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MOTIVATION:

TO BUILD CONVERGENT NUMERICAL SCHEMES FOR NON-

LINEAR PARTIAL DIFFERENTIAL EQUATIONS (PDE).

Example: SCHRÖDINGER EQUATION.

Similar problems for other dispersive equations: Korteweg-de-Vries,

wave equation, ...

Goal: To cover the classes of NONLINEAR Schrödinger equations

that can be solved nowadays with fine tools from PDE theory and

Harmonic analysis.



Key point: To handle nonlinearities one needs to decode the intrinsic

hidden properties of the underlying linear differential operators (Kato,

Strichartz, Ginibre, Velo, Cazenave, Weissler, Saut, Bourgain, Kenig,

Ponce, Saut, Vega, Burq, Gérard, Tzvetkov, ...)

This has been done succesfully for the PDE models.

What about Numerical schemes?

FROM FINITE TO INFINITE DIMENSIONS IN PURELY

CONSERVATIVE SYSTEMS.....



UNDERLYING MAJOR PROBLEM:

Reproduce in the computer the dynamics in Continuum and Quantum

Mechanics, avoiding spurious numerical solutions.

The issue can only be understood by adapting at the discrete numer-

ical level the techniques developed in the continuous context.

WARNING!

NUMERICS = CONTINUUM + (POSSIBLY) SPURIOUS



Strongly inspired in our previous work on the CONTROL OF WAVE
PHENOMENA

E. Z. SIAM Review, 47 (2) (2005), 197-243.



The conclusions of that analysis were:

• Most stable numerical schemes for solving the initial boundary
value problem for the wave equation are unstable for boundary
control problems;

• This is due to the fact that, adding boundary controls, excites all
numerical frequencies simultaneously. Consequently we can not
apply the classical ”consistency+stability” analysis that reduces
the problem to dealing with data with a finite number of Fourier
components;

• A number of remedies have been developed: numerical viscosity,
two-grid filtering, mixed finite elements, etc.



PRELIMINARIES ON CLASSICAL NUMERICAL ANALYSIS

du

dt
(t) = Au(t), t ≥ 0; u(0) = u0.

A an unbounded operator in a Hilbert (or Banach) space H, with

domain D(A) ⊂ H. The solution is given by

u(t) = eAtu0.

Semigroup theory provides conditions under which eAt is well defined.

Roughly A needs to be maximal (A+ I is invertible) and dissipative

(A ≤ 0).

Most of the linear PDE from Mechanics enter in this general frame:

wave, heat, Schrödinger equations,...



Nonlinear problems are solved by using fixed point arguments on the
variation of constants formulation of the PDE:

ut(t) = Au(t) + f(u(t)), t ≥ 0; u(0) = u0.

u(t) = eAtu0 +
∫ t

0
eA(t−s)f(u(s))ds.

Assuming f : H → H is locally Lipschitz, allows proving local (in time)
existence and uniqueness in

u ∈ C([0, T ];H).

But, often in applications, the property that f : H → H is locally
Lipschitz FAILS.

For instance H = L2(Ω) and f(u) = |u|p−1u, with p > 1.



Then, one needs to discover other properties of the underlying linear
equation (smoothing, dispersion): IF eAtu0 ∈ X, then look for solu-
tions of the nonlinear problem in

C([0, T ];H) ∩X.

One then needs to investigate whether

f : C([0, T ];H) ∩X → C([0, T ];H) ∩X

is locally Lipschitz. This requires extra work: We need to check the
behavior of f in the space X. But the the class of functions to be
tested is restricted to those belonging to X.

Typically in applications X = Lr(0, T ;Lq(Ω)). This allows enlarging
the class of solvable nonlinear PDE in a significant way.



IF WORKING IN C([0, T ]; : H) ∩ X IS NEEDED FOR SOLVING

THE PDE, FOR PROVING CONVERGENCE OF A NUMERICAL

SCHEME WE WILL NEED TO MAKE SURE THAT IT FULFILLS

SIMILAR STABILITY PROPERTIES IN X (OR Xh).

