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THE GENERAL PROBLEM:

TO BUILD CONVERGENT NUMERICAL SCHEMES FOR LINEAR/

NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS (PDE).

To reproduce in the computer the dynamics in Continuum and Quan-

tum Mechanics, avoiding spurious numerical solutions.

WARNING!

NUMERICS = CONTINUUM + (POSSIBLY) SPURIOUS



In this talk we address two examples:

Example 1: NONLINEAR SCHRÖDINGER EQUATION.

Similar problems for other dispersive equations: Korteweg-de-Vries,
wave equation, ...

Example 2: MULTI-STRUCTURES.

Ton capture the fine hidden properties of interaction in multi-body or
multi-linked structures.

MESSAGE: Classical numerical analysis requires of added important
developments in order to be in conditions of covering complex systems
of PDE arising in Sciences and Technologies. In particular, fine tools
of Harmonic analysis have to be developed.



FROM FINITE TO INFINITE DIMENSIONS IN PURELY
CONSERVATIVE SYSTEMS.....

E. Z. SIAM Review, 47 (2) (2005), 197-243.



PRELIMINARIES

Most of what is currently done in the numerical analysis of nonlinear

PDE is based on the following ingredients:

1.- Well-posedness of the underlying continuous linear problem:

du

dt
(t) = Au(t), t ≥ 0; u(0) = u0.

The solution is given by u(t) = eAtu0 and lies in C([0, T ];H), H being

the natural “energy space” (Hilbert or Banach).

Semigroup theory provides a rigorous justification of this provided A

is maximal-dissipative ( A ≤ 0).



Most of the linear PDE from Mechanics enter in this general frame:

wave, heat, Schrödinger equations,...

2.- Nonlinear problems are solved by using fixed point arguments on

the variation of constants formulation of the PDE:

ut(t) = Au(t) + f(u(t)), t ≥ 0; u(0) = u0.

u(t) = eAtu0 +
∫ t

0
eA(t−s)f(u(s))ds.

Assuming !!!!!!!!!!!!!!!!!!!!!!!!!!!!! f : H → H is locally Lipschitz, allows

proving local (in time) existence and uniqueness in

u ∈ C([0, T ];H).



But, often in applications, the property that f : H → H is locally

Lipschitz FAILS.

For instance H = L2(Ω) and f(u) = |u|p−1u, with p > 1.

Inverse and control problems often do not find a natural answer in

the same functional setting. H, which is built for solving the Cauchy

problem, might not be the right space for other problems.



3.- To avoid this difficulty it is convenient to work on spaces

C([0, T ];H) ∩X,

X being “adapted” to the system (the linear flow is stable in X): eAt

maps X into itself.

This allows testing the Lipschitz properties of the nonlinearity f in

the smaller space C([0, T ];H) ∩X.

Typically in applications X = Lr(0, T ;Lq(Ω)). This allows enlarging

the class of solvable nonlinear PDE in a significant way.



4.- BUT, in order to prove convergence of numerical methods, it is

then needed:

• To check consistency and stability in H. This gurantees conver-

gence in the classical energy space according to Lax’ equivalence

criterium;

• To check stability in X as well. This may be difficult in practice

and standard numerical algorithms often fail to have that property.



A convergent numerical scheme (in H) that fails to reproduce some
other dynamical properties (in X)(boundary control of waves).



VIBRATIONS OF MULTI-D STRUCTURES: 0−D+ 1−D

(S. Hansen & E. Z, 1995, C. Castro & E. Z., 1996)

string+point mass + string







u−tt − u−xx = 0, −1 < x < 0, t > 0

u+
tt − u+

xx = 0, 0 < x < 1, t > 0

z
′′
(t) =

[
u+
x (0, t)− u−x (0, t)

]
, t > 0

z(t) = u−(0, t) = u+(0, t), t > 0

u−(−1, t) = u+(1, t) = 0, t > 0
+ initial conditions



The energy of the system is conserved:

E(t) = E−(t) + E+(t) + Em(t)

E− = 1
2

∫ 0
−1

[
| u−t |2 + | u−x |2

]
dx

E+ = 1
2

∫ 1
0

[
| u+

t |2 + | u+
x |2

]
dx

Em = 1
2 | z

′ |2= 1
2

∣∣∣dzdt ∣∣∣2 .
Accordingly the system is welposed in the energy space:

H = H1
0(−1, 1)× L2(−1, 1)× R

This can be seen by all standard methods: semigroups, Galerkin,...



