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Motivation 1− d N − d Bloch-c Bloch-d Experiments Conclusion Open problems Related issues

Motivation

Numerical approximation methods for PDEs with rapidly oscillating
coefficients.
There is an extensive literature in which ideas and methods of
classical Numerical Analysis (finite differences and elements) and
Homogenization Theory are combined:
Bensoussan-Lions-Papanicolaou, Cioranescu-Donato,....
B. Engquist [1997,1998], Y. Efendiev, Th. Hou, X.Wu [1998,1999,
2002,2004], M. Matache, Babuška, Ch. Schwab [2000,2002], G.
Allaire, C. Conca[1996], C. Conca, S. Natesan, M. Vanninathan
[2001,2005], P. Gerard, P.A. Markowich, N. J. Mauser, F.
Poupaud [1997], Kozlov [1986], Piatnitski, Remi [2001], ...
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Some common facts:

Multiscale analysis: Two scales are involved: ε for the size of
the microstructure and h for that of the numerical mesh;

As usual, three different regimes: h << ε, h ∼ ε, ε << h;

Slow convergence of standard approximations (finite elements,
finite differences): h << ε.

Resonances may occur when ε ∼ h!

Convergence may be accelerated when the Galerkin method is
built on bases adapted to the “topography” of the oscillating
medium.
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Two different issues:

Compute an efficient numerical approximation of the solution
in the highly heterogeneous medium; Homogenization theory
is a tool that helps doing that.

Analyze the limit behavior as the characteristic size of the
medium and the mesh-size tend to zero.

BUT A COMPLETE UNDERSTANDING OF THIS COMPLEX
ISSUE NEEDS BOTH QUESTIONS TO BE ADDRESSED.
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Convergence of the standard numerical methods improves when
the numerical mesh samples the oscillating medium in an “ergodic
way”:
B. Engquist, Th. Hou [1989,1993], M.Avellaneda, Th. Hou, G.
Papanicolaou [1991], Babuška, Osborn [2000].
In other words:

According to classical homogenization theory: uε converges to
the homogenized solution u∗ as ε→ 0;

This is not necessarily the case for the numerical solution uε
h

as both h, ε→ 0.

Under some ergodicity condition (ε/h = irrational) uε
h → u∗.

Our goal: Explain what is going on when ε/h = rational and how,
using diophantine approximation, one can recover convergence for
irrational ratios.
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Problem formulation:

We consider the periodic elliptic equation associated to the
following rapidly oscillating coefficients:

Aε = − ∂

∂xk

(
aε
k`(x)

∂

∂x`

)
,

with aε
k`(x) = ak` (x/ε), and ak` satisfying

akl ∈ L∞# (Y ) are Y -periodic, where Y =]0, 1[N ,

∃α > 0 s.t.
N∑

k,`=1

akl(y)ηk η̄l ≥ α|η|2, ∀η ∈ CN ,

akl = alk ∀l , k = 1, ...,N.

Homogenization: u∗ limit of the solutions of Aεuε = f , satisfies

A∗u∗ = − ∂

∂xk

(
a∗k`

∂u∗

∂x`

)
= f .
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Discretization: Let h = (h1, . . . , hd) with

hi =
1

ni
with ni ∈ N.

The following is a natural numerical approximation scheme by
finite-differences:

d∑
i ,j=1

−∇−h
i

[
aε
ij(x(i , j))∇+h

j uε
h(x)

]
= f (x), x ∈ Γh,

where Γh is the numerical mesh and

x(i , j) = x +
1

2
hiei + (1− δij)

1

2
hjej .
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Classical Numerical Analysis ensures

||uε
h − u∗|| ≤ c

h

ε
+ c ′ε.

Note that, in particular, no convergence is guaranteed for h ∼ ε.
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Convergence under ergodicity:

In Avellaneda, Hou, Papanicolaou [1991] for the 1− d problem
with Dirichlet conditions the following was proved:

Theorem

If f is continuous and bounded in (0, 1), then

lim
ε,h→0

||uε
h − u∗||∞ → 0,

for sequences h, ε such that h/ε = r with r irrational.

Our goal:

Analyze the behavior when ε/h=rational;

Reprove the same result as in the Theorem above using
diophantine approximation.

