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2.1. Control and observation of waves: an introduction

Motivation

IS THE CONTROL OF WAVES AND, MORE PARTICULARLY, OF

THE WAVE EQUATION RELEVANT?

The answer is, definitely, YES.



• Noise reduction in cavities and vehicles.

Closed-loop control diagram.

http://www.ind.rwth-aachen.de/research/noise reduction.html



• Quantum control and Computing.

Laser control in Quantum mechanical and molecular systems to

design coherent vibrational states.

In this case the fundamental equation is the Schrödinger one.

Most of the theory we shall develop here applies in this case too.

The Schrödinger equation may be viewed as a wave equation with

inifnite speed of propagation.



P. Brumer and M. Shapiro, Laser Control of Chemical reactions,

Scientific American, March, 1995, pp.34-39.



• Seismic waves, earthquakes.

F. Cotton, P.-Y. Bard, C. Berge et D. Hatzfeld, Qu’est-ce qui fait

vibrer Grenoble?, La Recherche, 320, Mai, 1999, 39-43.



• Flexible structures.

SIAM Report on “Future Directions in Control Theory. A Math-

ematical Perspective”, W. H. Fleming, ed., 1988.



• Environment.

The Thames barrier.



• Optimal shape design in aeronautics.

Optimal shape design of a “wing” within an Euler flow, for drag

reduction.



THE 1-D CONTROL PROBLEM

The 1-d wave equation, with Dirichlet boundary conditions, describing
the vibrations of a flexible string, with control one one end:

ytt − yxx = 0, 0 < x < 1, 0 < t < T
y(0, t) = 0; y(1, t) =v(t), 0 < t < T

y(x,0) = y0(x), yt(x,0) = y1(x), 0 < x < 1

y = y(x, t) is the state and v = v(t) is the control.

The goal is to stop the vibrations, i.e. to drive the solution to equi-
librium in a given time T : Given initial data {y0(x), y1(x)} to find a
control v = v(t) such that

y(x, T ) = yt(x, T ) = 0, 0 < x < 1.





THE 1-D OBSERVATION PROBLEM

The control problem above is equivalent to the following one, on the
adjoint wave equation:

ϕtt − ϕxx = 0, 0 < x < 1, 0 < t < T
ϕ(0, t) = ϕ(1, t) = 0, 0 < t < T

ϕ(x,0) = ϕ0(x), ϕt(x,0) = ϕ1(x), 0 < x < 1.

The energy of solutions is conserved in time, i.e.

E(t) =
1

2

∫ 1

0

[
|ϕx(x, t)|2 + |ϕt(x, t)|2

]
dx = E(0), ∀0 ≤ t ≤ T.

The question is then reduced to analyze whether the folllowing in-
equality is true. This is the so called observability inequality:

E(0) ≤ C(T )
∫ T

0
|ϕx(1, t)|2 dt.



The answer to this question is easy to gues: The observability in-

equality holds if and only if T ≥ 2.

SUSTITUIR LA FIGURA SEGUNDA POR UNA DONDE HAYA PHI.

VER ICM06,



Wave localized at t = 0 near the extreme x = 1 that propagates with

velocity one to the left, bounces on the boundary point x = 0 and

reaches the point of observation x = 1 in a time of the order of 2.



This observability inequality is easy to prove by several means.

• Use D’Alambert’s formula

ϕ = f(x + t) + g(x− t)

indicating that information propagates along rays with velocity
one, and bounces on the boundary points.

• Use the Fourier representation of solutions in which it is clearly
seen that solutions are periodic with time-period 2.

• Multipliers: Multiply the equation by xϕx, ϕt and ϕ and integrate
by parts....



CONSTRUCTION OF THE CONTROL:

Once the observability inequality is known the control is easy to char-
acterize. Following J.L. Lions’ HUM (Hilbert Uniqueness Method),
the control is

v(t) = ϕx(1, t),

where u is the solution of the adjoint system corresponding to initial
data (ϕ0, ϕ1) ∈ H1

0(0,1)× L2(0,1) minimizing the functional

J(ϕ0, ϕ1) =
1

2

∫ T

0
|ϕx(1, t)|2dt+

∫ 1

0
y0ϕ1dx− < y1, ϕ0 >H−1×H1

0
,

in the space H1
0(0,1)× L2(0,1).

Note that J is convex. The continuity of J in H1
0(0,1) × L2(0,1) is

guaranteed by the fact that ϕx(1, t) ∈ L2(0, T ) (hidden regularity).



Moreover,

COERCIVITY OF J = OBSERVABILITY INEQUALITY.

CONCLUSION:

The 1-d wave equation is controllable from one end, in time 2, twice

the length of the interval.

Similar results are true in several space dimensions. The region in

which the observation/control applies needs to be large enough to

capture all rays of Geometric Optics.



THE CONTROL PROBLEM IN SEVERAL SPACE DIMENSIONS

The same problems arise in several space dimensions:

Let Ω be a bounded domain of Rn, n ≥ 1, with boundary Γ of class
C2. Let Γ0 be an open and non-empty subset of Γ and T > 0.

ytt −∆y = 0 in Q = Ω× (0, T )
y =v(x, t)1Γ0

on Σ = Γ× (0, T )
y(x,0) = y0(x), yt(x,0) = y1(x) in Ω.