THIS OFTEN FAILS!



THE 1−D LINEAR SCHRÖDINGER EQUATION

Consider the Linear Schrödinger Equation (LSE):{
iut + uxx = 0 x ∈ R, t > 0,
u(0, x) = ϕ x ∈ R.

(1)

It may be written in the abstract form:

ut = Au, A = i∆ = i∂2 · /∂x2.

Accordingly, the LSE generates a group of isometries ei∆t in L2(R),

i. e.

||u(t)||L2(R) = ||ϕ||L2(R), ∀t ≥ 0.

The fundamental solution is explicit G(x, t) = (4iπt)−1/2exp(−|x|2/4iπt).



Dispersive properties: Fourier components with different wave num-

bers propagate with different velocities.

• L1 → L∞ decay.

||u(t)||L∞(R) ≤ (4πt)−
1
2||ϕ||L1(R).

||u(t)||Lp(R) ≤ (4πt)
−(1

2−
1
p)||ϕ||

Lp
′(R)

, 2 ≤ p ≤ ∞.

• Local gain of 1/2-derivative: If the initial datum ϕ is in L2(R),

then u(t) belongs to H
1/2
loc (R) for a.e. t ∈ R.



These properties are not only relevant for a better understanding of

the dynamics of the linear system but also to derive well-posedness

and compactness results for nonlinear Schrödinger equations (NLS).



The three-point finite-difference scheme

Consider the finite difference approximation

i
duh

dt
+ ∆hu

h = 0, t 6= 0, uh(0) = ϕh. (2)

Here uh ≡ {uhj }j∈Z, uj(t) being the approximation of the solution at

the node xj = jh, and ∆h ∼ ∂2
x :

∆hu =
1

h2
[uj+1 + uj−1 − 2uj].

The scheme is consistent + stable in L2(R) and, accordingly, it is

also convergent, of order 2 (the error is of order O(h2)).



In fact, ||uh(t)||`2 = ||ϕ||`2, for all t ≥ 0.



The same convergence result holds for semilinear equations{
iut + uxx = f(u) x ∈ R, t > 0,
u(0, x) = ϕ x ∈ R,

(3)

provided the nonlinearity f : R → R is globally Lipschitz.

The proof is completely standard and only requires the L2-conservation
property of the continous and discrete equation.

BUT THIS ANALYSIS IS INSUFFICIENT TO DEAL WITH OTHER
NONLINEARITIES, FOR INSTANCE:

f(u) = |u|p−1u, p > 1.

IT IS JUST A MATTER OF WORKING HARDER, OR DO WE
NEED TO CHANGE THE NUMERICAL SCHEME?



The following is well-known for the NSE:{
iut + uxx = |u|pu x ∈ R, t > 0,
u(0, x) = ϕ(x) x ∈ R.

(4)

Theorem 1 ( Global existence in L2, Tsutsumi, 1987). For 0 ≤ p < 4

and ϕ ∈ L2(R), there exists a unique solution u in C(R, L2(R)) ∩
L
q
loc(L

p+2) with q = 4(p+1)/p that satisfies the L2-norm conservation

and depends continuously on the initial condition in L2.

This result can not be proved by methods based purely on energy

arguments.



LACK OF DISPERSION OF THE NUMERICAL SCHEME

Consider the semi-discrete Fourier Transform

u
u = h

∑
j∈Z

uje
−ijhξ, ξ ∈ [−

π

h
,
π

h
].

There are “slight” but important differences between the symbols of
the operators ∆ and ∆h:

p(ξ) = −ξ2, ξ ∈ R; ph(ξ) = −
4

h2
sin2(

ξh

2
), ξ ∈ [−

π

h
,
π

h
].

For a fixed frequency ξ, obviously, ph(ξ) → p(ξ), as h → 0. This
confirms the convergence of the scheme. But this is far from being
sufficient for oul goals.