A careful (but simple) analysis of the propagation of waves when
crossing the point-mass (using d’Alembert’s formula) shows that a
unexpected property holds: Waves are regularized by one derivative
when crossing the mass.



As a consequence of this fact: The system is well-posed in an asym-

metric space: finite energy solutions to one side, plus, one more

derivative in L2 in the other one:[
H1(−1, 0)× L2(−1, 0)

]
×

[
H2(0, 1)×H1(0, 1)

]
.



OF COURSE, THIS PROPERTY IS NOT TRUE FOR

THE CLASSICAL CONSTANT COEFFICIENT WAVE

EQUATION BECAUSE OF THE PROPAGATION OF SIN-

GULARITIES.

These properties have also important consequences in what concerns
the control and inverse problems. The observations, and action of
controllers have to cross the point mass, making the natural spaces
for these problems to be asymmetric.

• Can this atypical asymmetric well-posedness property be predicted
by classical methods?

• Are there numerical algorithms that reproduce asymmetry?



EXTENSION TO 2−D

(H. Koch & E. Z., 2005)




u−tt −∆u− = 0 Ω− × (0, ∞)
vtt − c2∆′v = [ux1] Γ× (0, ∞)

u+
tt −∆u+ = 0 Ω+ × (0, ∞)

The energy

E(t) = 1
2

∫
Ω−

(
| u−t |2 + | ∇u− |2

)
dx+ 1

2

∫
Ω+

(
| u+

t |2 + | ∇u+ |2
)
dx

+ 1
2

∫
Γ

(
| vt |2 + | ∇′v |2

)
dx′

is constant in time and the system is well-posed in the natural

energy space.

[
H1(Ω−)× L2(Ω−)

]
×

[
H1(Γ)× L2(Γ)

]
×

[
H1(Ω+)× L2(Ω+)

]



IS THE SYSTEM WELL-POSED IN ANY ASYMMETRIC SPACE?
PLANE WAVE ANALYSIS ALLOWS EXCLUDING THIS PROPERTY
IN A NUMBER OF SITUATIONS



THE GENERAL PRINCIPLE:

Incoming waves → reflected wave+ wave absorved by the inter-
face.+transmission wave.

u− = ei(x·ξ+τt)/ε + aei(x·ξ̃+τt)/ε = incoming + reflected wave

u+ = bei(x·ξ+τt)/ε = transmission wave

v = bei(x
′·ξ′+τt)/ε = absorved wave

ξ = (ξ1, ξ
′); ξ̃ = (−ξ1, ξ′); τ2 =| ξ |2 .

a = reflection coefficient.

b = transmission coefficient = absorption coefficient.



Continuity condition on the interface:

1 + a = b

Note that the restriction of all waves to the interface x1 = 0 is an

oscillatory tangential wave of the form ei(x
′·ξ′+τt)/ε up to a constant

multiplicative factor.



�′cv =
(
∂2
t − c2∆′

)
v = −

b

ε2

(
τ2 − c2 | ξ′ |2

)
ei(x

′ξ′+τt)/ε

[
ux1

]
= u+

x1
− u−x1 =

2aξ1i

ε
ei(x

′ξ′+τt)/ε

Consequently, in view of the equation vtt− c2∆′v = [ux1], and the
fact that τ2 = |ξ1|2 + |ξ′|2,

−
b

ε2

(
τ2 − c2 | ξ′ |2

)
= −

b

ε2

(
ξ21 + (1− c2) | ξ′ |2

)
=

2aξ1i

ε

a = −
ξ21 + (1− c2) | ξ′ |2

2iεξ1 +
(
ξ21 + (1− c2) | ξ′ |2

)
b =

2iεξ1
2iεξ1 + ξ21 + (1− c2) | ξ′ |2



THREE CASES

c = 1

b =
2iε

ξ1 + 2iε

ξ1 ∼ ε⇒ b ∼
2i

1 + 2i

EFFECTIVE TRANSMISSION.