The problem of controllability, generally speaking, is as follows: Given
(y0, y1) ∈ L2(Ω) × H−1(Ω), find v ∈ L2(Γ0 × (0, T )) such that the
solution of system (3.1) satisfies

y(T ) ≡ yt(T ) ≡ 0.



The answer is by now well known (Bardos-Lebeau-Rauch, Burq-

Gérard, Ralston,....):

The wave equation is controllable from Γ0 in time T if all rays of

Geometric Optics intersect Γ0 in a time less than T at a non-difractive

point.

This statement is an extension of the one above on the 1-d wave

equation. But this time the proof requires much more sophisticated

tools: Microlocal analysis, the propagation of microlocal deffect mea-

sures,...



Rays propagating inside the domain Ω following straight lines that are

reflected on the boundary according to the laws of Geometric Optics.

The control region is the red subset of the boundary. The GCC is

satisfied in this case.



The Geometric Control Condition is not satisfied, whatever T > 0 is,
in the square domain when the control is located on a subset of two
consecutive sides of the boundary, leaving a subsegment uncontrolled.
There is an horizontal a ray that bounces back and forth for all time
perpendicularly on two points of the vertical boundaries where the
control does not act.



In all cases the control is equivalent to an observation problem for

the adjoint wave equation:
ϕtt −∆ϕ = 0 in Q = Ω× (0, T )
ϕ = 0 on Σ = Γ××(0, T )
ϕ(x,0) = ϕ0(x), ϕt(x,0) = ϕ1(x) in Ω.

Is it true that:

E0 ≤ C(Γ0, T )
∫ T

0

∫
Γ0

∣∣∣∣∂ϕ

∂n

∣∣∣∣2dσdt ?

And a sharp discussion of this inequality requires of Microlocal anal-

ysis. Partial results may be obtained by means of multipliers: x · ∇ϕ,

ϕt, ϕ,...



2.2. Pathological numerical schemes for the 1−d wave equation

THE PROBLEM:

EFFICIENTLY COMPUTE NUMERICALLY THE CONTROL!

WARNING ! TWO DIFFERENT ISSUES:

When a continuous model, written in PDE terms, is controllable, two

important issues arise in the context of Numerical Simulation:

• Efficiently compute numerically the control.



• To control a discrete model, a numerical discretized version of

the continuous model.

Both problems are relevant, but they may provide different results.

Both approaches are often mixed in the literature (leading to uncertain

results....)



A FACT

THE PROCESSES OF CONTROL AND NUMERICS DO NOT

COMMUTE

CONTROL+NUMERICS 6= NUMERICS+CONTROL

FROM FINITE TO INFINITE DIMENSIONS IN PURELY CONSER-

VATIVE SYSTEMS.....



THE SEMI-DISCRETE PROBLEM: 1−D.

Set h = 1/(N + 1) > 0 and consider the mesh

x0 = 0 < x1 < ... < xj = jh < xN = 1− h < xN+1 = 1,

which divides [0,1] into N +1 subintervals Ij = [xj, xj+1], j = 0, ..., N.

Finite difference semi-discrete approximation of the wave equation:
ϕ′′j −

1
h2

[
ϕj+1 + ϕj−1 − 2ϕj

]
= 0, 0 < t < T, j = 1, . . . , N

ϕj(t) = 0, j = 0, N + 1, 0 < t < T

ϕj(0) = ϕ0
j , ϕ′j(0) = ϕ1

j , j = 1, . . . , N.





The energy of the semi-discrete system (obviuosly a discrete version

of the continuous one)

Eh(t) =
h

2

N∑
j=0

[
| ϕ′j |

2 +
∣∣∣∣ϕj+1 − ϕj

h

∣∣∣∣2
]

.

It is constant in time.

Is the following observability inequality true?

Eh(0) ≤ Ch(T )
∫ T

0

∣∣∣∣∣ϕN(t)

h

∣∣∣∣∣
2

dt

(
−

ϕN(t)

h
=

ϕN+1 − ϕN(t)

h
∼ ϕx(1, t).

)
YES! It is true for all h > 0 and for all time T .



BUT, FOR ALL T > 0 (!!!!!)

Ch(T ) →∞, h → 0.

THE FOLLOWING “INTUITIVE” CONJECTURE IS COMPLETELY

FALSE:

* The constant Ch(T ) blows-up for T < 2 as h → 0 since the inequality

fails for the wave equation.

* The constant Ch(T ) remains bounded for T ≥ 2 as h → 0 and one

recovers in the limit the observability inequality for the wave equation.



CONCLUSION

The classical convergence (consistency+stability) does not guarantee

continuous dependence for the observation problem with respect to

the discretization parameter.

WHY?

Convergent numerical schemes do reproduce all continuous waves but,

when doing that, they create a lot of spurious (non-realistic, purely

numerical) high frequency solutions. This spurious solutions distroy

the observation properties and are an obstacle for the controls to

converge as the mesh-size gets finer and finer.



SPECTRAL ANALYSIS

Eigenvalue problem

− 1
h2

[
wj+1 + wj−1 − 2wj

]
= λwj, j = 1, . . . , N

w0 = wN+1 = 0.

The eigenvalues 0 < λ1(h) < λ2(h) < · · · < λN(h) are

λh
k =

4

h2
sin2

(
kπh

2

)
and the eigenvectors

wh
k =

(
wk,1, . . . , wk,N

)T
: wk,j = sin(kπjh), k, j = 1, . . . , N.