The main differences are:

• p(ξ) is a convex function; ph(ξ) changes convexity at ± π
2h.

• p′(ξ) has a unique zero, ξ = 0; p′h(ξ) has the zeros at ξ = ±πh as

well.

These “slight” changes on the shape of the symbol are not an obstacle

for the convergence of the numerical scheme in the L2(R) sense. But

produce the lack of uniform (in h) dispersion of the numerical scheme

and consequently, makes the scheme useless for nonlinear problems.



LACK OF CONVEXITY = LACK OF INTEGRABILITY GAIN.

The symbol ph(ξ) looses convexity near ±π/2h. Applying the station-

ary phase lemma (G. Gigante, F. Soria, IMRN, 2002):

Theorem 2 Let 1 ≤ q1 < q2. Then, for all positive t,

sup
h>0,ϕh∈lq1h (Z)

|| exp(it∆h)ϕ
h||
l
q2
h (Z)

||ϕh||
l
q1
h (Z)

= ∞. (5)

Initial datum with Fourier transform concentrated on π/2h.

LACK OF CONVEXITY = LACK OF LAPLACIAN.



Independent work on the Schrödinger equation in lattices:

A. Stefanov & P. G. Kevrekidis, Nonlinearity 18 (2005) 1841-1857.

L. Giannoulis, M: Herrmann & A. Mielke, Multiscale volume, 2006.

It is shown that the fundamental solution on the discrete lattice decays

in L∞ as t−1/3 and not as t−1/2 as in the continuous frame.



Lemma 1 (Van der Corput)

Suppose φ is a real-valued and smooth function in (a, b) that

|φ(k)(ξ)| ≥ 1

for all x ∈ (a, b). Then ∣∣∣∣∣
∫ b

a
eitφ(ξ)dξ

∣∣∣∣∣ ≤ ckt
−1/k (6)



LACK OF SLOPE= LACK OF REGULARITY GAIN.

Theorem 3 Let q ∈ [1,2] and s > 0. Then

sup
h>0,ϕh∈lqh(Z)

∣∣∣∣Sh(t)ϕh∣∣∣∣~sloc(Z)∣∣∣∣ϕh∣∣∣∣
l
q
h(Z)

= ∞. (7)

Initial data whose Fourier transform is concentrated around π/h.

LACK OF SLOPE= VANISHING GROUP VELOCITY.

Trefethen, L. N. (1982). SIAM Rev., 24 (2), pp. 113–136.



A REMEDY: FOURIER FILTERING

Eliminate the pathologies that are concentrated on the points ±π/2h
and ±π/h of the spectrum, i. e. replace the complete solution

uj(t) =
1

2π

∫ π/h

−π/h
eijhξeiph(ξ)t

u
ϕ(ξ)dξ, j ∈ Z.

by the filtered one

u∗j(t) =
1

2π

∫ (1−δ)π/2h

−(1−δ)π/2h
eijhξeiph(ξ)t

u
ϕ(ξ)dξ, j ∈ Z.

This guarantees the same dispersion properties of the continuous

Schrödinger equation to be uniformly (on h) true together with the

convergence of the filtered numerical scheme.





But Fourier filtering:

• Is computationally expensive: Compute the complete solution in

the numerical mesh, compute its Fourier transform, filter and the

go back to the physical space by applying the inverse Fourier

transform;

• Is of little use in nonlinear problems.

Other more efficient methods?



A VISCOUS FINITE-DIFFERENCE SCHEME

Consider:  i
duh

dt
+ ∆hu

h = ia(h)∆hu
h, t > 0,

uh(0) = ϕh,

(8)

where the numerical viscosity parameter a(h) > 0 is such that

a(h) → 0

as h→ 0.

This condition guarantess the consistency with the LSE.