Do it using explicit Bloch wave representations of solutions.
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More precisely: what is the behavior of uε
h when

h

ε
=

q

p
, with q, p ∈ N, H.C.F.(q, p) = 1,

and h → 0????????????.
In this case the numerical mesh, despite of the fact that h → 0,
only samples a finite number of values in each periodicity cell of
the coefficient a(x). Thus, it is impossible that the numerical
schemes recovers the continuous homogenized limit u∗. One rather
expects a discrete homogenized limit u∗q/p such that

u∗q/p 6= u∗;

u∗q/p → u∗ as q/p → r , with r irrational.
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Main 1− d result

Theorem

Assume that a = a(x) is Lipschitz, 1-periodic and α ≤ a(x) ≤ β.
Let {uε

h(xi )}n
i=0 the approximation of uε with h/ε = q/p. Then,

||uε
h − u∗q/p||∞ ≤ c hp

Moreover, u∗q/p is a discrete Fourier approximation with mesh-size
h of the solution of −a∗p

∂2v

∂x2
(x) = f (x), 0 < x < 1,

v(0) = v(1) = 0,

with a∗p =

(
1
p

p∑
j=1

1
a((j+1/2)/p)

)−1

.

Enrique Zuazua Homogenization & Numerics
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Recall that the continuous homogenized solution u∗ is a solution of
the same Dirichlet problem but with a continuous effective
coefficient a∗ defined as

a∗ =

(∫ 1

0
(1/a(x))dx

)−1

.

Furthermore,

||u∗q/p − u∗||∞ ≤ c ′
1

p
.

In conclusion,
||uε

h − u∗||∞ ≤ c hp + c ′/p

where c and c ′ depend on α, β, ||a′||∞ and ||f ||∞.
Note that, this estimate, together with diophantine approximation
results, allows recover convergence for h/ε irrational.
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The main multi-dimensional result

Theorem

Assume that d ≥ 2 and {aij} ∈ C 1 and consider the elliptic
problem with periodicity boundary conditions. Let ε = 1/s and h

hi/ε = qi/pi , with H.C.F.(pi , qi ) = 1, i = 1, . . . , d .

Furthermore, assume that

q

p
−
[
q

p

]
=

ρ

p
, with

∣∣∣∣ρp
∣∣∣∣ < ca,

where ca depends only on the lower and upper bounds of the
coefficients. Then, ∣∣∣uε

h − u∗q/p

∣∣∣
h
≤ c |ph| ||f ||∞,

for all h, ε > 0 as above with c > 0 independent of h, ε, f .
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u∗q/p is the discrete Fourier approximation with mesh-size h of

−a
∗,q/p
ij

∂2v

∂xi∂xj
= f in Y , v ∈ H1

#(Y ),

∫
Y

vdx = 0.

In general, this solution does not coincide with the homogenized
solution: ∣∣∣u∗q/p − u∗

∣∣∣
h
≤ c δ ||f ||∞,

where δ > 0 is given by

δ = max

(∣∣∣∣ρp
∣∣∣∣ , 1− σm

σM
,
σM

σm
− 1

)
with σM = max(σi ) and σm = min(σi ), where σ = q/ρ.
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Continuous Bloch wave decomposition

Following the presentation by C. Conca & M. Vanninathan:

Spectral problem family with parameter η ∈ Y ′ = [−1/2, 1/2[d :

Aψ(·; η) = λ(η)ψ(·; η) in Rd ,

ψ(·; η) is (η,Y )-periodic, i.e., ψ(y + 2πm; η) = e2πim·ηψ(y ; η).

ψ(y ; η) = e iy ·ηφ(y ; η), φ being Y -periodic in the variable y .
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A discrete sequence of eigenvalues with the following properties
exists: {

0 ≤ λ1(η) ≤ · · · ≤ λn(η) ≤ · · · → ∞,
λm(η) is a Lipschitz function of η ∈ Y ′, ∀m ≥ 1.

λ2(η) ≥ λ
(N)
2 > 0, ∀η ∈ Y ′,

where λ
(N)
2 > 0 is the second eigenvalue of A in the cell Y with

Neumann boundary conditions.
The eigenfunctions ψm(·; η) and φm(·; η), form orthonormal bases
in the subspaces of L2

loc(Rd) of (η,Y )-periodic and Y -periodic
functions, respectively.
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λε
m(ξ) = ε−2λm(εξ), φε

m(x ; ξ) = φm(
x

ε
; εξ).

Given f , the mth Bloch coefficient of f at the ε scale:

f̂ ε
m(k) =

∫
Y

f (x)e−ik·xφε
m(x ; k)dx ∀m ≥ 1, k ∈ Λε,

Λε = {k = (k1, . . . , kd) ∈ Zd : [−1/2ε] + 1 ≤ ki ≤ [1/2ε]}.

f (x) =
∑
k∈Λε

∑
m≥1

f̂ ε
m(k)e ik·xφε

m(x ; k).