It follows that

λh
k → λk = k2π2, as h → 0



and the eigenvectors coincide with those of the wave equation.

Then, the solutions of the semi-discrete system may be written in
Fourier series as follows:

~ϕ =
N∑

k=1

ak cos
(√

λh
kt

)
+

bk√
λh

k

sin
(√

λh
kt

) ~wh
k .

Compare with the Fourier representation of solutions of the continu-
ous wave equation:

ϕ =
∞∑

k=1

(
ak cos(kπt) +

bk

kπ
sin(kπt)

)
sin(kπx)

The only relevant difference is that the time-frequencies do not quite
coincide, but they converge as h → 0.



DISPERSION DIAGRAM: LACK OF GAP.

Graph of the square roots of the eigenvalues both in the continuous

and in the discrete case. The gap is clearly independent of k in the

continuous case while it is of the order of h for large k in the discrete

one.



SPURIOUS NUMERICAL SOLUTION

~ϕ = exp
(
i
√

λN(h) t

)
~wN − exp

(
i
√

λN−1(h) t

)
~wN−1.

Spurious semi-discrete wave combining the last two eigenfrequencies

with very little gap:∗ √
λN(h)−

√
λN−1(h) ∼ h.

∗Note that the gap is roughly the derivative of the dispersion curve. Thus this
derivative determines the velocity of propagation of wave packets, the co called
group velocity.



h = 1/61, (N = 60), 0 ≤ t ≤ 120. The solution exhibits a time-
periodicity property with period τ of the order of τ ∼ 50 which con-
tradicts the time-periodicity of period 2 of the wave equation. High
frequency wave packets travel at a group velocity ∼ h.





GAP

=

GROUP VELOCITY

=

VELOCITY OF PROPAGATION OF HIGH

FREQUENCY WAVE PACKETS.



CONCLUSION

• The minima of Jh diverge because its coercivity is vanishing as
h → 0;

• This is intimately related to the blow-up of the discrete observ-
ability constant Ch(T ) →∞, for all T > 0 as h → 0:

Eh(0) ≤ Ch(T )
∫ T

0

∣∣∣∣∣ϕN(t)

h

∣∣∣∣∣
2

dt

• This is due to the lack of propagation of high frequency numerical
waves due to the dispersion that the numerical grid produces.



• Actually it is known that Ch(T ) diverges exponentially:

Sorin Micu, Uniform boundary controllability of a semi-discrete

1-D wave equation, Numer. Math., 91 (2002), pp. 723-768.

In fact, by making combinations of an increasing finite number

of high frequencies with nearby velocities of propagation one can

build wave packets for which the observability constant blows-up

polynomially at any rate.

The construction by S. Micu is finer since it is based on explicit

estimates on biorthogonal families to the families of complex ex-

ponentials entering in the Fourier expansion of solutions.



WHAT ARE THE CONSEQUENCES FOR CONTROL?

Apply Banach-Steinhauss Theorem:

Even when T > 2 (good control situation) there are intial data for
the wave equation so that the controls of the semi-discrete problem
diverge to infinity as h → 0.

THUS, CONTROLLING THE SEMI-DISCRETE SYSTEM IS NOT
AN EFFICIENT WAY OF COMPUTING THE CONTROL OF THE
WAVE EQUATION.

CONTROL+NUMERICS 6= NUMERICS+CONTROL



If the control requirement is sufficiently relaxed, this lack of commu-

tativity does not occur. † ‡

* Optimal control:

min
1

2

[
||y(T )||2

L2(0,1) + ||yt(T )||2
H−1(0,1)

]
+

1

2

∫ T

0
v2(t)dt.

* Approximate control:

||y(T )||L2(0,1) + ||yt((T )||H−1(0,1) ≤ α.

†E. Z. Optimal and approximate control of finite-diffference schemes for the 1−D
wave equation. Rendiconti di Matematica, Serie VIII, Vol. 24, Tomo II, 2004,
201-237.
‡Thi is also closely related to the technique based on the use of Tycchonoff regu-
larization.



Then the controls of the discrete approximated models converge to

the control of the continuous one. § This can be seen by classical

arguments in Numerical Analysis and in the context of Γ-convergence

in the Calculus of Variations.

§This requires however a fine devlopment of numericalo analysis, allowing to deal,
by transposition, with non-homogeneous boundary value problems, for instance.



What to do in practice?

No general receipt. It depends on the application we have in mind.

One has to make two choices:

* Continuous modelling / Discrete modelling.

* What control property?



2.3 Nonharmonic Fourier series and remedies to the divergence of

controls.

WHAT IS THE REMEDY?

To filter the high frequencies, i.e. keep only the components of the

solution corresponding to indexes: k ≤ δ/h with 0 < δ < 1.



Filtering restablishes the gap condition, then waves propagate with

a speed which is uniform with respect to h and the observability

inequality becomes uniform too.

√
λh

k −
√

λh
k−1 ≥ π cos

(
πδ

2

)
> 0, for k ≤ δh−1.

This can be done rigorously with the aid of:



Ingham’s Theorem. (1936) Let {µk}k∈Z be a sequence of real

numbers such that

µk+1 − µk ≥ γ > 0, ∀k ∈ Z.

Then, for any T > 2π/γ there exists C(T, γ) > 0 such that

1

C(T, γ)

∑
k∈Z

| ak |2≤
∫ T

0

∣∣∣∣∣∣
∑
k∈Z

akeiµkt

∣∣∣∣∣∣
2

dt ≤ C(T, γ)
∑
k∈Z

| ak |2

for all sequences of complex numbers {ak} ∈ `2.



