
Outline

Dissipative wave equations: theory, numerics &
optimal design

Enrique Zuazua

Departamento de Matemáticas
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Intro Geometry Characterization Optimization Numerics Viscoity

Motivation

Feedback or closed-loop stabilization of wave like equations is a
classical problem in Control Theory with important applications in:
noise reduction, complex flexible structures, etc.
The wave equation is the simplest model among many other
conservative PDE’s arising in Mechanics for which this issue is
relevant.
The property of a system of being stabilizable is closely related to
other control theoretical concepts as that of observability which
concerns the possibility of getting estimates on the total energy of
vibrations in terms of partial measurements done through the
stabilizing mechanism.
The topic is also very close to the existing literature on the
qualitative properties of infinite dimensional dynamical systems
(attractors, inertial manifolds,....)
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An example: Boundary stabilization of the wave equation
Let Ω be a bounded domain of Rn, n ≥ 1, with boundary Γ of class
C 2 and Γ0 be an open and non-empty subset of Γ.

ytt −∆y = 0 in Q = Ω× (0,∞)
y = 0 on Σ1 = (Γ \ Γ0)× (0,∞)
∂y
∂ν = −yt on Σ0 = Γ0 × (0,∞)
y(x , 0) = y0(x), yt(x , 0) = y1(x) in Ω.

The energy is then of the form

E (t) =
1

2

∫
Ω

[
|yt |2 + |∇y |2

]
dx

and satisfies the energy dissipation law

dE (t)

dt
= −

∫
Γ0

|yt |2dΓ.
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A variant: Internal stabilization. Let ω be an open subset of Ω.
Consider:

ytt −∆y =−yt1ω in Q = Ω× (0,∞)
y = 0 on Σ = Γ× (0,∞)
y(x , 0) = y0(x), yt(x , 0) = y1(x) in Ω,

where 1ω stands for the characteristic function of the subset ω.
The energy dissipation law is then

dE (t)

dt
= −

∫
ω
|yt |2dx .

Question: Do they exist C > 0 and γ > 0 such that

E (t) ≤ Ce−γtE (0), ∀t ≥ 0,

for all solution of the dissipative system?
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This is equivalent to an observability property: There exists C > 0
and T > 0 such that

E (0) ≤ C

∫ T

0

∫
ω
|yt |2dxdt.

In other words, the exponential decay property is equivalent to
showing that the dissipated energy within an interval [0,T ]
contains a fraction of the initial energy, uniformly for all solutions.
This estimate, together with the energy dissipation law, shows that

E (T ) ≤ σE (0)

with 0 < σ < 1. Accordingly the semigroup map S(T ) is a strict
contraction. By the semigroup property one deduces immediately
the exponential decay rate.
Note that, for dissipative semigroups, the following alternative
holds: Either ||S(t)|| = 1 for all t ≥ 0 or ||S(T )|| < 1 for some
T > 0 and then the energy decays exponentially as t →∞.
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The observability inequality and, accordingly, the exponential decay
property holds if and only if the support of the dissipative
mechanism, Γ0 or ω, satisfies the so called the Geometric Control
Condition (GCC) (Ralston, Rauch-Taylor,
Bardos-Lebeau-Rauch,...)

Rays propagating inside the domain Ω following straight lines that
are reflected on the boundary according to the laws of Geometric
Optics. The control region is the red subset of the boundary. The
GCC is satisfied in this case. The proof requires tools from
Microlocal Analysis.
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The Geometric Control Condition is not satisfied, whatever T > 0
is, in the square domain when the control is located on a subset of
two consecutive sides of the boundary, leaving a subsegment
uncontrolled. There is an horizontal a ray that bounces back and
forth for all time perpendicularly on two points of the vertical
boundaries where the control does not act.
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When the GCC fails, the uniform exponential decay property does
not hold. In that case one only gets a logarithmic decay rate for
solutions with initial data in H2 × H1. 1 This result is sharp in
general and it is in agreement with the exponential rate of
concentration of gaussian beams along non-observed rays.

1L. Robbiano, Fonction de coût et contrôle des solutions des équations
hyperboliques, Asymptotic Anal., 10 (1995), 95–115.
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Often, in particular, in the context of internal stabilization and
essentally also in the boundary stabilization problem, it suffices to
prove the observability property for the undamped system:

ϕtt −∆ϕ = 0 in Q = Ω× (0,T )
ϕ = 0 on Σ = Γ× (0,T )
ϕ(x , 0) = ϕ0(x), ϕt(x , 0) = ϕ1(x) in Ω.

