them
simultaneously, decoupling is by far the most widely used strategy,
both for simplicity and because of the different character of both
types of equations. In addition, it also gives flexibility in order to
introduce other models of turbulence in a future.

Because of the inherent stiffness of turbulence-transport
equations, time integration of both the Navier–Stokes and the
Spalart–Allmaras adjoint systems is tackled with an implicit
backward-Euler scheme [19]. Direct inversion of the banded matrix
that defines this system is impractical because of rapid increase of
operation counts with the number of mesh points and large storage
requirements, especially in three dimensions. The resulting linear
system is therefore solved iteratively by means of a lower–upper
symmetric Gauss–Seidel algorithm [14,39]. To speed up the rate of
convergence, an overset multigrid scheme has been implemented in
conjunction with the solver [40,41].

C. Design Variables

In the present work, the shape functions introduced by Hicks and
Henne [42] have been used as design variables for the two-
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dimensional (2-D) examples. The Hicks–Henne function with
maximum at point xn is given by

fn�x� � sin3��xen�; en �
log�0:5�
log�xn�

; x 2 	0; 1
 (70)

so the total deformation of the surface can be computed as

�y�
XN
n�1

�nfn�x�

with N being the number of bump functions and �n the design
variable step. These functions are applied separately to the upper and
lower surfaces.

For three-dimensional (3-D) problems, a freeform deformation
(FFD) strategy has been adopted [43]. In FFD, an initial box
encapsulating the object (wing, airplane, etc.) that one wants to
redesign is parameterized as a Bézier solid (Fig. 1). A set of control
points is defined on the surface of the box, depending on the order of
the chosen Bernstein polynomials. In this way, the solid box is
parameterized by the following expression:

X�u; v; w� �
Xl;m;n
i;j;k�0

Pi;j;kB
l
i�u�Bmj �v�Bnk�w� (71)

where u; v; w 2 	0; 1
, and Bi is the Bernstein polynomial of order i.
The Cartesian coordinates of the points on the surface of the object
are transformed to the parametric coordinates of the Bézier box.
Control points of the box become designvariables, as they control the
shape of the solid and thus the shape of the surface grid inside. The
embedding box is deformed by modifying its control points, with all
the points inside the box inheriting a smooth deformation. The new
Cartesian coordinates of the object of interest can then be recovered
by inverting mapping equation (71).

Finally, once the boundary displacements have been computed, a
torsional spring method [44,45] is used in order to reallocate the rest
of vertexes of the unstructured mesh.

D. Optimization Framework

The optimization results presented in this work make use of the
SciPy library,¶ a well-established open-source software for
mathematics, science, and engineering. At each design iteration,
the SciPy routines only require as inputs the values and gradients of
the objective functions, computed by means of our continuous
adjoint approach, as well as the set of chosen constraints.

V. Summary of Results and Numerical Experiments

The adjoint formulation presented in this paper has been
implemented in the aerodynamic shape design suite CADES (code
for aerodynamical design and simulation, developed by the research
group). CADES is a complete suite for aerodynamical shape design
composed by five C++ programs [computational fluid dynamics
(CFD) solver, grid adaptation, grid deformation, domain

partitioning, and gradients computation] and several Python scripts.
In particular, the software CADES_CFD is a finite volume code that
solves the direct (flow), adjoint, and linearized problems for the
potential, Euler, Navier–Stokes, and RANS equations on either 2-D
or 3-D unstructured meshes using an edge-based data structure.

All terms of the turbulent adjoint formulation were implemented in
the software suite with the exception of those involving the factor
�=j!j in Eqs. (59) and (62). Numerical inspection of �, given by
Eq. (D12), reveals very small values for this quantity, with a fast decay
outside the turbulent boundary layer. Precisely, the magnitude of the
vorticity is greater close to the airfoil surface, making thewhole factor
�=j!j negligible when compared with the rest of terms of the adjoint
residuals. However, neglecting these terms helps to avoid numerical
instabilities far from the obstacle surface, where the magnitude of the
vorticity tends to zero.Other regularization approaches for these terms
are under current development.

Aweighted least-squares method was used in our calculations to
approximate the spatial gradients of the flow and the adjoint
variables, although similar results were obtained by using theGreen–
Gauss formulation. Standard values for the first-, second-, and
fourth-order artificial dissipation coefficients of the flow JST solver
(parameters 	�0�, 	�2�, and 	�4� in [32,33]) are 0.1, 1=4, and 1=64,
respectively. The value for the adjoint fourth-order artificial dissi-
pation coefficient 	̂�4� in Eq. (40) is taken to be 1=150. This value
allows all our simulations to be numerically stable while introducing
minimum artificial dissipation effects in the results. In the calibration
procedure, we have used finite difference results and a grid
convergence study with the adjoint Euler equations.