CONCLUSION.

Given any T > 2, choose 0 < δ < 1 such that

T > 2/ cos
(

πδ

2

)
or δ >

2

π
arccos(2/T ).

The choice of 0 < δ < 1 is obviously possible since 2/T < 1.

Then, we can control UNIFORMLY ON h the solution PARTIALLY:

πδ/h(y(T ), yt(T )) = 0

and



In the limit the whole solution vanishes: y(T ) = yt(T ) = 0. This is

due to the fact the projection operator πδ/h tends to the identity as

h → 0.



Plot of the initial datum to be controlled for the string occupying
the space interval 0 < x < 1.

Plot of the time evolution of the exact control for the wave equation
in time T = 4.



Without filtering, the control diverges as h → 0.



With appropriate filtering the control converges as h → 0.



These filtered controls can be computed by minimizing the functional

Jh leading to the controls in the subspace of filtered solutions of the

adjoint system.

The filtering guarantees the uniform observability. Accordingly the

functionals Jh are uniformly coercive over those subspaces.

In this way, the functionals Jh, when restricted to these classes of

filtered solutions, Γ-converge to the functional J associated to the

control of the wave equation.

This is so, since, the filtering condition

k ≤ δ/h



when h → 0, ends up covering the whole range of frequencies.

Obviously, when minimizing Jh over the class of filtered solutions, we

only recover partial information on the projections of the controlled

states. Indeed, in the Euler-Lagrange equations associated to the

minimizers, we do not recover any information on the frequencies

that have been cut-off.



2.4 The two-grid algorithm in 1-d

ULTIMATE GOAL: To develop a class of numerical schemes (new
or not) for which the convergence of controls might be guaranteed a
priori with minimal computational cost.

The most natural approaches (finite differences and FINITE ELE-
MENTS) do not work and they have to be complemented with other
strategies:

* filtering of high frequencies, * mixed finite elements,

* multi-grid algorithms, * wavelets,

* numerical viscosity,...



MIXED FINITE ELEMENTS

Square roots of the eigenvalues both in the continuous and in the

discrete case with mixed finite elements. The gap of the discrete

problem is uniform with respect to j and h and, in fact, it tends to

infinity for the highest frequencies as h → 0.



The MFE can be obtained writing the wave equation as a system of
two first oprder transport equations with unknowns ϕ and ϕt. Taking
into account that the regularity of ϕ is H1 and that of ϕt is L2,
it is natural to consider two different bases for approximating each
component. Namely, P1 pieciwise linear and continuous elements for
ϕ and P0 piecewise constant elements for ϕt.

In this way the scheme we get, when written in finite difference no-
tation, reads,

1

4
ϕ′′j−1 +

1

2
ϕ′′j +

1

4
ϕ′′j+1 =

1

h2

[
ϕj−1 − 2ϕj + ϕj+1

]
.

The dispersion diagram corresponding to this scheme is as above.

It is an interesting open problem to analyze the dispersion properties
of the various possible MFE in the multi-dimensional case.



TWO-GRID ALGORITHM (R. Glowinski, M. Asch-G. Lebeau, M.

Negreanu,...)

High frequencies producing lack of gap and spurious numerical solu-

tions correspond to large eigenvalues√
λh

N ∼ 2/h.

When considering a coarser mesh

h → ah,

√
λah

N/2 ∼ 1/h.

Embedding data of a coarse grid 2h into the computational one of

size h produces the same effect as filtering with parameter 1/2.



All solutions on the coarse mesh when projected to the fine one are

no longer pathological.

TWO GRIDS ∼ FILTERING WITH PARAMETER δ = 1/2.



The multiplier method allows analyzing the two-grid method easily:

The multiplier xϕx for the wave equation yields:

TE(0) +
∫ 1

0
xϕxϕt dx

∣∣∣T
0

=
1

2

∫ T

0
|ϕx(1, t)|2 dt.

and this implies, as needed,

(T − 2)E(0) ≤
1

2

∫ T

0
|ϕx(1, t)|2 dt.

The multiplier j(ϕj+1 − ϕj−1) for the discrete wave equation gives:

TEh(0) + Xh(t)
∣∣∣T
0

=
1

2

∫ T

0

∣∣∣∣∣ϕN(t)

h

∣∣∣∣∣
2

dt+
h

2

N∑
j=0

∫ T

0
| ϕ′j − ϕ′j+1 |

2 dt,



Note that

h

2

N∑
j=0

∫ T

0
| ϕ′j − ϕ′j+1 |

2 dt ∼
h2

2

∫ T

0

∫ 1

0
|ϕxt|2dxdt.

Filtering is needed to absorb this higher order term: For 1 ≤ j ≤ δN∣∣∣∣∣∣h2
N∑

j=0

∫ T

0
| ϕ′j − ϕ′j+1 |

2 dt

∣∣∣∣∣∣ ≤ γ(δ)TE(0),

with 0 < γ(δ) < 1.

In this way one may recover the same results as above in an alternate

way, without using Ingham’s inequality and Fourier series.



Solutions on the fine grid of size h corresponding to slowly oscillating

data given in the coarse mesh (2h) are no longer pathological:

ϕ = ϕl + ϕh, ϕl =
(N−1)/2∑

k=1

ck ~wk, ϕh =
(N−1)/2∑

k=1

ck
λk

λN+1−k
~wN+1−k,

||ϕh|| ≤ ||ϕl||.