This scheme generates a dissipative semigroup Sh+(t), for t > 0:

||u(t)||2
`2

= ||ϕ||2
`2
− 2a(h)

∫ t

0
||u(τ)||2~1dτ.

Two dynamical systems are mixed in this scheme:

• the purely conservative one, idu
h

dt + ∆hu
h = 0,

• the heat equation uht − a(h)∆hu
h = 0 with viscosity a(h).



• Viscous regularization is a typical mechanism to improve conver-

gence of numerical schemes: (hyperbolic conservation laws and

shocks).

• It is natural also from a mechanical point of view: elasticity →
viscoelasticity.



The main dispersive properties of this scheme are as follows:

Theorem 4 (Lp-decay) Let us fix p ∈ [2,∞] and α ∈ (1/2,1] . Then

for

a(h) = h2−1/α,

Sh±(t) maps continuously lp
′
h (Z) to lph(Z) and there exists some positive

constants c(p) such that

||Sh±(t)ϕh||lph(Z) ≤ c(p)(|t|−α(1−
2
p) + |t|−

1
2(1−

2
p))||ϕh||

l
p′
h (Z)

(9)

holds for all |t| 6= 0, ϕ ∈ lp
′
h (Z) and h > 0.



Theorem 5 (Smoothing) Let q ∈ [2α,2] and s ∈ [0,1/2α−1/q]. Then

for any bounded interval I and ψ ∈ C∞c (R) there exists a constant

C(I, ψ, q, s) such that∣∣∣∣ψEhuh(t)∣∣∣∣
L2(I;Hs(R))

≤ C(I, ψ, q, s)
∣∣∣∣ϕh∣∣∣∣

l
q
h(Z)

. (10)

for all ϕh ∈ lqh(Z) and all h < 1.

For q = 2, s = 1
2

(
1
α−1

)
. Adding numerical viscosity at a suitable scale

we can reach the Hs-regularization for all s < 1/2, but not for the

optimal case s = 1/2. This will be a limitation to deal with critical

nonlinearities. Indeed, when α = 1/2, a(h) = 1 and the scheme is no

longer an approximation of the Schrödinger equation itself.



Sketch of the proof:

• Solutions are obtained as an iterated convolution of a discrete

Schrödinger Kernel and a parabolic one. The heat kernel kills the

high frequencies, while for the low ones the discrete Schrödinger

kernel behaves very much the same as the continuous one.

• At a technical level, the proof combines the methods of Harmonic

Analysis for continous dispersive and sharp estimates of Bessel

functions arising in the explicit form of the discrete heat kernel

(Kenig-Ponce-Vega, Barceló-Córdoba,...).













NUMERICAL APPROXIMATION OF THE NLSE

The lack of dispersive properties of the conservative linear scheme

indicates it is hard to use for solving nonlinear problems. But, in fact,

explicit travelling wave solutions for

i
duh

dt
+ ∆hu

h = |uhj |
2(uhj+1 + uhj−1),

show that this nonlinear discrete model does not have any further in-

tegrability property (uniformly on h) other than the trivial L2-estimate

(M. J. Ablowitz & J. F. Ladik, J. Math. Phys., 1975.)



Consider now the NSE:{
iut + uxx = |u|pu x ∈ R, t > 0,
u(0, x) = ϕ(x) x ∈ R.

(11)

According to Tsutsumi’s result (1987) the equation is well-posed in
C(R, L2(R)) ∩ L

q
loc(L

p+2) with q = 4(p + 1)/p for 0 ≤ p < 4 and
ϕ ∈ L2(R).

Consider now the semi-discretization: i
duh

dt
+ ∆hu

h = ia(h)∆hu
h+|uh|puh, t > 0

uh(0) = ϕh
(12)

with a(h) = h
2− 1

α(h) such that

α(h) ↓ 1/2, a(h) → 0ash ↓ 0.



Then:

• The viscous semi-discrete nonlinear Schrödinger equation is glob-

ally in time well-posed;

• The solutions of the semi-discrete system converge to those of

the continuous Schrödinger equation as h→ 0.