This section presents some numerical tests regarding the solution
of the continuous turbulent adjoint problem. First, gradients
computed with the new adjoint method are compared with those
obtained using the so-called frozen viscosity hypothesis. This
hypothesis assumes that variations of the fluid viscosity with respect
to the flow variables can be neglected when comparedwith the rest of
terms of theflow adjoint equation. Thus, the turbulencemodel is used
to compute the flow variables, but only the adjoint equation for the
mean flow is considered; that is, it solves

0� AUU�U (72)

subject to

’i �
@j

@fi
on S (73)

@n 5 �
1

g2

�
@j

@T
� g1 � ’

�
on S (74)

also neglecting the last term in Eq. (E4) for the computation of the
adjoint operator AUU.

Then, a transonic unconstrained drag minimization problem is
shown to highlight the importance of using the complete adjoint
methodology comparedwith the frozenviscosity strategy. Finally, an
unconstrained turbulent 3-D drag minimization problem using the
FFD technique will be presented to study the viability of FFD for the
definition of 3-D design variables.

A. Numerical Comparison of Gradients in

Drag and Lift Optimization Problems

Our first case of study involves a transonic, turbulent flow over the
RAE-2822 airfoil. The flow conditions correspond to the AGARD-
AR-138 case 9 [46], with corrections to account for wind-tunnel
effects [47], namely,M1 � 0:734, �� 2:54�, and Re� 6:5 � 106.
Under these conditions, the flow develops a shock wave on the upper
surface (located at about 50 to 60% of the airfoil chord) and a very
small shock-induced separation behind the shock. The computa-
tional grid is an unstructured 2-D grid with 13,937 nodes and 22,842
elements, with 192 nodes on the airfoil surface and 40 nodes on the
far-field boundary,which is located 100 chords away from the airfoil.

The Hicks–Henne functions are used as design variables in this
example. The first design variable has its maximum close to the

Fig. 1 Example of FFD boxes on a DLR-F6 aircraft configuration.

¶Data available at http://www.scipy.org [retrieved 2011].
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trailing edge on the lower side of the airfoil, and subsequent variables
displace the maximum in the clockwise direction. A total number of
38 bump functions were used, spanning the complete surface of the
airfoil. Gradients computed with the two adjoint methods are
compared with those obtained with a forward finite difference
method. The design variable step �n was decreased until convergence
of the finite difference gradientswas achieved. In these computations,
a value of �n � 10�8 was used to generate the reference gradients.

Figure 2 summarizes our main results on the comparison of
gradients for the drag cd and lift cl functionals. In this figure, the
negative part of the x axis denotes design variables located on the
lower side of the airfoil, and positive x denotes those located on
the upper side. Assuming the finite differences approximation as the
reference solution, it is clear that the gradients computed by the
turbulent adjoint method described in this paper are in much better
agreement with the exact solution than those obtained using the

frozen viscosity simplification. Moreover, as can be seen for both
functionals, on the lower surface of the airfoil close to the trailing
edge, the frozen viscosity adjoint can indeed predict a gradient not
only wrong in magnitude but also in its direction, thus seriously
compromising the efficiency of a gradient-based optimization solver
during the minimization process.

The left panels of Fig. 3 (drag) and Fig. 4 (lift) present the
convergence histories of the density-adjoint variable  1 (left axes/
solid lines) and the geometrical sensitivity parameter (right axes/
dashed lines) given by the term that multiplies �S in gradient formula
equation (35) for both the turbulent and the frozen viscosity adjoint
methods. Convergence improvements are especially relevant for the
computation of lift gradients, although no substantial reduction in the
number of iterations is obtained in this case for drag calculations.
The right panels of these figures show the computed fields of the
density-adjoint variable for the two methods under study. Note that,
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Fig. 2 Comparison of gradients for drag (left) and lift (right) coefficients for the RAE-2822 airfoil.
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Fig. 3 Comparison between the turbulent and the frozen viscosity adjoint methods in the computation of drag sensitivities. Traces for the frozen
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in general, the solutions of the complete turbulent adjoint are
somehow less affected by the presence of the shock wave. The same
applies for the rest of adjoint flow variables.