∫
Y

|f (x)|2dx =
∑
k∈Λε

∑
m≥1

|f̂ ε
m(k)|2.

λε
m(k)ûε

m(k) = f̂ ε
m(k), ∀m ≥ 1, k ∈ Λε.
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uε(x) =
∑
k∈Λε

∞∑
m=1

f̂ ε
m(k)

λm(εk)/ε−2
e ik·xφε

m(x ; k).

uε(x) ∼ ε2
∑
k∈Λε

f̂ ε
1 (k)

λ1(εk)
e ik·xφε

1(x ; k).
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c1|η|2 ≤ λ1(η) ≤ c2|η|2, ∀η ∈ Y ′,

λ1(0) = ∂kλ1(0) = 0, k = 1, . . . ,N,

∂2
k`λ1(0) = 2a∗k`, k, ` = 1, . . . ,N,

where a∗k` are the homogenized coefficients.

η ∈ Bδ → φ1(y ; η) ∈ L∞ ∩ L2
#(Y ) is analytic,

φ1(y ; 0) = (2π)−
d
2 .

f̂ ε
1 (k) ∼ f̂k

ûε
1(k) ∼ û∗k as ε→ 0,

uε(x) ∼
∑
k∈Λε

f̂ ε
1 (k)

λ1(εk)/ε−2
e ik·xφε

1(x ; k) ∼
∑
k∈Zd

f̂ k

a∗ijkikj
e ik·x

which is the solution of the homogenized problem in its Fourier
representation.
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Discrete Bloch waves

In 1− d one can use the explicit representation formula for
discrete solutions. But, of course, this is impossible for
multi-dimensional problems.

In 1− d the homogenized coefficient a∗ can be computed
explicitly as above. But in several space dimensions, the
homogenized coefficients depend on test functions χk that are
defined by solving elliptic problems on the unit cell.

In several space dimensions Bloch wave expansions can be
used to derive explicit representation formulas and to prove
homogenization. This is the method we shall employ to derive
our results.
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Explicit 1− d computations.

{
−aε

i u
ε
i+1 + (aε

i + aε
i−1)u

ε
i − aε

i−1u
ε
i−1 = h2fi , 1 ≤ i ≤ n − 1,

uε
0 = b, uε

n = c .

Therefore,

uε
i = b + Uε,h

0

i∑
j=1

h

aε
j

−
i∑

j=1

h

aε
j

j∑
k=1

hfk 1 ≤ i ≤ n − 1,

with Uε,h
0 = aε,∗

h (c − b) + aε,∗
h

n−1∑
j=1

(
1

aε
j

j∑
k=1

h2fk

)
,

and aε,∗
h =

n−1∑
j=0

h

aε
j

−1

.

Using that aε
p+i = aε

i , aε,∗
h → a∗p ( with explicit estimates).
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DISCRETE BLOCH WAVE METHOD: 1− d

Since h/ε = q/p, aε(x + ph) = aε(x), x ∈ Γh

Γp
h = {x = zh : 0 ≤ z < p, z ∈ Z}

f (x , k) = hp
1
2

∑
z∈Γhp

f (x + z)e−i2πk·(x+z), k ∈ Λqε,

Λqε =

{
k ∈ Zd , such that

[
−1

2qε

]
+ 1 ≤ k ≤

[
1

2qε

]}
.

The discrete Bloch waves are defined by the family of eigenvalue
problems:

−∇−h
[
aε (x)∇+h(e i2πx ·ξφε

h(x , ξ))
]

= λ(ξ)e ix ·ξφε
h(x , ξ), x ∈ Γp

h,
φε

h(x , ξ) is ph-periodic in x , i.e., φε
h(x + ph, ξ) = φε

h(x , ξ).
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There exist a sequence λ1(ξ), ..., λp(ξ) ≥ 0 and their
eigenfunctions {φε

h,m(x , ξ)}p
m=1.

λm(ξ) ≥ c

ε2q2
> 0, m ≥ 2

ξ ∈ Bδ 7→ (λ1(ξ), φ1(·, ξ)) ∈ R× Cp is analytic.

φ1(y , 0) = p−1/2

λ1(0) = ∂λ1(0) = 0, ∂2λ1(0) =

(
1

p

p∑
i=1

1

a ((i + 0.5)/p))

)−1

.
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This method allows obtaining sharp estimates on both ||uε
h − u∗q/p||

and ||u∗ − u∗q/p||.
Indeed,

All solutions involved can be represented in a similar form by
means of Bloch wave expansions;

The contribution of Bloch components m ≥ 2 is uniformly
negligible;

The dependence of the first Bloch component, both in what
concerns the eigenvalue and eigenfunction, can be estimated
very precisely in terms of the various parameters.
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Numerical experiments

One dimension. Errors of the solutions with q = 5, p = 19.
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One dimension. Errors of the solutions with different values of q,p.