The problem is then reduced to showing that:

E0 ≤ C (Γ0,T )

∫
Γ0×(0,T )

∣∣∣∂ϕ

∂ν

∣∣∣2dσdt ?

A sharp discussion of this inequality requires of Microlocal analysis.
Partial results may be obtained by means of multipliers: x · ∇ϕ,
ϕt , ϕ,...
Similar problems arise in Control, Optimal Design and in Inverse
Problems Theory and common techniques need to be developed.
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The simplest and most systematic way for addressing this problem
is the use of multipliers. More precisely, when multiplying the wave
equation by (x − x0) · ∇ϕ, ϕ and ϕt , the following identity is
obtained:

TE0+

∫
Ω

[
ϕt(x−x0)·∇ϕ+

n − 1

2
ϕ
]
dx

∣∣∣T
0

=
1

2

∫ T

0

∫
Γ
(x−x0)·ν

∣∣∣∂ϕ

∂ν

∣∣∣2dΓdt.

Out of it, we deduce that

(T − 2R)E0 ≤
R

2

∫ T

0

∫
Γ(x0)

∣∣∣∂ϕ

∂ν

∣∣∣2dΓdt.

where

Γ(x0) = {x ∈ Γ : (x − x0) · ν(x) > 0}; R = ||x − x0||L∞(Ω).
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Note that, in view of the previous identity, by taking limits as T
tends to ∞ it follows that

E0 = lim
T→∞

1

2T

∫ T

0

∫
Γ
((x − x0) · ν)

∣∣∣∂ϕ

∂ν

∣∣∣2dΓdt.

It would be interesting to see whether this has some interpretation
in microlocal terms. Note however that the weight (x − x0) · ν
changes sign.
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Subset ω of Ω for which stabilization holds. ω is the intersection of
Ω with a neighborhood of a subset of the boundary of the form
Γ(x0).
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Given a subdomain ω (or Γ0) for which the stabilization problem
holds, it is natural to address the problem of optimizing the profile
of the damping potential a = a(x) to enhance the exponential
decay rate. Consider

ytt −∆y =−a(x)yt1ω in Q = Ω× (0,∞)
y = 0 on Σ = Γ× (0,∞)
y(x , 0) = y0(x), yt(x , 0) = y1(x) in Ω.

Then, for any a > 0 the exponential decay property holds:

E (t) ≤ Ce−γatE (0), ∀t ≥ 0.

Obviously, the exponential decay rate γa depends on the damping
potential a.
It is therefore natural to analyze the nature of the mapping
a → γa.

2

2At this point we should not address the, also very interesting, problem of
the dependence of the decay rate on the geometry of the subdomain ω.
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The first intuition is that this map should be monotonic: Is it really
true that larger damping potentials a lead to greater exponential
decay rates? The answer is negative: overdamping.
This can be easily checked when the damping acts everywhere in
the domain

ytt −∆y + kyt = 0.

Then, as k →∞, γk , the exponential decay rate, tends to zero.
Indeed, the eigenvalues of the system are

λ±(µ) =
−k ±

√
k2 − 4µ

2
,

µ being any eigenvalue of the Dirichlet laplacian in Ω. It is easy to
see that, for any µ fixed, as k →∞, Re(λ+(µ)) → 0.
Moreover, within the class of constant damping potentials, the
optimal one is k = 2

√
µ1, for which the exponential decay rate is

γ = 2
√

µ1.
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What about the case of variable damping potentials?

1− d .
In one space dimension the exponential decay rate coincides
with the spectral abscissa within the class of BV damping
potentials. For large eigenvalues Re(λ) ∼ −

∫
ω a(x)dx/2.

Consequently, the exponential decay rate is then limited
(Cox-Zuazua, CPDE, 1993):

γa ≤
∫

ω
a(x)dx .

