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• The heat equation

ut = ∆u heat equation.

Its semi-discrete version:

ut = ∆hu. ~u =
N∑

k=1

ake−λh
kt ~wh

k .

Spurious high frequency solutions are this time:

~u = e−λh
N t ~wh

N .

They are exponentially damped out.

Once again, the controls are bounded and converge, as h → 0, to
the controls of the limiting heat equation.



But this is only true in 1−d. As for the Schrödinger, the example

of the eigenvector localized in the diagonal shows that the control

properties of the semi-discrete heat equation in the square are not

as good for the contrinuous one.

It would be necessary to develop the semi-discrete or the discrete

version of the Carleman inequalities that have been systematically

employed to derive observability properties for continuous heat

equations.

Note that, very likely, they will only yield unique continuation and

observability results within suitable classes of filtered solutions.



• Numerical viscosity.

Are there numerical schemes, dissipating conveniently the high

frequency spurious oscillations, for which the observability inequal-

ities become uniform on the discrete parameter h?

~u′′h + Ah~uh + hαAh~u′h = 0.

Compare with

utt −∆u − ε∆ut = 0.

At the level of stabilization it is well known that α = 2 to prove

the exponential decay.



At the level of exact controllability the only known results are due

to S. Micu, 2006.∗ They are valid for α = 1 and in 1 − d. Note

that, for controllability to hold, α = 1 is optimal. In particular,

the uniform controllability property fails to hold for the exponent

α = 2 which is the optimal one for stabilization.

The extension to the multi-dimensional case is a completely open

problem.

∗S. Micu, Uniform boundary controllability of a semi-discrete 1− D wave equation
with vanishing viscosity, to appear.



• Initial data with a finite number of Fourier components.

It is also known that, in 1 − d, when the initial data has only a

finite number of Fourier components the controls do converge (S.

Micu, 2002)†.

Is this true in several space dimensions?

No tool seems to be available to address this problem.

†S. Micu, Uniform boundary controllability of a semi-discrete 1-D wave equation,
Numer. Math., 91 (2002), pp. 723–768.



• Complex geometries, variable and irregular coefficients, ir-

regular meshes, the system of elasticity, ...



• Mixed Finite Elements

Design multi-dimensional mixed finite elements with appropriate

dispersion diagram so that all numerical waves propagate with a

velocity independent of h.



• Nonlinear state equations.

Very little is known about possible extensions to non-linear equa-

tions.

At the PDE level the best tool to deal with such problems is

combining fixed point arguments with fine estimates for linear

equations with potentials that are normally obtained by means

of Carleman inequalities, a topic that is to be developed at the

discrete level.



• Inverse Problems

The observability inequalities that have been derived for control

can also be used for solving a number of inverse problems.

Most of the ideas we have developed can be applied in thjis context

too:

a) The fact that identifiability is not uniform for numerical schemes

as the mesh-size parameter tends to zero;

b) The fact that filtering restablishes the uniformity of the iden-

tifiability property,....

But a complete theory is still to be developed.



• Shape and optimal design

Very little is known about shape and optimal design problems for

controllability and stabilization. This is true in the continuous

setting and also in what concerns the convergence of numerical

optimal shapes to the continuous ones.

We refer to the results by D. Chenais and E. Z.‡ for the Dirichlet

2− d elliptic optimal design by means of finite elements.

‡D. Chenais & E. Z. Finite Element Approximation of 2D Elliptic Optimal Design,
JMPA, 85 (2006), 225-249.



• Transparent boundary conditions and PML

Most of the analysis we have developed here can be adapted

to analyze the tgrue behavior of numerical transparent boundary

conditions and perfectly matching layers.

This problem has been addressed by S. Ervedoza E: Z. (2006)

in the 1− d case but a complete theory is still to be developed.



• Wave, heat and schrödinger equations on graphs and net-

works.

There is a quite complete theory about the control of the wave

equation on 1 − d networks. The numerical analysis of this issue

along the lines discussed in these lectures is completely open.



R. DAGER & E. Z. Wave propagation and control in 1 − d vi-
brating multi-structures. Springer Verlag. “Mathématiques et
Applications”, Paris. 2005



• Dispersive numerical schemes

Similar ideas can be applied for designing convergent numerical

algorithms for the non linear Schrödinger equation that mimic the

same Strichartz inequalities as the continuous one:

L. IGNAT & E. Z., Dispersive Properties of Numerical Schemes

for Nonlinear Schrödinger Equations, Proceedings of FoCM’2005,

Santander, June-July 2005.
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Birkhäuser Verlag Basel/Switzerland, 276–311.