This allows estimating the reminder term in the discrete multiplier

identity and obtain the observability inequality.

The two-grid filtering is easier to implement than the Fourier one

since it can be fully implemented in the physical space.



Proofs:

1− d

• M. Negreanu & E. Z., 2004. ¶The two-grid algorithm converges

for control times T > 4. Multipliers techniques.

• M. Mehrenberger & P. Loreti, 2005. Same result for T > 2
√

2

using new versions of Ingham inequalities.

¶M. NEGREANU & E. Z. Convergence of a multigrid method for the controllability
of a 1-d wave equation. C. R. Acad. Sci. Paris, 338 (4) (2004), 413-418.



SUMMARY:

• The most natural numerical methods for computing the controls
diverge.

• Filtering of the high frequencies is needed. This may be done on
the Fourier series expansion or on the physical space by a two-grid
algorithm.

• Convergence of the controls is guaranteed by minimizing the dis-
crete functional Jh over the class of slowly oscillating data. This
produces a relaxation of the control requirement: only the pro-
jection of the discrete state over the coarse mesh vanishes.



2.5 Links with the dynamical properties of bicharacteristic rays.

In several space dimensions, the region in which the observation/control

applies needs to be large enough to capture all rays of Geometric Op-

tics. This is the so-called Geometric Control Condition introduced by

Ralston (1982) and Bardos-Lebeau-Rauch (1992).

Let Ω be a bounded domain of Rn, n ≥ 1, with boundary Γ of class

C2. Let Γ0 be an open and non-empty subset of Γ and T > 0.
ytt −∆y = 0 in Q = Ω× (0, T )
y =v(x, t)1Γ0

on Σ = Γ× (0, T )
(x,0) = y0(x), yt(x,0) = y1(x) in Ω.



In all cases the control is equivalent to an observation problem for

the adjoint wave equation:
ϕtt −∆ϕ = 0 in Q = Ω× (0, T )
ϕ = 0 on Σ = Γ××(0, T )
ϕ(x,0) = ϕ0(x), ϕt(x,0) = ϕ1(x) in Ω.

Is it true that:

E0 ≤ C(Γ0, T )
∫ T

0

∫
Γ0

∣∣∣∣∂ϕ

∂n

∣∣∣∣2dσdt ?

And a sharp discussion of this inequality requires of Microlocal anal-

ysis. Partial results may be obtained by means of multipliers: x · ∇ϕ,

ϕt, ϕ,...



THE 5-POINT FINITE-DIFFERENCE SCHEME

ϕ′′j,k −
1

h2

[
ϕj+1,k + ϕj−1,k − 4ϕj,k + ϕj,k+1 + ϕj,k−1

]
= 0.

The energy of solutions is constant in time:

Eh(t) =
h2

2

N∑
j=0

N∑
k=0

[
| ϕ′jk(t) |

2

+

∣∣∣∣∣ϕj+1,k(t)− ϕj,k(t)

h

∣∣∣∣∣
2

+

∣∣∣∣∣ϕj,k+1(t)− ϕj,k(t)

h

∣∣∣∣∣
2
 .

Without filtering observability inequalities fail in this case too.



Understanding how filtering should be used requires of a microlocal
analysis of the propagation of numerical waves combining von Neu-
mann analysis and Wigner measures developments (N. Trefethen, P.
Gérard, P. L. Lions & Th. Paul, G. Lebeau, F. Macià, ...).

The von Neumann analysis.

Symbol of the semi-discrete system for solutions of wavelength h

ph(ξ, τ) = τ2 − 4
(
sin2(ξ1/2) + sin2(ξ2/2)

)
,

versus p(ξ, τ) = τ2 − [|ξ1|2 + |ξ2|2].

Compare with the symbol of the continuous wave equation:

p(ξ, τ) = τ2 − [|ξ1|2 + |ξ2|2].



Both symbols coincide for (ξ1, ξ2) ∼ (0,0).

The bicharacteristic rays for the semi-discrete system are as follows:
x′j(s) = −2sin(ξj/2)cos(ξj/2) = −sin(ξj), j = 1,2

t′(s) = τ
ξ′j(s) = 0, j = 1,2

τ ′(s) = 0.

The projection into the physical space is:

xj(t) = −
sin(ξj)

τ
t + xj,0.

Solving the bicharacteristic flow we get the discrete rays:

xj(t) = −
sin(ξj)

τ
t + xj,0, (versus xj(t) = −

ξj

τ
t + xj,0.)



BOTH ARE STRAIGHT LINES. BUT!

For the continous wave equation all rays propagate with velocity iden-

tically equation one.

Indeed, the velocity of propagation of the ray is independent of direc-

tion:

xj(t) = −
ξj

τ
t + xj,0, |x′(t)| ≡ 1.

Indeed,[∣∣∣∣ξ1τ
∣∣∣∣2 +

∣∣∣∣ξ2τ
∣∣∣∣2
]1/2

= 1 ⇐⇒ τ2 − |ξ|2 = 0 ⇐⇒ p(ξ, τ) = 0.



This is equivalent to the fact that (τ, ξ) lies in the characteristic
manifold.