But, as we have seen, in the frame of constant potentials,
there is another limitation due to overdamping. Despite of
this, the following surprising result was proved (Castro-Cox,
SICON, 2001): The decay rate may be made arbitrarily large
by approximating singular potentials of the form a(x) = 2/x
for the space interval Ω = (0, 1).
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This potential plays the role of transparent boundary conditions for
which solutions achieve the equilibrium in finite time:

ytt − yxx = 0 in (0, 1)× (0,∞)
y = 0 at x = 1, t ≥ 0
yx − yt = 0 at x = 0, t ≥ 0
y(x , 0) = y0(x), yt(x , 0) = y1(x) in (0, 1),

In this case:
y ≡ 0, for t ≥ 2,

and the exponential decay rate is arbitrarily large.
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In the multidimensional case the situation is even more complex.
In this case it is not longer true that the spectral absicssa
characterizes the exponential decay rate. There are actually two
quantities that enter in such characterization (G. Lebeau, 1996):

The spectral abscissa;

The minimum asymptotic average (as T →∞) of the
damping potential along rays of Geometric Optics.
The later is in agreement with the intuition we gain through
the analysis of the GCC: If a ray escapes the damping region
the exponential decay property fails. Similarly, if a ray stays
for a very short time interval within the decay region, then the
dissipative mechanism is very weak on the solutions localized
on it.
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This is a typical situation in which the spectral abscissa does not
suffice to capture the decay rate. The damping mechanism is
active on the outer neighborhood of the exterior boundary. When
the domain is the ellipsoid this produces the exponential decay.
But, in the presence of the two holes, the exponential decay rate is
lost, due to the existence of a trapped ray that never meets the
damping region. In this case the decay rate is zero but the
spectrum is not essentially affected if the holes are small enough.
Thus the spectrum is unable to characterize the null decay rate.
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The optimal design of the damping potential with constraints
(size, shape, etc.) is still widely open.

Hébrard-Henrot, SCL, (2003) show the complexity of the
problem in the 1− d case for small amplitude damping
potentials located on the union of a finite number of intervals.
Hébrard-Humbert, 2003): Optimization of the shape of ω in a
square domain in view of the geometric optics quantity
entering in the characterization of the decay rate.
Cox-Henrot, Ammari-Tucsnak, 2002: 1− d problems with
damping terms located at a single point through a Dirac
delta. Eigenvalues are complex valued, and they depend both
on the amplitude of the damping and the diophantine
properties of the point support.
A. Munch, 2005-2006: Numerical simulation of the optimal
shape in multi-dimensional problems using level set methods.
Asch-Lebeau, 20033 Numerical approximation using two-grid
methods for capturing propagation along rays.

3M. Asch, G. Lebeau, The spectrum of the damped wave operator for
geometrically complex domain in R2, Experimental Mathematics 12(2) (2003).
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Hébrard-Humbert, 2003
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A. Munch, 2005.
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The main difficulties are related to the fact that there is no
variational principle characterizing the decay rate, and to the
complex way in which the eigenvalues depend on the damping
potentials, and the different way they do it for
low/high/intermediate frequencies, for small/large amplitudes of
the damping potentials, with respect to the shape of the support,
....
Futhermore, not always all authors deal with the same problem.
For instance, the optimal damping for a given initial datum may
differ significantly from the optimal damping when considering
globally all possible solutions...
This is the case even for constant damping potentials k. The
optimal damping for the `-th eigenfunction is k = 2

√
µ`.
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A different way of formulating the problem of the optimal damper
consists in considering the total energy accumulated by the
solutions for all 0 < t < ∞, i. e. the quantity

F (y0, y1) =

∫ ∞

0
E (t)dt.

We can then measure the efficiency of the dasmper in terms of

e(a) = max
E(y0,y1)≤1

F (y0, y1).

The problem can be also formulated in terms of this function e(a).
How does the function a → e(a) behave? What is the minimizer of
e(a) in a given class of potentials a?
Similar issues can be raised in what concerns the dependence on
the damping region.
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A closely related problem that has been also investigated is that in
which the damping potential changes sign. It is natural to analyze
whether the exponential decay property holds for potentials with
positive average.
The situation is quite complex. The following results are known:

For damping potentials ka with k large and a changing sign
there exist eigenfunctions for which the eigenvalue is real and
positive. Thus, the system becomes unstable. 4

For εa with ε small enough, in one space dimension, the
exponential decay property holds if and only if the following
inequalities are satisfied:∫

a(x)φk(x)dx > 0,

for all eigenfunction of the Dirichlet Laplacian φk . This
assumption is much stronger than simply assuming that the
average of a is positive. 5