B. Two-Dimensional Unconstrained Drag Minimization Using
Adjoint Reynolds-Averaged Navier–Stokes

The goal of this academic problem is to reduce the drag of the
RAE-2822 profile by means of modifications of its surface. The
angle of attack, Mach number, and Reynolds number are kept fixed
so that the flow remains transonic (M1 � 0:734, �� 2:54�, and
Re� 6:5 � 106). The same set of 38Hicks–Henne functions defined
in the previous section has been used here as design variables.

The convergence of the optimization process is presented in the
left panel of Fig. 5. As expected, gradients computed with the
complete adjoint Spalart–Allmaras formulation provide an airfoil
with a lower value of drag coefficient than using the frozen viscosity
gradients (note the nonoptimal pressure distribution of the trailing
edge due to the erroneous frozen viscosity gradient at that location).
The initial pressure distribution and the optimized one with the
Spalart–Allmaras adjoint method are shown on the right panel of this

b) Density-adjoint variable fields for lift
objective function using the turbulent (top) and
the frozen viscosity (bottom) adjoint methods
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figure. In particular, the original drag coefficient was 0.0178, and the
final one was 0.0116, representing a total 34.8% drag reduction.

C. Three-Dimensional Unconstrained Drag Minimization Using

Adjoint Reynolds-Averaged Navier–Stokes and Freeform Deformation

The objective of our last numerical test is to check the performance
of the developedmethodology in conjunctionwith the FFD approach
for the definition of 3-D design variables. A single-point minimiza-
tion case is used to study the new continuous adjoint method for
turbulent flows. The selected flow conditions were M1 � 0:8395,
�� 3:06�, and Re� 11:72 � 106, and the aerodynamic profile was
anONERA-M6wing (43,008 hexahedron elements). Only the upper
surface of the wing will be redesigned in this case. A total number of
12 control points are used as design variables (see white points in
Fig. 6), employing Bernstein polynomials of the sixth, fifth, and
second orders in the x, y, and z directions, respectively.

To determine convergence, the drag and the sensitivity coefficients
were monitored on the surface of the wing profile. A Cauchy’s
convergence criteria for series in both coefficients (no changes in
their sixth decimal place during 100 iterations) was used as stopping
criteria in this example. The entire design process (12 optimization
iterations) was performed overnight using a personal laptop
(2.53 GHz Intel Core 2 Duo).

Figure 7 (left) shows a comparison of the optimization conver-
gence history between the frozen viscosity strategy and the complete
adjoint formulation for our 3-D case of study. Note that the frozen
viscosity strategy does not result into any design improvement after
the fourth iteration of the optimization process, achieving only a 5%
drag reduction. On the other hand, after 10 iterations of the complete
turbulent adjoint method, the drag coefficient is finally reduced a
total of 10%. The right panel of the same figure also shows the
pressure coefficient distribution of the original ONERA-M6 wing
compared with the redesigned profile using the complete Spalart–
Allmaras adjoint formulation. The shockwave initially present on its
upper surface has been clearly diminished in the redesigned airfoil.
Hence, this optimal design test proves the flexibility of the
continuous adjoint approach in 3-D applications, combined with a
FFD technique for mesh deformation and an algebraic method [48]
for the displacement of a high-stretching grid.

VI. Conclusions

In this work, the continuous adjoint Spalart–Allmaras approach to
aerodynamic design optimization has been presented. The Spalart–
Allmaras model has been chosen in order to describe turbulence
phenomena due to its wide use in industrial applications of
aerodynamics. However, the framework presented here for the
turbulent continuous adjoint approach is general, and it can be easily
extended to incorporate other models of turbulence, such as k-�, k-!,
or shear stress models. The resulting formulation does not need the
computation of second-order derivatives of the flow variables, and

once the adjoint variables have been computed, it only requires an
integration on the surface of the aerodynamical body in order to
evaluate the gradient of the functional of interest under deformations
of the body surface.

The accuracy of the sensitivity derivatives that result from the
application of the newmethod has been assessed by comparisonwith
finite difference computations, which illustrate the importance of the
complete formulation instead of the frozen viscosity strategy. This
improvement in the quality of the computed gradients is also clearly
translated into the optimization process, with the complete turbulent
adjoint being able to produce better optimized profiles than those
obtained using frozen viscosity. Finally, a 3-D test case, making use
of a combination of the continuous adjoint approach with advanced
freeform techniques for mesh deformation, has also been presented,
thus highlighting the potential flexibility of the continuous adjoint
approach in realistic 3-D industrial applications.