THIS IS INCOMPATIBLE WITH WELL-POSEDNESS IN ASYM-

METRIC SPACES



c < 1

ξ21 + (1− c2) | ξ′ |2> α | ξ |2

b =
2iεξ1

2iεξ1 + ξ21 + (1− c2) | ξ′ |2
∼ ε→ 0.

NO TRANSMISSION.

COMPATIBLE WITH WELL-POSEDNESS IN ASYMMETRIC

SPACES.



c > 1

In this case there are directions in which the quadratic denomina-
tor of the formulas we found vanishes.

ξ21 + (1− c2) | ξ′ |2= 0

| ξ1 |=

√√√√c2 − 1

1 + c2

In that direction

b = 1

COMPLETE TRANSMISSION.

INCOMPATIBLE WITH WELL-POSEDNESS IN ASYMMETRIC
SPACES



Theorem (H. Koch & E. Z., 2005):

• The problem may not be well-posed in asymmetric spaces when

c > 1.

• The problem is indeed well-posed in asymmetric spaces when

c < 1:

H1(Ω−)× L2(Ω−)︸ ︷︷ ︸
u−

×H2(Γ)×H1(Γ)︸ ︷︷ ︸
v

×H2(Ω+)×H1(Ω+)︸ ︷︷ ︸
u+

PROOF: The negative result is a consequence of the plane wave

analysis above. The positive one requires of a more careful mi-

crolocal analysis.



FINITE DIFFERENCE APPROXIMATIONS

IN 1−d THE STANDARD FINITE-DIFFERENCE SEMIDISCRETIZA-

TION SCHEME CONVERGES IN THE CLASSICAL ENERGY

SPACE BUT ALSO IN THE SHARP ASYMMETRIC SPACES.

Energy methods yield finite energy solutions in H1
x,t.

Hidden regularity for solutions of the wave equation → ∂xu±(0, t) ∈
L2
t .

The interface equation z
′′
(t) =

[
u+
x (0, t)− u−x (0, t)

]
The Dirichlet boundary data for the wave equations in x < 0 and

x > 0, z, lie in H2
t .



Consequently, u− ∈ H1
x,t and u+ ∈ H2

x,t, as solutions of their cor-

responding non-homogeneous boundary value problems.

THE SAME ARGUMENTS APPLY FOR THE NUMERICAL SCHEME,

UNIFORMLY ON THE MESH-SIZE.



OPEN PROBLEMS:

CHECK IF THE SAME IS TRUE IN SEVERAL SPACE DIMEN-

SIONS.

BUILD NUMERICAL METHODS THAT CONVERGE IN ASYM-

METRIC SPACES.

NOTE THAT STANDARD ENERGY METHODS DO NOT SUF-

FICE!

DIFFERENT MESHES ON THE VARIOUS COMPONENTS/DOMAINS

OF THE SYSTEM?

DOMAIN DECOMPOSITION TECHNIQUES....



THE NONLINEAR SCHRÖDINGER EQUATION

Work in collaboration with Liviu Ignat, C. R. Acad. Sci. Paris,

340 (7) (2005), 529534.



Key point: To handle nonlinearities one needs to decode the in-

trinsic hidden properties of the underlying linear differential op-

erators (Strichartz, Bourgain, Kenig, Ponce, Saut, Vega, Burq,

Gérard, ...)

This has been done succesfully for the PDE models.

What about Numerical schemes?



The Linear Schrödinger Equation (LSE):{
iut + uxx = 0 x ∈ R, t > 0,
u(0, x) = ϕ x ∈ R.

(1)

It may be written in the abstract form:

ut = Au,

with

A = i∆ = i∂2 · /∂x2.

Accordingly, the LSE generates a group of isometries ei∆t in
L2(R), i. e.

||u(t)||L2(R) = ||ϕ||L2(R), ∀t ≥ 0.

The fundamental solution is explicit G(x, t) = (4iπt)−1/2exp(−|x|2/4iπt).



Dispersive properties: Fourier components with different wave
numbers propagate with different velocities.

• L1 → L∞ decay.

||u(t)||L∞(R) ≤ (4πt)−
1
2||ϕ||L1(R).

||u(t)||Lp(R) ≤ (4πt)
−(1

2−
1
p)||ϕ||

Lp
′(R)

,2 ≤ p ≤ ∞.