A TWO-GRID ALGORITHM≡ A CONSERVATIVE SCHEME

Inspired on the method introduced by R. Glowinski (J. Compt. Phys.,

1992) for the numerical approximation of controls for wave equations.

The idea: To work on the grid of mesh-size h with slowly oscillating

data interpolated from a coarser grid of size 4h.The ratio 1/2 of

meshes does not suffice!

The space of discrete functions on the coarse mesh 4hZ can be em-

bedded into the fine one hZ as follows: Apply on ChZ4 = {ψ ∈ ChZ :

suppψ ⊂ 4hZ}, the extension operator E:

(Eψ)((4j+r)h) = 4−r
4 ψ(4jh)+ r

4ψ((4j+4)h), ∀j ∈ Z, r = 0,3, ψ ∈ ChZ4 .





Let V h4 be the space of slowly oscillating sequences (SOS) on the fine

grid

V h4 = {Eψ : ψ ∈ ChZ4 },

and the projection operator Π : ChZ → ChZ4 :

(Πφ)((4j + r)h) = φ((4j + r)h)δ4r, ∀j ∈ Z, r = 0,3, φ ∈ ChZ.

We now define the smoothing operator

Π̃ = EΠ : ChZ → V h4 ,

which acts as a a filtering, associating to each sequence on the fine

grid a slowly oscillating sequence. The discrete Fourier transform of

a slowly oscillating sequence SOS is as follows:̂̃
Πφ(ξ) = 4cos2(ξh) cos2(ξh/2)Π̂φ(ξ).





The semi-discrete Schrödinger semigroup when acting on SOS has
the same properties as the continuous Schrödinger equation:

Theorem 6 i) For p ≥ 2,∣∣∣∣eit∆hΠ̃ϕ
∣∣∣∣
lp(hZ)

. |t|−1/2(1/p′−1/p)
∣∣∣∣Π̃ϕ∣∣∣∣

lp
′(hZ)

.

ii) Furthermore, for every admissible pair (q, r),∣∣∣∣eit∆hΠ̃ϕ
∣∣∣∣
Lq(R,lr(hZ))

.
∣∣∣∣Π̃ϕ∣∣∣∣

l2(hZ)
.

Sketch of the Proof. By scaling, we can assume that h = 1. We
write T (t) as a convolution operator T (t)ψ = Kt ∗ ψ where

K̂t(ξ) = 4e−4it sin2 ξ/2 cos2 ξ cos2(ξ/2).



We need ∣∣∣∣Kt
∣∣∣∣
l∞(Z)

. 1/
√
t.

The fact that (4 sin2(ξ/2))′′ = 2cos(ξ) allows applying the sharp re-

sults by Kenig-Ponce-Vega and Keel-Tao to derive the desired decay.

SOS vanish at the spectral points ±π/2h implies gain of integrability.

This is consistent with the previous analysis of the viscosity method.



Concerning the local smoothing properties we can prove that

Theorem 7 Let r ∈ (1,2]. Then

supj∈Z
∫∞
−∞

∣∣∣(D1−1/reit∆hΠ̃f)j
∣∣∣2 dt .

∣∣∣∣Π̃f ∣∣∣∣2
lr(hZ)

(13)

for all f ∈ lr(hZ), uniformly in h > 0.

Sketch of the Proof. Applying results by Kenig-Ponce-Vega we have
to T1 we get

supx∈R
∫∞
−∞ |(T1(t)ϕ)(x)|2 dt .

∫ π
−π

|f̂(ξ)|2cos4 ξ cos4(ξ/2)
| sin ξ| dξ.

Then, using the fact that cos4 ξ cos4(ξ/2) vanishes at ξ = ±π, we can
compensate the singularity of sin(ξ) in the denominator and guarantee



that

supx∈R
∫∞
−∞ |(T1(t)ϕ)(x)|2 dt .