The results presented here are very promising, but further
numerical tests are still necessary in order to face the industrialization
of the complete continuous adjoint methodology. In particular, the
optimization of full complex 3-D configurations and convergence
improvements are open research topics that have to be addressed.

Appendix A. Navier–Stokes Equations

As usual in the Navier–Stokes equations, system equation (1)
separately considers the convective terms, denoted by Fc, and the
viscous ones, denoted here by Fv1 and Fv2. They are given by

Fci �

�vi

�viv1 � P�i1
�viv2 � P�i2
�viv3 � P�i3

�viH

0
BBBBBBB@

1
CCCCCCCA
; Fv1i �

�
�i1

�i2

�i3

vj�ij

0
BBBBBBB@

1
CCCCCCCA

Fv2i �

�
�
�
�

Cp@iT

0
BBBBBBB@

1
CCCCCCCA
; i� 1; . . . ; 3 (A1)

where vi are the Cartesian velocity components, H is the fluid
enthalpy, �ij is the Kronecker delta function, and �ij � @jvi�
@ivj � 2

3
�ijr � v. Recall that Latin indexes i, j denote 3-D Cartesian

coordinates, with repeated indexes implying summation. In these
formulas, Cp is the specific heat at constant pressure, T � P=R� is
the temperature, and R is the gas constant, so that, for an ideal gas,
Cp=R� �=�� � 1�, with � constant. To close the system, the

Iteration

c d

1 2 3 4 5 6 7 8 9 10 11 12
0.0155

0.016

0.0165

0.017

0.0175

Turbulent
Frozen Viscosity

Fig. 7 Optimization convergence history, turbulent adjoint method vs frozen viscosity (left). Pressure coefficient distribution of the initial and

redesigned ONERA-M6 airfoil (right).
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dynamic viscosity is assumed to satisfy Sutherland’s law,
�dyn � �1T

3=2=�T � �2�, where �1 and �2 are also specified
constants.

Appendix B. Spalart–Allmaras Turbulence Model

In Eq. (2), we have considered a general framework for a one-
equation turbulence model. Here, we focus on the Spalart–Allmaras
model, for which explicit formulas for the adjoint formulation are
obtained below. In this case, the turbulent viscosity is computed as

�tur � ��̂fv1; fv1 �
�3

�3 � c3v1
; �� �̂

�
; ��

�dyn

�

(B1)

The new variable �̂ is obtained by solving Eq. (2) with

T cv�U; �̂� � � �� �̂
�
r�̂� v�̂ (B2)

Ts�U; �̂; dS� � cb1Ŝ �̂�cw1fw
�
�̂

dS

�
2

� cb2
�
jr�̂j2 (B3)

where the production term Ŝ in Eq. (B3) is defined as

Ŝ� j!j � ��̂=	2d2S�fv2, !�r � v is the fluid vorticity, dS is the
distance to the nearest wall, and fv2 � 1 � 	�=�1� �fv1�
. The
function fw in Eq. (B3) is computed as fw � g	�1� c6w3�=
�g6 � c6w3�
1=6, where g� r� cw2�r6 � r� and r� �̂=Ŝ	2d2S.

Finally, the set of closure constants for the model is given by
� � 2=3, cb1 � 0:1355, cb2 � 0:622, 	� 0:41, cw1 � �cb1=	2��
	�1� cb2�=�
, cw2 � 0:3, cw3 � 2, and cv1 � 7:1

Appendix C. Linearized Navier–Stokes Equations

In this appendix, we compute �@RU=@U��U and �@RU=@�̂���̂ in
Eq. (14):

@RU
@U

�U�r�Ac�U� � r �
�
Fvk

@�ktot
@U

�U� �ktotAvk�U

� �ktotDvkr�U
�

(C1)

@RU
@�̂

��̂��r �
�
Fvk

@�ktot
@�̂

��̂

�
(C2)

where

@�1
tot

@U
�
@�dyn

@U
� @�tur

@U
;

@�2
tot

@U
� 1

Prd

@�dyn

@U
� 1

Prt

@�tur

@U

@�1
tot

@�̂
� @�tur

@�̂
;

@�2
tot

@�̂
� 1

Prt

@�tur

@�̂

and

@�dyn

@U
�
@�dyn

@T

@T

@U
;

@�dyn

@T
� �dyn

T � 3�2

2T�T � �2�
(C3)