• Local gain of 1/2-derivative: If the initial datum ϕ is in L2(R),

then u(t) belongs to H
1/2
loc (R) for a.e. t ∈ R.

These properties are not only relevant for a better understand-
ing of the dynamics of the linear system but also to derive well-
posedness results for nonlinear Schrödinger equations (NLS).



The classical three-point finite-difference scheme

Consider the finite difference approximation

i
duh

dt
+ ∆hu

h = 0, t 6= 0, uh(0) = ϕh. (2)

Here uh ≡ {uhj }j∈Z, uj(t) being the approximation of the solution

at the node xj = jh, and ∆h ∼ ∂2
x :

∆hu =
1

h2
[uj+1 + uj−1 − 2uj].

The scheme is consistent + stable in L2(R) and, accordingly, it

is also convergent, of order 2 (the error is of order O(h2)).





In fact,

||uh(t)||`2 = ||ϕ||`2,

for all t ≥ 0.

The same convergence result holds for semilinear equations pro-

vided the nonlinearity f : R → R is globally Lipschitz.

BUT THIS ANALYSIS IS INSUFFICIENT TO DEAL WITH OTHER

NONLINEARITIES, FOR INSTANCE:

f(u) = |u|p−1u, p > 1.

IT IS JUST A MATTER OF WORKING HARDER, OR DO WE

NEED TO CHANGE THE NUMERICAL SCHEME?



LACK OF DISPERSION OF THE NUMERICAL SCHEME

Consider the semi-discrete Fourier Transform

u
u = h

∑
j∈Z

uje
−ijhξ, ξ ∈ [−

π

h
,
π

h
].

There are “slight” but important differences between the symbols

of the operators ∆ and ∆h:

p(ξ) = −ξ2, ξ ∈ R; ph(ξ) = −
4

h2
sin2(

ξh

2
), ξ ∈ [−

π

h
,
π

h
].

For a fixed frequency ξ, obviously, ph(ξ) → p(ξ), as h → 0. This

confirms the convergence of the scheme. But this is far from

being sufficient for oul goals.





The main differences are:

• p(ξ) is a convex function;

ph(ξ) changes the convexity at ± π
2h.

• p′(ξ) has a unique zero, ξ = 0;

p′h(ξ) has the zeros at ξ = ±πh as well.

These “slight” changes on the shape of the symbol are not an

obstacle for the convergence of the numerical scheme in the L2(R)

sense. But produce the lack of uniform (in h) dispersion.



LACK OF CONVEXITY = LACK OF INTEGRABILITY GAIN.

The symbol ph(ξ) looses convexity near ±π/2h. Applying the

stationary phase lemma (T. Carbery, G. Gigante, F. Soria):

Theorem 1 Let 1 ≤ q1 < q2. Then, for all positive t,

sup
h>0,ϕh∈lq1h (Z)

|| exp(it∆h)ϕ
h||
l
q2
h (Z)

||ϕh||
l
q1
h (Z)

= ∞. (3)

Initial datum with Fourier transform concentrated on π/2h.



LACK OF CONVEXITY = LACK OF LAPLACIAN.

A. Stefanov & P. G. Kevrekidis, Nonlinearity 18 (2005) 1841–

1857.

The fundamental solution of the numerical problem decays as

t−1/3 and not t−1/2.

Lemma 1 (Van der Corput)

Suppose φ is a real-valued and smooth function in (a, b) that

|φ(k)(ξ)| ≥ 1 for all x ∈ (a, b). Then∣∣∣∣∣
∫ b

a
eitφ(ξ)dξ

∣∣∣∣∣ ≤ ckt
−1/k (4)



LACK OF SLOPE= LACK OF REGULARITY GAIN.

Theorem 2 Let q ∈ [1,2] and s > 0. Then

sup
h>0,ϕh∈lqh(Z)

∣∣∣∣Sh(t)ϕh∣∣∣∣~sloc(Z)∣∣∣∣ϕh∣∣∣∣
l
q
h(Z)

= ∞. (5)

Initial data whose Fourier transform is concentrated around π/h.

LACK OF SLOPE= VANISHING GROUP VELOCITY.