But for the semi-discrete system the velocity is

|x′(t)| ≡

∣∣∣∣∣sin(ξ1)

τ

∣∣∣∣∣
2

+

∣∣∣∣∣sin(ξ2)

τ

∣∣∣∣∣
2
1/2

THE VELOCITY OF PROPAGATION VANISHES !!!!!!! in the fol-
lowing eight points

ξ1 = 0,±π, ξ2 = 0,±π, (ξ1, ξ2) 6= (0,0).

Therefore, in order to guarantee a uniform velolicity of propagation
of waves of wavelength h one has to filter or cut-off all the Fourier
components on neighborhoods of those critical points.



The red areas stand for those that need to be filtered out in order

to guarantee a uniform velocity of propagation in the semi-discrete

models.





Once this is done, one guarantees a uniform velocity of propagation of

numerical waves but, in order to achieve observability or controllability

properties one still needs to impose a Geometric Control Condition.

As filtering becomes stronger, the time of control of the numerical

scheme will get closer and closer to that of the continuous wave

equation.

Once this is understood the 1-d results can be extended. One can

then prove that, under filtering, for a suitable choice of the time

interval, numerical controls converge to the real control!



Filtering can be performed by cutting-off the Fourier expansion of

solutions. But the two-grid algorithm provides an alternate way of

doing this within the physical space.



2.6 The two-grid algorithm in the multi-dimensional case.

L. Ignat & E. Z., 2006

Theorem 1 Let Ω be the square and consider controls on all its

boundary or on two consecutive sides. Then, the two-grid algorithm

with mesh-ratio 1/4 converges for T sufficiently large.

The proof uses:

• Previous results on the control of the solutions under Fourier

filtering (E. Z. JMPA, 99’)



• Fourier analysis showing that the total energy of the slowly os-

cillating discrete functions can be bounded above in terms of the

low frequency components.

• A diadic decomposition argument following the level sets of the

discrete symbol.



Grids: h & 4h



Low frequency subset concentrating the energy of solutions.



Why not using ratio 1/2 for the two-grids?

The relevant zone of frequencies intersects a level set of the phase

velocity for which the group velocity vanishes at some critical points.



CONCLUSIONS:

• CONTROL AND NUMERICS DO NOT COMMUTE

• FOURIER FILTERING, MULTI-GRID METHODS ARE GOOD

REMEDIES IN SIMPLE SITUATIONS: CONSTANT COEFFI-

CIENTS, REGULAR MESHES.

• MUCH REMAINS TO BE DONE TO HAVE A COMPLETE

THEORY AND TO HANDLE MORE COMPLEX SYSTEMS.

BUT ALL THE PATHOLOGIES WE HAVE DESCRIBED WILL

NECESSARILY ARISE IN THOSE SITUATIONS TOO.



• THE MATHEMATICAL THEORY NEEDS TO COMBINE TOOLS

FROM PARTIAL DIFFERENTIAL EQUATIONS, CONTROL THE-

ORY, CLASSICAL NUMERICAL ANALYSIS AND MICROLO-

CAL ANALYSIS.

OPEN PROBLEMS Complex geometries, variable and irregular co-

efficients, irregular meshes, the system of elasticity, nonlinear state

equations, ...





2.7 Links with waves in heterogenous media

WELL KNOWN PHENOMENA FOR WAVES IN HIGHLY OSCILLA-
TORY MEDIA



ϕtt − (α(x)ϕx)x = 0.

• The observability constant blows-up in the context of homoge-

nization α = α(x/ε) as ε → 0;

Note the analogy between the homogenization and the discrete

models: Ah ∼ Aε

ϕtt + Ahϕ = 0 ∼ ϕtt + Aεϕ = 0

• Observability fails for some coefficients α in C0,α (BV is a sharp as-

sumption). This also excludes Strichartz-like dispersive estimates

(F. Colombini, S. Spagnolo (1989),...).



• Pathologies are due to the existence of eigenfunctions which are
highly concentrated inside the domain, with an exponentially small
queu over the boundary: ϕ = ei

√
λtw(x).

• F. Colombini & S. Spagnolo, Ann. Sci. ENS, 1989

• M. Avellaneda, C. Bardos & J. Rauch, Asymptotic Analysis, 1992.

• C. Castro & E. Z. Archive Rational Mechanics and Analysis, 2002

& 2006.

∣∣∣∣∣
C. CASTRO & E. Z. Concentration and lack of observability of waves in highly
heterogeneous media. Archive Rational Mechanics and Analysis, 164 (1) (2002),
39-72, & Addendum ARMA; 2006.



Obtaining sharp regularity estimates for coeffficients in the multi-

dimensional case is a widely open subject.

It is closely related to the topic of Strichartz inequalities. In fact the

pathological examples for the lack of observability are such that there

exist families of highly concentrated eigenfunctions that provide also

counterexamples to dispersion.



2.8 Stabilization

The same tools that have been developed to prove observability in-

equalities for wave equations (Fourier series, multipliers, Carleman

inequalities, microlocal Analysis) can be applied to deal with the

problem of stabilization: To produce the uniform exponential de-

cay property in time by means of feedback (closed-loop controllers)

mechanisms that are localized in the same subsets where controls are

applied.

Boundary stabilization of the wave equation

Let Ω be a bounded domain of Rn, n ≥ 1, with boundary Γ of class



C2 and Γ0 be an open and non-empty subset of Γ.
ytt −∆y = 0 in Q = Ω× (0,∞)
y = 0 on Σ1 = (Γ \ Γ0)× (0,∞)
∂y
∂ν = −yt on Σ0 = Γ0 × (0,∞)
y(x,0) = y0(x), yt(x,0) = y1(x) in Ω.