∫ π
−π

|f̂(ξ)|2
|ξ| dξ .

∣∣∣∣D−1/2f

∣∣∣∣2
L2(R)

.

SOS vanish at the spectral points = ±π, implies gain of local regu-

larity.

This is also consistent with the results obtained by means of the

viscosity method.





A TWO-GRID CONSERVATIVE APPROXIMATION OF THE NLSE

Consider the semi-discretization

i
duh

dt
+ ∆hu

h = Π̃
[
|Π̃∗(uh)|p Π̃∗(uh)

]
, t ∈ R; uh(0) = Π̃ϕh, (14)

with 0 < p < 4.

By using the two-grid filtering operator Π̃ both in the nonlinearity and

on the initial data we guarantee that the corresponding trajectories

enjoy the properties above of gain of local regularity and integrability.

But to prove the stability of the scheme we need to guarantee the

conservation of the l2(hZ) norm of solutions, a property that the



solutions of NLSE satisfy. For that the nonlinear term f(uh) has to

be chosen such that

(Π̃f(uh), uh)l2(hZ) ∈ R.

This property is guaranteed with the choice

f(uh) = |Π̃∗(uh)|p Π̃∗(uh)

i.e.

(f(uh))4j = g
(
(uh4j +

∑3
r=1

4−r
4 (uh4j+r + uh4j−r))

/
4

)
; g(s) = |s|ps.

The same arguments as in the viscosity method allow showing that

the solutions of the two-grid numerical scheme converge as h→ 0 to

the solutions of the continuous NLSE.



TWO GOOD NEWS:

• Lecture is ending.... ;

• Things improve when we also discretize in time.

Time discretization ∼ time upwind ∼ time viscosity ∼ space-like

viscosity.

L. Ignat, M3AS, to appear.



CONCLUSIONS:

• FOURIER FILTERING (AND SOME OTHER VARIANTS LIKE
NUMERICAL VISCOSITY, AND TWO-GRID FILTERING, ...)
ALLOW BUILDING NUMERICAL SCHEMES FOR AN EFFI-
CIENT APPROXIMATION OF LINEAR AND NONLINEAR
SCHÖDINGER EQUATIONS.

• THESE NEW SCHEMES ALLOW CAPTURING THE RIGHT
DISPERSION PROPERTIES OF THE CONTINUOUS MOD-
ELS AND CONSEQUENTLY PROVIDE CONVERGENT AP-
PROXIMATIONS FOR NONLINEAR EQUATIONS TOO.

• IN PRACTICE THE TWO-GRID METHOD IS EASIER TO
APPLY. IT MAY ALSO BE EASIER TO ADAPT TO GEN-
ERAL NON-REGULAR MESHES.



• THE METHODS DEVELOPED IN THIS CONTEXT ARE

STRONGLY INSPIRED ON OUR PREVIOUS WORK ON

THE NUMERICAL APPROXIMATION OF CONTROLS FOR

WAVE EQUATIONS.

• MUCH REMAINS TO BE DONE IN ORDER TO DEVELOP

A COMPLETE THEORY (MULTIDIMENSIONAL PROBLEMS,

BOUNDARY-VALUE PROBLEMS, NONREGULAR MESHES,

OTHER PDE’S,...)

• A COMPLETE THEORY SHOULD COMBINE FINE HAR-

MONIC ANALYSIS, NUMERICAL ANALYSIS AND PDE THE-

ORY.



• THE SAME IDEAS SHOULD BE USEFUL TO DEAL WITH

OTHER ISSUES SUCH AS TRANSPARENT BOUNDARY

CONDITIONS, SCATTERING PROBLEMS, PML, INVERSE

PROBLEMS, ...

• SIMILAR METHODS COULD HELP TO DEAL WITH THE

NUMERICAL APPROXIMATION OF BILINEAR CONTROL

PROBLEMS AS THOSE ADDRESSED BY K. BEAUCHARD

& J. M. CORON.
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