Numerical homogenized coefficients with different values of p and
q.
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Top: approximation by finite differences of the continuous Bloch
waves.
Bottom: Discrete Bloch waves with (q1; q2) = (30, 120)
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Conclusion

Discrete Bloch waves allow getting a complete representation
formula for the numerical approximations when h/ε is rational.

This allows deriving the discrete homogenized solution with
convergence rates.

The discrete homogenized problem has the same structure as
the continuous one but with different effective coefficients.

The distance between the discrete and continuous effective
coefficients can be estimated as well.

This allows recovering, with convergence rates, results on
numerical homogenization under ergodicity conditions.

R. Orive, E. Zuazua, Finite difference approximation of
homogenization problems for elliptic equations, Multiscale Models
& Simulation 4 (1), 36–87 (2005).
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Open problems

Can the unfolding techniques by D. Cioranescu, A.
Damlamian, et al. be applied for analyzing these problems?

Boundary value problems,...

Non purely periodic problems,....

Nonlinear problems....

Hyperbolic problems in which there is a third parameter:
wavelength.

Our analysis provides a better insight about what is going on but is
not intended to be a general tool...
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Related topics and works:

The pathologies on the numerical approximation of homogenization
problems arise, as we have shown, due to the interaction of the
two scales involved in the problem: ε for the characteristic size of
the medium and h for the numerical mesh-size.
Here we have considered an elliptic homogenization problem.
Thus, we have worked on a low frequency regime in which the
wave-length does not enter.
Similar phenomena arise and have been analyzed in other contexts:
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Numerical approximation and control of high frequency waves.
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Due to high frequency numerical spurious oscillations (
√
λ ∼ 1/h)

controls of a numerical approximation of the wave equation
diverge. Convergence is restablished when the high frequency
components are filtered out.
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E. Z. Propagation, observation, and control of waves approximated
by finite difference methods. SIAM Review, 47 (2) (2005),
197-243.
Similar phenomena arise in the context of the homogenization of
the continuous wave equation

ytt − (a(x/ε)yx)x = 0.

Again pathologies arise at high frequencies:
√
λ ∼ 1/ε.

C. Castro & E. Z. Archive Rational Mechanics and Analysis, 2002.
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Numerical approximation of NLS.
Similar issues arise when dealing with numerical approximation
schemes for nonlinear dispersive equations. High frequency
components (|ξ| ∼ 1/h) may distroy the dispersive properties of
the numerical schemes. The so-called Strichartz estimates then fail
to be uniform as h → 0....

L. IGNAT, E. Z., Dispersive Properties of Numerical Schemes for
Nonlinear Schrödinger Equations, Proceedings of FoCM’2005.
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Inverse Problems, optimal design,

Transparent boundary conditions, PML,...
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Continuous Homogenization

The limit of the solutions solves an elliptic equation related to the
following constant coefficient homogenized operator A∗:

A∗ = −a∗ij
∂2

∂xi∂xj
. (1)

The homogenized coefficients a∗ij are defined as follows

2a∗ij =
1

|Y |

∫
Y

(
2aij −

∂aj`

∂y`
χi − ∂ai`

∂y`
χj

)
dy , (2)

where, for any k = 1, . . . , d , χk is the unique solution of the cell
problem  Aχk =

∂ak`

∂y`
in Y ,

χk ∈ H1
#(Y ), m(χk) = 0.
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The classical theory of homogenization provides the following
result (see [BLP]:

Theorem

Then, if f belongs to L2
#(Y ) with m(f ) = 0, the sequence of

solutions uε converges weakly in H1(Y ), as ε→ 0, to the so-called
homogenized solution u∗ characterized by{

A∗u∗ = f in Y ,
u∗ ∈ H1

#(Y ), m(u∗) = 0.

Furthermore, we have ∣∣∣uε − u∗
∣∣∣
0
≤ cε

∣∣∣f ∣∣∣
0
.
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Diophantine approximation

Given r irrational there exist rational numbers (pn, qn) s. t.∣∣∣∣r − qn

pn

∣∣∣∣ ≤ 1√
5p2

n

→ 0 when n →∞.

Then {an} ⊂ N for an →∞. Then,

ε = 1/(anqn), h = 2π/(anpn)

sup
x∈Γh

|uε
h(x)− u∗(x)| ≤ c

(
1

an
+

1

pn

)
.
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