Trefethen, L. N. (1982). SIAM Rev., 24 (2), pp. 113–136.



A REMEDY: FOURIER FILTERING Eliminate the pathologies

that are concentrated on the points ±π/2h and ±π/h of the spec-

trum.

Replace the complete solution

uj(t) =
1

2π

∫ π/h

−π/h
eijhξeiph(ξ)t

u
ϕ(ξ)dξ, j ∈ Z.

by the filtered one

u∗j(t) =
1

2π

∫ (1−δ)π/2h

−(1−δ)π/2h
eijhξeiph(ξ)t

u
ϕ(ξ)dξ, j ∈ Z.



a) This guarantees the same dispersion properties of the contin-

uous Schrödinger equation to be uniformly (on h) true;

b) The convergence of the filtered numerical scheme still holds.





But Fourier filtering:

• Is computationally expensive: Compute the complete solution

in the numerical mesh, compute its Fourier tranform, filter

and the go back to the physical space by applying the inverse

Fourier transform;

• Is of little use in nonlinear problems.

Other more efficient methods?



A VISCOUS FINITE-DIFFERENCE SCHEME

Consider:  i
duh

dt
+ ∆hu

h = ia(h)∆hu
h, t > 0,

uh(0) = ϕh,

(6)

where the numerical viscosity parameter a(h) > 0 is such that

a(h) → 0

as h→ 0.

This condition guarantess the consistency.

This scheme generates a dissipative semigroup Sh+(t), for t > 0:

||u(t)||2
`2

= ||ϕ||2
`2
− 2a(h)

∫ t

0
||u(τ)||2~1dτ.



Two dynamical systems are mixed in this scheme:

• the purely conservative one, idu
h

dt + ∆hu
h = 0,

• the heat equation uht − a(h)∆hu
h = 0 with viscosity a(h).

Viscous regularization is a typical mechanism to improve conver-

gence of numerical schemes: hyperbolic conservation laws and

shocks, level set methods for image processing, ...

The receipt:

“Convergent numerical scheme + extra viscosity (at a suitable

scale), keeps convergence and enhances the regulartity of solu-

tions and the stability of the scheme”.



The main dispersive properties of this scheme are as follows:

Theorem 3 (Lp-decay) Let fix p ∈ [2,∞] and α ∈ (1/2,1] . Then

for

a(h) = h2−1/α,

Sh±(t) maps continuously l
p′
h (Z) to l

p
h(Z) and there exists some

positive constants c(p) such that

||Sh±(t)ϕh||lph(Z) ≤ c(p)(|t|−α(1−
2
p) + |t|−

1
2(1−

2
p))||ϕh||

l
p′
h (Z)

(7)

holds for all |t| 6= 0, ϕ ∈ lp
′
h (Z) and h > 0.



Theorem 4 (Smoothing) Let q ∈ [2α,2] and s ∈ [0,1/2α − 1/q].

Then for any bounded interval I and ψ ∈ C∞c (R) there exists a

constant C(I, ψ, q, s) such that∣∣∣∣ψEhuh(t)∣∣∣∣
L2(I;Hs(R))

≤ C(I, ψ, q, s)
∣∣∣∣ϕh∣∣∣∣

l
q
h(Z)

. (8)

for all ϕh ∈ lqh(Z) and all h < 1.

For q = 2, s = 1
2

(
1
α − 1

)
. Adding numerical viscosity at a suitable

scale we can reach the Hs-regularization for all s < 1/2, but not

for the optimal case s = 1/2. This will be a limitation to deal

with the critical nonlinearities. Indeed, when α = 1/2, a(h) = 1

and the scheme is no longer an approximation of the Schrödinger

equation itself.



The proof:

(a) Solutions are obtained as an iterated convolution of a dis-

crete Schrödinger Kernel and a parabolic one. The heat kernel

kills the high frequencies, while for the low ones the discrete

Schrödinger kernel behaves very much the same as the contin-

uous one.

(b) At a technical level, the proof combines the methods of Har-

monic Analysis for continuous dispersive and sharp estimates

of Bessel functions arising in the explicit form of the discrete

heat kernel (Kenig-Ponce-Vega, Barceló-Córdoba,...).