@�tur

@U
� �̂fv1

�
1� 3c3v1

�3 � c3v1

�
@�

@U
� �fv1

3c3v1
�3 � c3v1

@�dyn

@U
(C4)

@�tur

@�̂
� �fv1

�
1� 3c3v1

�3 � c3v1

�
(C5)

with

@T

@U
� �� � 1�

R�
�jvj2 � E;�v1;�v2;�v3; 1�

and @�=@U� �1; 0; 0; 0; 0�.
In Eq. (C1), we have

Ac � �Acx; Acy; Acz�; Aci �
@Fc

i

@U

����
U�x;y;z�

Avk � �Avkx ; Avky ; Avkz �; Avki �
@Fvk

i

@U

����
U�x;y;z�

Dvk �
Dvk
xx Dvk

xy Dvk
xz

Dvk
yx Dvk

yy Dvk
yz

Dvk
zx Dvk

zy Dvk
zz

0
@

1
A; Dvk

ij �
@Fvk

i

@�@jU�

����
U�x;y;z�

9>>>>>>>>=
>>>>>>>>;

i; j� 1 . . . 3; k� 1; 2

(C6)

Defining for convenience, a0 � �� � 1� and �� �� � 1��jvj2=2�;
then, we have

Aci �

� �i1 �i2 �i3 �
�viv1 � �i1� vi � �a0 � 1�vi�i1 v1�i2 � a0v2�i1 v1�i3 � a0v3�i1 a0�i1
�viv2 � �i2� v2�i1 � a0v1�i2 vi � �a0 � 1�vi�i2 v2�i3 � a0v3�i2 a0�i2
�viv3 � �i3� v3�i1 � a0v1�i3 v3�i2 � a0v2�i3 vi � �a0 � 1�vi�i3 a0�i3
vi���H� �a0viv1 �H�i1 �a0viv2 �H�i2 �a0viv3 �H�i3 �vi

0
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1
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�
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�
� 1

3
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�
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�
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1
�

�
�i2 � 2

3
@2

�
1
�

�
�i1 @1

�
1
�

�
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3
@3

�
1
�

�
�i1 �

��i2 @2

�
1
�

�
�i1 � 2

3
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�
1
�

�
�i2 @i

�
1
�

�
� 1

3
@2

�
1
�

�
�i2 @2

�
1
�

�
�i3 � 2

3
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�
1
�

�
�i2 �

��i3 @3

�
1
�

�
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3
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�
1
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�
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�
1
�

�
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�
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�
1
�

�
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�
1
�

�
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�
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�
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�
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where tensors ��, ��, and �� in the definition of Av1i are given by
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Appendix D. Linearized Spalart–Allmaras
Turbulence Model

Here, we compute the terms corresponding to linearized
turbulence equation (15). Note that

@R�̂
@U

�U�r � �Fcv�U� � Fs�U �Msr�U (D1)

@R�̂
@�̂

��̂�r � �Bcv��̂� Ecvr��̂� � Bs��̂ � Esr��̂ (D2)

@R�̂
@dS

�dS ��Ks�dS (D3)

where Ms � �Ms
x;M

s
y;M

s
z�, Ecv � �Ecvx ; Ecvy ; Ecvz �, and

Es � �Esx; Esy; Esz�.
The Jacobian matrices associated to the convective/viscous flux

are given by

B cv � @T
cv

@�̂
��r�̂

�
� v (D4)

Ecvi �
@Tcv

@�@i�̂�
� � �� �̂

�
(D5)

F cv � @T
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� �

�
@T

@U

�
T

r�̂�

�dyn

��2
r�̂ � �̂

�
v

�̂
�
I3
�

0
@

1
A;

��� 1

��

@�dyn

@T

(D6)

Here, @�dyn=@T and @T=@U are given in Appendix C, and I3 is the
3 � 3 identity matrix.