4J. López-Gómez, JDE.
5P. Freitas & E. Z. Stability results for the wave equation with indefinite

damping. J. Diff. Equations., 132 (2) (1996), 338-352.Enrique Zuazua Dissipative wave equations: theory, numerics & optimal design
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The extension of the decay result for small amplitude potentials to
several space dimensions is an open problem. According the
characterization above on the decay rate it is also natural to
assume that the average of the potential along all rays of
geometric optics is positive.
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From a numerical point of view it is natural to address the
following issues:

To develop numerical schemes that reproduce the same decay
properties of the original PDE;

To analyze optimal design problems at the numerical level and
see if the numerical optimal designs converge as the mesh-size
tends to zero to the continuous optimal design.
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Let us analyze the finite difference semi-discrete approximation of
the 1− d wave equation:

y ′′j −
1
h2 [yj+1 + yj−1 − 2yj ] + aj1ωh

y ′j = 0, t > 0, j = 1, . . . ,N

yj(t) = 0, j = 0, N + 1, t > 0
yj(0) = ϕ0

j , y ′j (0) = ϕ1
j , j = 1, . . . ,N.

Here h = 1/(N + 1) > 0 and consider the mesh
x0 = 0 < x1 < ... < xj = jh < xN = 1− h < xN+1 = 1, which
divides [0, 1] into N + 1 subintervals Ij = [xj , xj+1], j = 0, ...,N.
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WARNING!!!!!!
E. Z., SIAM Review, 47 (2) (2005), 197-243.

Boundary controls diverge as the mesh size h tends to zero. This is
a clear evidence that the finite-difference dynamics is not able to
reproduce the behavior of the continuous wave equation.
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WHY?

It suffices to analyze the behavior of the undamped equation: The
Fourier series expansion shows the analogy between continuous
and discrete dynamics.
Discrete solution:

~ϕ =
N∑

k=1

ak cos

(√
λh

kt

)
+

bk√
λh

k

sin

(√
λh

kt

) ~wh
k .

Continuous solution:

ϕ =
∞∑

k=1

(
ak cos(kπt) +

bk

kπ
sin(kπt)

)
sin(kπx)
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Recall that the discrete spectrum is as follows and converges to the
continuous one:

λh
k =

4

h2
sin2

(
kπh

2

)
λh

k → λk = k2π2, as h → 0

wh
k = (wk,1, . . . ,wk,N)T : wk,j = sin(kπjh), k, j = 1, . . . ,N.

The only relevant differences arise at the level of the dispersion
properties and the group velocity. High frequency waves do not
propagate, remain captured within the grid, without never reaching
the boundary. This makes it impossible the uniform boundary
control and observation of the discrete schemes as h → 0.
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Graph of the square roots of the eigenvalues both in the
continuous and in the discrete case. The gap is clearly independent
of k in the continuous case while it is of the order of h for large k
in the discrete one.
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A NUMERICAL PHAMTOM

~ϕ = exp
(
i
√

λN(h) t
)

~wN − exp
(
i
√

λN−1(h) t
)

~wN−1.

Spurious semi-discrete wave combining the last two
eigenfrequencies with very little gap:

√
λN(h)−

√
λN−1(h) ∼ h.

h = 1/61, (N = 60), 0 ≤ t ≤ 120.
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Semi-discrete spectrum with N = 200 nodes and damping
coefficients 2.10−1, 2, 10 and 20 on the interval (1/2, 1).
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As a consequences of this analysis we see that:

There are high frequency solutions that propagate with a
velocity which is of the order of h. This can be rigorously
done using wave packets concentrated on the highest part of
the spectrum in which the slope of the dispersion curve
vanishes (Trefethen, SIAM Rev. 1982, Macià, 2004, Mielke,
ARMA, 2006,...)

These solutions only reach the boundary in a time of the order
of Th ∼ 1/h. Thus, the numerical version of

E0 ≤ C (Γ0,T )

∫ T

0

∫
Γ0

∣∣∣∂ϕ

∂ν

∣∣∣2dσdt

may not hold uniformly on the mesh-size h.
Actually the constant Ch in this inequality diverges
exponentially as h → 0 for all finite T (S. Micu,
Numer.Math., 2002).