The energy is then of the form

E(t) =
1

2

∫
Ω

[
|yt|2 + |∇y|2

]
dx

and satisfies the energy dissipation law

dE(t)

dt
= −

∫
Γ0

|yt|2dΓ.



Internal stabilization. Let ω be an open subset of Ω. Consider:
ytt −∆y =−yt1ω in Q = Ω× (0,∞)
y = 0 on Σ = Γ× (0,∞)
y(x,0) = y0(x), yt(x,0) = y1(x) in Ω,

where 1ω stands for the characteristic function of the subset ω.

The energy dissipation law is then

dE(t)

dt
= −

∫
ω
|yt|2dx.

Question: Do they exist C > 0 and γ > 0 such that

E(t) ≤ Ce−γtE(0), ∀t ≥ 0,

for all solution of the dissipative system?



The answer to the problem is roughly the same as for observability

and control. Stabilization holds iff the GCC is satisfied.

What about numerical schemes?

The same pathologies we have described at the level of observability

and control arise in this context too and are an obstacle for the decay

rate to be uniform on the mesh-size parameter h.



Numerical viscosity

L. R. Tcheugoue-Tebou, E. Z., 2003.∗∗

Consider the viscous numerical approximation scheme:

y′′j −
1

h2

[
yj+1 + yj−1 − 2yj

]
−
[
y′j+1 + y′j−1 − 2y′j

]
+ aj1ωhy′j = 0.

This is the semi-discrete analog of

ytt −∆y − h2∆yt + a(x)1ωyt = 0.

∗∗L. R. TCHEUGOUE & E. Z. Uniform exponential long time decay for the space
semi-discretizations of a damped wave equation with artificial numerical viscosity.
Numerische Mathematik, 95 (3) (2003), 563-598 & Uniform boundary stabilization
of the finite difference space discretization of the 1− d wave equation. Advances
in Computational Mathematics, to appear.



The energy dissipation law is this time:

dEh(t)

dt
= −h

∑
j∈ωh

aj|y′j|
2 − h3

N∑
j=0

|y′j+1 − y′j|
2

h2
.

The right hand side terms reproduce the effect of the two damping

terms in this scheme:

• The velocity damping, discrete version of a(x)yt;

• The added viscous damping that efficiently dissipates the high

frequency spurious oscillations.



Theorem: THE DECAY RATE OF THIS VISCOUS NUMERICAL

SCHEME IS UNIFORMLY, INDEPENDENT OF h. Furthermore,

the scheme converges in the classical sense of numerical analysis.

Note that this result is optimal in what concerns the amount of viscous

damping we use. The same exponential decay rate could be proved

by using a viscous term of the form hα∆yt, with α < 2, but then

the order of convergence of the numerical scheme would be smaller

(= (hα). On the other hand, the decay rate would fail to be uniform

is less damping were used, i. e. for viscous damping terms of the

form hα∆yt, with α > 2.

This result has been later extended in various ways:



• The 1−d wave equation with boundary damping (L. R. Tcheugoue-

Tebou, E. Z. 2003);

• Multi-dimensional problems (A. Munch-A. Pazoto. ESAIM:COCV,

to appear.)

• More general 1 − d problems (with stronger numerical viscosity),

M. Tucsnak et al., 2004.

But a complete theory is to be developed.



2.9 Semilinear wave equations

One of the most systematic approaches to derive exact controllability
results for semilinear PDE consists in combining:

• A fixed point method;

• Sharp results on the cost of controlling linear equations perturbed
by lower order potentials.

In this way it has been proved that the semilinear 1−d wave equation††

ytt − yxx + f(y) = 0
††E. Z. Exact controllability for the semilinear wave equation in one space dimension.
Ann. IHP. Analyse non linéaire. 10. 109-129. 1993.



is controllable as the linear one is within the class of nonlinearities

growing at infinity as

f(s) ∼ slog2(s).

This result is sharp since for nonlinearities that are asymptotically

larger blow-up phenomena may occur and, due to the finite velocity

of propagation, when blow-up occurs, exact controllability may not

hold.

What about numerical schemes?

Most of the results we have developed are based on Fourier series

decompositions that do not suffice to deal with semilinear problems.



The two-grid technique seems to be the most convenient one to do

it. ‡‡

Consider the conservative finite-difference semi-discretization of the

semilinear wave equation as follows:
y′′j +

2yj−yj+1−yj−1

h2 + f(yj) = 0, j = 1, . . . , N, 0 < t < T

y0(t) = 0, yN+1(t) = v(t), 0 < t < T

yj(0) = y0
j , y′j(0) = y1

j , j = 0, . . . , N + 1.

(1)

The semi-discrete analogue of the exact controllability final condition

‡‡E. Z., Control and numerical approximation of the wave and heat equations,
Proceedings of the ICM Madrid 2006, Vol. III, “Invited Lectures”, European
Mathematical Society Publishing House, M. Sanz-Solé et al. eds., 2006, pp.
1389-1417.



is

yj(T ) = z0
j , y′j(T ) = z1

j , j = 0, . . . , N + 1. (2)

But, under the final requirement (2), controls diverge as h → 0 even

for the linear wave equation.