NUMERICAL APPROXIMATION OF THE NLSE



Consider now: {
iut + uxx = |u|pu x ∈ R, t > 0,
u(0, x) = ϕ(x) x ∈ R,

(9)

which can also be rewritten by means of the variation of constants
formula:

u(t) = S(t)ϕ− i
∫ t

0
S(t− s)|u(s)|pu(s)ds, (10)

where S(t) = eit∆ is the Schrödinger operator.

Let us recall the following classical result:

Theorem 5 (Global existence in L2, Tsutsumi, 1987). For 0 ≤
p < 4 and ϕ ∈ L2(R), there exists a unique solution u in C(R, L2(R))∩
L
q
loc(L

p+2) with q = 4(p+1)/p that satisfies the L2-norm conser-
vation and depends continuously on the initial condition in L2.



Consider now the semi-discretization: i
duh

dt
+ ∆hu

h = ia(h)∆hu
h + |uh|puh, t > 0

uh(0) = ϕh
(11)

with 0 < p < 4 and

a(h) = h
2− 1

α(h)

such that

α(h) ↓ 1/2, a(h) → 0

as h ↓ 0.



Then, as a consequence of the uniform (with respect to h) dis-

persivity properties of the linear viscous scheme:

• The viscous semi-discrete nonlinear Schrödinger equation is

globally in time well-posed;

• The solutions of the semi-discrete system converge to those

of the continuous Schrödinger equation as h→ 0.

BUT THE VISCOUS SCHEME FAILS TO BE CONSERVATIVE.

ARE THERE CONSERVATIVE REMEDIES?



A TWO-GRID ALGORITHM

Inspired on the method introduced by R. Glowinski (J. Compt.

Phys., 1992) for the numerical approximation of controls for wave

equations.

The idea: To work on the grid of mesh-size h with slowly oscil-

lating data interpolated from a coarser grip of size 4h.The ratio

1/2 of meshes does not suffice for the present problem!

The space of discrete functions on the coarse mesh 4hZ:

ChZ4 = {ψ ∈ ChZ : suppψ ⊂ 4hZ},

and the extension operator E:

(Eψ)((4j+r)h) = 4−r
4 ψ(4jh)+r

4ψ((4j+4)h), ∀j ∈ Z, r = 0,3, ψ ∈ ChZ4 .





Let V h4 be the space of slowly oscillating sequences (SOS) on the

fine grid

V h4 = {Eψ : ψ ∈ ChZ4 },

and the projection operator Π : ChZ → ChZ4 :

(Πφ)((4j + r)h) = φ((4j + r)h)δ4r, ∀j ∈ Z, r = 0,3, φ ∈ ChZ.

We now define the smoothing operator

Π̃ = EΠ : ChZ → V h4 ,

which acts as a a filtering, associating to each sequence on the fine

grid a slowly oscillating sequence. The discrete Fourier transform

of a slowly oscillating sequence SOS is as follows:̂̃
Πφ(ξ) = 4cos2(ξh) cos2(ξh/2)Π̂φ(ξ).



Amplification factor for the grid method with ratio 1/2.



Amplification factor for the two-grid method with ratio 1/4.

Insufficient to filter the pathological frequencies ±π/2h.



Dispersion properties: The semi-discrete Schrödinger semigroup

when acting on SOS has the same properties as the continuous

Schrödinger equation:

Theorem 6 i) For p ≥ 2,∣∣∣∣eit∆hΠ̃ϕ
∣∣∣∣
lp(hZ)

. |t|−1/2(1/p′−1/p)
∣∣∣∣Π̃ϕ∣∣∣∣

lp
′(hZ)

.

ii) Furthermore, for every admissible pair (q, r),∣∣∣∣eit∆hΠ̃ϕ
∣∣∣∣
Lq(R,lr(hZ))

.
∣∣∣∣Π̃ϕ∣∣∣∣

l2(hZ)
.

SOS sequences vanish at ±π/2. This implies the gain of integra-

bility.



Sketch of the Proof. By scaling, we can assume that h = 1. We

write T (t) as a convolution operator T (t)ψ = Kt ∗ ψ where

K̂t(ξ) = 4e−4it sin2 ξ/2 cos2 ξ cos2(ξ/2).