The same arguments exclude the possibility of getting uniform
decay rates by means of internal dampers.
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In view of this one may expect a very different behavior of the
optimal design problem in the numerical and the continuous
level. This has been observed and proved by Hébrard-Henrot,
SICON, 2005.

Note that, in view of the dispersion diagram, even when
excluding the highest frequencies, one observes the existence
of lots of numerical solutions for which the velocity of
propagation is not the same as for the continuous wave
eqation. Numerically the velocity of propagation can be 1/2,
1/4, 1/8,... depending on the points of the dispersion diagram
in which the wave packets are concentrated.
This indicates that the decay rate, that depends on the time
spent by characteristic rays on the damping region, will
necessarily differ significantly form that of the continuous
wave equation.
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WELL KNOWN PHENOMENA FOR WAVES IN HIGHLY
OSCILLATORY MEDIA

ϕtt − (α(x)ϕx)x = 0.
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F. Colombini & S. Spagnolo, Ann. Sci. ENS, 1989

M. Avellaneda, C. Bardos & J. Rauch, Asymptotic Analysis,
1992.

C. Castro & E. Z. Archive Rational Mechanics and Analysis,
2002.
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DISCRETE MULTIPLIERS

For the continuous wave equation the key observability inequality
was proved using multipliers. Let us do it at the disrete level: The
multiplier j(ϕj+1 − ϕj−1) (as a discrete version of xϕx) for the
discrete wave equation gives:

TEh(0)+Xh(t)
∣∣T
0

=
1

2

∫ T

0

∣∣∣∣ϕN(t)

h

∣∣∣∣2 dt+
h

2

N∑
j=0

∫ T

0
| ϕ′j − ϕ′j+1 |2 dt,

Note that

h

2

N∑
j=0

∫ T

0
| ϕ′j − ϕ′j+1 |2 dt ∼ h2

2

∫ T

0

∫ 1

0
|ϕxt |2dxdt.

This extra term, which is of higher order, explains the lack of
observability of the highest frequencies.
But it also tells us what is the best remedy at the numerical level.
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Recall that at the continuous level we got

E0 = lim
T→∞

1

2T

∫ T

0

∫
Γ
((x − x0) · ν)

∣∣∣∂ϕ

∂ν

∣∣∣2dΓdt.

However, at the discrete level the corresponding identity is:

Eh(0) = lim
T→∞

1

2T

∫ T

0

∣∣∣∣ϕN(t)

h

∣∣∣∣2 dt+
h

2

N∑
j=0

∫ T

0
| ϕ′j − ϕ′j+1 |2 dt.


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L. R. Tcheugoue-Tebou, E. Z., Numerische Math., 2003.
Consider the viscous numerical approximation scheme:

y ′′j −
1

h2
[yj+1 + yj−1 − 2yj ]−

[
y ′j+1 + y ′j−1 − 2y ′j

]
+ aj1ωh

y ′j = 0.

This is the semi-discrete analog of

ytt −∆y − h2∆yt + a(x)1ωyt = 0.

The energy dissipation law is this time:

dEh(t)

dt
= −h

∑
j∈ωh

aj |y ′j |2 − h3
N∑

j=0

|y ′j+1 − y ′j |2

h2
.

The right hand side terms reproduce the effect of the two damping
terms in this scheme:

The velocity damping, discrete version of a(x)yt ;

The added viscous damping that efficiently dissipates the high
frequency spurious oscillations.
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The velocity damping, discrete version of a(x)yt ;

The added viscous damping that efficiently dissipates the high
frequency spurious oscillations.
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Theorem: The decay rate of this viscous numerical scheme is
uniform, independent of h. Furthermore, the scheme converges (of
order 2) in the classical sense of numerical analysis.
This result has been later extended in various ways:

The 1− d wave equation with boundary damping (L. R.
Tcheugoue-Tebou, E. Z. 2003);

Multi-dimensional problems (A. Munch-A. Pazoto.
ESAIM:COCV, to appear.)

More general 1− d problems (with stronger numerical
viscosity, and, therefore, with schemes which are not longer of
order two), M. Tucsnak et al., 2004.

Enrique Zuazua Dissipative wave equations: theory, numerics & optimal design



Intro Geometry Characterization Optimization Numerics Viscoity

Theorem: The decay rate of this viscous numerical scheme is
uniform, independent of h. Furthermore, the scheme converges (of
order 2) in the classical sense of numerical analysis.
This result has been later extended in various ways:

The 1− d wave equation with boundary damping (L. R.
Tcheugoue-Tebou, E. Z. 2003);

Multi-dimensional problems (A. Munch-A. Pazoto.
ESAIM:COCV, to appear.)