In the two-grid algorithm, the final condition (2) is relaxed to

Πh

(
Y (T )

)
= Πh

(
Z0
)
, Πh

(
Y ′(T )

)
= Πh

(
Z1
)
, (3)

where Y (t) and Y ′(t) stand for the vector-valued unknowns

Y (t) =
(
y0(t), . . . , yN+1(t)

)
, Y ′(t) =

(
y′0(t), . . . , y′N+1(t)

)
.

We shall also use the notation Yh for Y when passing to the limit

to better underline the dependence on the parameter h. Πh is the



projection operator so that

Πh(G) =
(
1

2

(
g2j+1 +

1

2
g2j +

1

2
g2j+2

))
j=0,..., N+1

2 −1
, (4)

with G = (g0, g1, ..., gN , gN+1). Note that the projection Πh(G) is a

vector of dimension (N + 1)
/
2. Thus, roughly speaking, the relaxed

final requirement (3) only guarantees that half of the state of the

numerical scheme is controlled. Despite this fact, the formal limit

of (3) as h → 0 is still the exact controllability condition on the

continuous wave equation.



Theorem 2 Assume that the nonlinearity f : R → R is such that

f is globally Lipschitz. (5)

Let T0 > 0 be such that the two-grid algorithm for the control of the

linear wave equation converges for all T > T0.

Then, the algorithm converges for the semilinear system too for all

T > T0. More precisely, for all
(
y0, y1

)
∈ Hs(0, 1)×Hs−1(0, 1) with s >

0, there exists a family of controls {vh}h>0 for the semi-discrete system

(1) such that the solutions of (1) satisfy the relaxed controllability

condition (3) and

vh(t) → v(t) in L2(0, T ), h → 0(
Yh, Y ′

h

)
→ (y, yt) in L2

(
0, T ; L2(0, 1)×H−1(0, 1)

)



where y is the solution of the semilinear wave equation and v is a

control such that the state y satisfies the final requirement.

Whether the two-grid algorithm applies under the weaker and sharp

growth logarithimic condition is an open problem. The difficulty

for doing that is that the two existing proofs allowing to deal with

the semilinear wave equation under the weaker growth condition are

based, on a way or another, on the sidewise solvability of the wave

equation, a property that the semi-discrete scheme fails to have.

Here we are able to deal with globally Lipschitz nonlinearities, since,

after linearization, they lead to linear equations ith uniformly bounded

potentials. in this case a compactness-uniqueness argument suffices

to obtain a (non explicit) uniform observability constant.



2.10 Schrödinger and plate equations

DISPERSION MAY HELP

At the continuous level it is well known that “dispersion helps”.

It is well known (G. Lebeau) that, whenever the wave equation is

controllable in some time T in some geometric configuration, then

the Schrödinger equation is controllable too, but in an arbitrarily small

time (infinite speed of propagation).

But there are results showing that the Schrödinger and plate equations

behave in fact better. Indeed, for instance, in the square, controlla-

bility may be achieved by means of controls supported in regions that



do not fulfill the GCC requirement (A. Haraux, S. Jaffard, N. Burq,
M. Tucsnak,...)

It is easy to see that the classical Gaussian beam construction showing
that trapped rays are an obstacle for controllability for wave equations,
does not yield a counterexample in the Schrödinger setting because
of the infinite speed of propagation and the spreading of these beams
in infinite time.

Consider the Schrödinger or beam and plate equations:

iut = ∆u Schrödinger; utt = ∆2u plate/beam

Its semi-discrete versions read:

iut = ∆hu; utt = ∆2
hu.



Here ∆h denotes the finite-difference approximation of the Laplacian.

The Fourier representation reads now as follows:

~ϕ =
N∑

k=1

ak cos
(
λh

kt
)
+

bk√
λh

k

sin
(
λh

kt
) ~wh

k .

ϕ =
∞∑

k=1

(
ak cos(k2π2t) +

bk

kπ
sin(k2π2t)

)
sin(kπx)

This time

λN(h)− λN−1(h) =



= (
√

λN(h)−
√

λN−1(h))(
√

λN(h) +
√

λN−1(h)) ∼ h.
1

h
∼ 1.

The gap being uniform, we can apply Ingham’s inequality. The con-

trollability properties are this time independent of h.





DISPERSION SUFFICES, BUT ONLY IN 1−D.

IN SEVERAL SPACE DIMENSIONS GEOMETRY ENTERS AGAIN!

Indeed, we can not recover the same results as for the continuous

Schrödinger equation in the continuous setting. The following is an

example showing that observability and controllability fail for all time

for the semi-discrete Schrödinger equation in the square when the

domain of control does not intersect the diagonal.



The eigenvector for the 5−point finite-difference scheme for the Lapla-

cian in the square, with eigenvalue λ = 4/h2, taking values ±1 along

a diagonal, alternating sign and vanishing everywhere else in the do-

main.

An interesting open problem: Unique continuation for the discrete

Laplacian.



Ah~ϕ = λ~ϕ

ϕj = 0, ∀j ∈ ωh

⇒ ϕ ≡ 0?

The problem arises in a much more general context: general geome-

tries, finite elements, heat and wave equations,....

Generally speaking: What is the tool needed to analyze whether the

fact that a solution of a discrete or semi-discrete system vanishes in

a certain number of nodes, implies that the solution vanishes every-

where?



What is the discrete counterpart of Holmgren’s Uniqueness Theorem

or of Carleman’s inequalities?