We need ∣∣∣∣Kt
∣∣∣∣
l∞(Z)

. 1/
√
t.

The fact that (4 sin2(ξ/2))′′ = 2cos(ξ) allows applying the sharp

results by Kenig-Ponce-Vega and Keel-Tao to derive the desired

decay.



Concerning the local smoothing properties we can prove that

Theorem 7 Let r ∈ (1,2]. Then

supj∈Z
∫∞
−∞

∣∣∣(D1−1/reit∆hΠ̃f)j
∣∣∣2 dt .

∣∣∣∣Π̃f ∣∣∣∣2
lr(hZ)

(12)

for all f ∈ lr(hZ), uniformly in h > 0.

SOS vanish at the spectral points ξ = ±π/h. This implies gain of

local regularity.



Sketch of the Proof. Applying results by Kenig-Ponce-Vega we

have to T1 we get

supx∈R
∫∞
−∞ |(T1(t)ϕ)(x)|2 dt .

∫ π
−π

|f̂(ξ)|2cos4 ξ cos4(ξ/2)
| sin ξ| dξ.

Then, using the fact that cos4 ξ cos4(ξ/2) vanishes at ξ = ±π, we

can compensate the singularity of sin(ξ) in the denominator and

guarantee that

supx∈R
∫∞
−∞ |(T1(t)ϕ)(x)|2 dt .

∫ π
−π

|f̂(ξ)|2
|ξ| dξ .

∣∣∣∣D−1/2f

∣∣∣∣2
L2(R)

.





In view of the uniform dispersion properties of the two-grip approx-

imation scheme, the method guarantees convergence for nonlinear

problems too.

The two-grid algorithm allows building conservative convergent

schemes for nonlinear Schrödinger equations in the sharp class of

nonlinearities in which the continuous PDE is well-posed.



Things improve further when we also discretize in time.

Time discretization ∼ time upwind ∼ time viscosity ∼ space-like

viscosity.



CONCLUSIONS:

• MANY SYSTEMS OF PDE DEVELOP FINE QUALITATIVE

PROPERTIES THAT STANDARD NUMERICAL SCHEMES

DO NOT NECESSARILY CAPTURE.

• FURTHER AND FINE ANALYSIS IS NEEDED TO INVES-

TIGATE WHETHER NUMERICAL SCHEMES BEHAVE IN A

STABLE WAY WITH RESPECT TO THESE PROPERTIES,

AND TO DEVELOP REMEDIES, WHEN NEEDED.

• FOURIER FILTERING (AND SOME OTHER VARIANTS LIKE

NUMERICAL VISCOSITY, TWO-GRIDS...) ALLOW BUILD-

ING EFFICIENT NUMERICAL SCHEMES.



• THESE NEW SCHEMES ALLOW CAPTURING THE RIGHT
DISPERSION PROPERTIES OF THE CONTINUOUS MOD-
ELS AND CONSEQUENTLY PROVIDE CONVERGENT AP-
PROXIMATIONS FOR NONLINEAR EQUATIONS TOO.

• IN PRACTICE THE TWO-GRID METHOD IS EASIER TO
APPLY IN A SYSTEMATIC WAY. IT MAY ALSO BE EASIER
TO ADAPT TO GENERAL NON-REGULAR MESHES.

• THE METHODS DEVELOPED IN THIS CONTEXT ARE
STRONGLY INSPIRED ON OUR PREVIOUS WORK ON
THE NUMERICAL APPROXIMATION OF CONTROLS FOR
WAVE EQUATIONS.

• MUCH REMAINS TO BE DONE IN ORDER TO DEVELOP
A COMPLETE THEORY (MULTIDIMENSIONAL PROBLEMS,



BOUNDARY-VALUE PROBLEMS, NONREGULAR MESHES,

OTHER PDE’S,...)

• A COMPLETE THEORY SHOULD COMBINE FINE HAR-

MONIC ANALYSIS, MULTIRESOLUTION ANALYSIS, NU-

MERICAL ANALYSIS AND PDE THEORY.

• THE SAME IDEAS SHOULD BE USEFUL TO DEAL WITH

OTHER ISSUES SUCH AS TRANSPARENT BOUNDARY

CONDITIONS, SCATTERING PROBLEMS, ...

Gracias !

Thank you!