More general 1− d problems (with stronger numerical
viscosity, and, therefore, with schemes which are not longer of
order two), M. Tucsnak et al., 2004.

Enrique Zuazua Dissipative wave equations: theory, numerics & optimal design



Intro Geometry Characterization Optimization Numerics Viscoity

Theorem: The decay rate of this viscous numerical scheme is
uniform, independent of h. Furthermore, the scheme converges (of
order 2) in the classical sense of numerical analysis.
This result has been later extended in various ways:

The 1− d wave equation with boundary damping (L. R.
Tcheugoue-Tebou, E. Z. 2003);

Multi-dimensional problems (A. Munch-A. Pazoto.
ESAIM:COCV, to appear.)

More general 1− d problems (with stronger numerical
viscosity, and, therefore, with schemes which are not longer of
order two), M. Tucsnak et al., 2004.

Enrique Zuazua Dissipative wave equations: theory, numerics & optimal design



Intro Geometry Characterization Optimization Numerics Viscoity

Theorem: The decay rate of this viscous numerical scheme is
uniform, independent of h. Furthermore, the scheme converges (of
order 2) in the classical sense of numerical analysis.
This result has been later extended in various ways:

The 1− d wave equation with boundary damping (L. R.
Tcheugoue-Tebou, E. Z. 2003);

Multi-dimensional problems (A. Munch-A. Pazoto.
ESAIM:COCV, to appear.)

More general 1− d problems (with stronger numerical
viscosity, and, therefore, with schemes which are not longer of
order two), M. Tucsnak et al., 2004.

Enrique Zuazua Dissipative wave equations: theory, numerics & optimal design



Intro Geometry Characterization Optimization Numerics Viscoity

Theorem: The decay rate of this viscous numerical scheme is
uniform, independent of h. Furthermore, the scheme converges (of
order 2) in the classical sense of numerical analysis.
This result has been later extended in various ways:

The 1− d wave equation with boundary damping (L. R.
Tcheugoue-Tebou, E. Z. 2003);

Multi-dimensional problems (A. Munch-A. Pazoto.
ESAIM:COCV, to appear.)

More general 1− d problems (with stronger numerical
viscosity, and, therefore, with schemes which are not longer of
order two), M. Tucsnak et al., 2004.

Enrique Zuazua Dissipative wave equations: theory, numerics & optimal design



Intro Geometry Characterization Optimization Numerics Viscoity

But a complete theory is to be developed. The topics to be
addressed include:

More general methods, including the finite element method on
irregular meshes;

The obtention, at the discrete level, sharp geometric
conditions as the GCC;

Wave equations with variable coefficients;

Other models and systems: plate, beam and shell equations,
Schrödinger, elasticity, Maxwell,...
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But, even in the context of the constant coefficient wave equation,
and with the finite-difference semi-discrete scheme above, several
issues are still to be clarified:

How to characterize the optimal decay rate. Can the results
on the continuous wave equation be extended? The notion of
bicharacteristic ray can be adapted to the present setting. But
the damping is now made of two pieces: The discrete version
of the velocity damping, and the viscous damping acting
everywhere on the domain.

Does the decay rate of the semi-discrete viscous scheme
converge to the one of the continuous wave equation?
Even though this scheme provides a uniform exponential
decay, it is unclear whether it yields the same rate of decay as
h → 0. Consequently, it is also highly unclear whether optimal
dampers will converge as h → 0. This is an interesting topic
for further investigation.
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The possible consequences of this type of result in connection
with the convergence of numerical optimal dampers towards
continuous ones are also to be developed.

Closely related also to other qualitative properties such as
attractors, inertial manifolds, transversality,... (G. Raugel, R.
Joly).

This topic is closely linked with the theory of transparent
boundary conditions and Perfectly Matching Layers (PML).
Work in this direction, inspired in the ides presented here, is
being developed: S. Ervedoza & E. Z.
Note however that, in this case, the wave equation has to be
written as a system of two equations of first order and that
the damping term has to be added in both equations. In this
way one gets a dissipative wave equation with a dispersive
term for which overdamping phenomena do not occur.
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