Concerning the derivatives of the source term Ts, we have

Bs � @T
s

@�̂
�
�
cb1Ŝ � 2cw1fw

�̂

d2S

�
� cw1

�
�̂

dS

�
2

fgwgrr�̂

���Ŝfv2 �f�v2 � fv1v2f
�
v1���̂ � Ŝ

�̂� (D7)

Fs � @T
s

@U
��

�
Ŝ
fv2�f�v2 � fv1v2f

�
v1���

�
�T
@T

@U
� �� @�

@U

�
T

� 1

j!j �@iv � rvi� � @iN
�

(D8)

Ks � @T
s

@dS
� 2cw1fw�̂

2

d3S
��Ŝ

dS (D9)

Esi �
@Ts

@�@i�̂�
� 2

cb2
�
@i�̂ (D10)

Ms
i �

@Ts

@�@iU�
� 1

j!j��@iv � rvi� � N (D11)

with

�� @T
s

@Ŝ
� cb1�̂ � cw1

�
�̂

dS

�
2

fgwgrrŜ (D12)

and where N in Eqs. (D8) and (D11) is the 3 � 5 matrix defined by
�v� N�U; that is,

N � 1

�

�v1 1 � � �
�v2 � 1 � �
�v3 � � 1 �

0
@

1
A

Finally, the whole set of partial derivatives needed to compute
Eqs. (D7–D12) reads
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@dS
�� 2�̂fv2

	2d3S
f�v2 �

@fv2
@�
�� 1

�1� �fv1�2

fv1v2 �
@fv2
@fv1
� �2

�1� �fv1�2
f�v1 �

@fv1
@�
� 3�2c3v1
��3 � c3v1�2

��̂ � @�
@�̂
� 1

�
�� � @�

@�
���

�
�� � @�

@�
��

�dyn

�2

�T � @�
@T
� 1

�

@�dyn

@T

Appendix E. Adjoint Formulas

In this appendix, we give explicit formulas for the adjoint
operators and boundary conditions. These are obtained from identity
equation (17), which is deduced from the following integration by
parts:

Z
�

�T
U

�
@RU
@U

�U� @RU
@�̂

��̂

�
�
Z
�

�AUU�U�T�U�
Z
�

A�̂U�U��̂

�
Z
S

’ � ��Pn � � �� � n� �
Z
S

�g1 � ’� g2@n 5��T �
Z
S

h�S

(E1)
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��̂� @R�̂
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�
Z
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Z
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Z
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Z
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1� 2cb2
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�@n�̂�2 �̂�S (E2)

Z
�

 drdS � r�dS �
Z
�

Add�dS �
Z
S

 d�S (E3)

wherewe have used @ndS ��1. Here, domain integrals on the right-
hand side contain the adjoint operators, given by

AUU�U ��r�T
U � Ac � r � �r�T

U � �ktotDvk�

� r�T
U � �ktotAvk �r�T

U � Fvk
@�ktot
@U

(E4)

AU�̂  �̂ ��r ~� � Fcv �  �̂Fs �r � � �̂Ms� (E5)

A�̂U�U �r�T
U � Fvk

@�ktot
@�̂

(E6)

A�̂�̂ �̂��r �̂ �Bcv�r��r �̂ �Ecv�� �̂Bs�r�� �̂Es� (E7)

Ad�̂ �̂ ��Ks �̂ (E8)

Add d ��r � � drdS� (E9)

The terms g1, g2, g3, g4, g5, and h appearing in the boundary
integrals in Eqs. (E1–E3) are given by

g1 �
@�dyn

@T
n � ��; g2 � Cp�2

tot; g3 �
�

�

g4 � @n�̂
�dyn

��P
; g5 � @n�̂

1

��

�
@�dyn

@T
�
�dyn

T

� (E10)

h���� 1 � �H 5��@nv � n� �  5n � �� � @nv � n � ��’ � @nv

�  5 ��: rv� �2
totCprS 5 � rST � @n�̂�n � �� � ’�

@�tur

@�̂
(E11)

where ��: rv� �ij@ivj, with

�� ’ � �1
tot�r’�r’T � Id

2
3
r � ’�

Some of the terms in h above can be simplified. In particular,
taking into account that v� 0 and rSv� 0 on the obstacle surface,
we have rv� @jvi � @nvinj. Therefore,

��: rv� �ij@nvinj � n � �� � @nv on S

and the second and fourth terms in Eq. (E11) cancel.
On the other hand, the continuity equation yields r � v� 0 on S.

Hence,

0�r � v� @ivi � @nvini � @nv � n on S

and the first term in Eq. (E11) also cancels.
In the sameway, onemay also notice that @�tur=@�̂� 0 on S, since

fv1 � 0 on the obstacle surface. Thus, the term h reads

h��n � ��’ � @nv� �2
totCprS 5 � rST (E12)

Finally, adding the three terms in Eqs. (E1–E3), we easily obtain
Eq. (17) with

ĝ� h � 1� 2cb2
�

�@n�̂�2 �̂ (E13)
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