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Preliminaries on the control of the heat equation.

THE GENERAL PROBLEM: NULL CONTROL OR CONTROL
TO ZERO

TO CONTROL TO THE NULL EQUILIBRIUM STATE PARABOLIC
EQUATIONS BY MEANS OF A CONTROL (RIGHT HAND SIDE
TERM) CONCENTRATED ON AN OPEN SUBSET OF THE DO-
MAIN WHERE THE EQUATION HOLDS.

EQUIVALENT FORMULATION: OBSERVABILITY

ANALYZE HOW MUCH OF THE TOTAL ENERGY OF SOLU-
TIONS CAN BE OBTAINED OUT OF LOCAL MEASUREMENTS.

OBSERVATION ≡ CONTROL



THE CONTROL PROBLEM

Let n ≥ 1 and T > 0, Ω be a simply connected, bounded domain of

Rn with smooth boundary Γ, Q = (0, T )×Ω and Σ = (0, T )× Γ:
ut −∆u = f1ω in Q
u = 0 on Σ
u(x,0) = u0(x) in Ω.

(1)

1ω denotes the characteristic function of the subset ω of Ω where the

control is active.

We assume that u0 ∈ L2(Ω) and f ∈ L2(Q) so that (1) admits an

unique solution

u ∈ C
(
[0, T ] ;L2(Ω)

)
∩ L2

(
0, T ;H1

0(Ω)
)
.



u = u(x, t) = solution = state, f = f(x, t) = control

Goal: To produce prescribed deformations on the solution u by means

of suitable choices of the control function f .

We introduce the reachable set R(T ;u0) =
{
u(T ) : f ∈ L2(Q)

}
.

Approximate controllability: R(T ;u0) is dense in L2(Ω) for all u0 ∈
L2(Ω).

Null controllability: if 0 ∈ R(T ;u0) for all u0 ∈ L2(Ω).





In principle, due to the intrinsic infinite velocity of propagation of the

heat equation, one can not exclude these properties to hold in any

time T > 0 and from any open non-empty open subset ω of Ω.

Note that for similar properties to hold for wave equations typically

one needs to impose geometric conditions on the control subset and

the time of control, namely, the so called GCC (Geometric Control

Condition) by Bardos-Lebeau-Rauch: It asserts, roughly, that all rays

of geometric optics enter the control set ω in time T .



But this kind of Geometric Condition in unnecessary for the heat

equation.



Approximate controllability

For all initial data u0, all final data u1 ∈ L2(Ω) and all ε > 0 there

exists a control fε such that the solution satisfies:

||u(T )− u1||L2(Ω) ≤ ε.

• Approximate controllability does not guarantee that the target u1

may be reached exactly. It could well be that ||fε||L2(Ω) → ∞ as

ε→ 0.

• The property as such is of little use in practice since too large

controls might be impossible to implement.



Approximate controllability is in fact equivalent to an unique contin-

uation property for the adjoint:
−ϕt −∆ϕ = 0 in Q
ϕ = 0 on Σ
ϕ(x, T ) = ϕ0(x) in Ω.

(2)

More precisely, approximate controllability holds if and only if the

following uniqueness or unique continuation property (UCP) is true:

ϕ = 0 in ω × (0, T ) =⇒ ϕ ≡ 0, i.e. ϕ0 ≡ 0. (3)

This UCP is a consequence of Holmgren’s uniqueness Theorem.

This is so for all ω and all T > 0.



UCP =⇒ Approximate controllability∗

Consider the functional

Jε(ϕ
0) =

1

2

∫ T
0

∫
ω
ϕ2dxdt+ ε

∣∣∣∣ϕ0
∣∣∣∣
L2(Ω)

−
∫
Ω
ϕ0u1dx+

∫
Ω
ϕ(0)u0dx.

(4)

Jε : L2(Ω) → R is continuous, and convex.

Moreover, UCP implies coercivity:

lim
||ϕ0||

L2(Ω)→∞

Jε(ϕ0)

||ϕ0||L2(Ω)
≥ ε.

∗C. Fabre, J. P. Puel & E. Z. Approximate controllability for the semilinear heat
equation. Proc. Roy. Soc. Edinburgh, 125A (1995), 31-61.



Accordingly, the minimizer ϕ̂0 exists and the control

fε = ϕ̂

where ϕ̂ is the solution of the adjoint system corresponding to the
minimizer is the control such that

||u(T )− u1||L2(Ω) ≤ ε.

This is a general principle:†

UCP =⇒ APPROXIMATE CONTROLLABILITY
†In fact one can prove that (UCP) implies a stronger result, namely,
that, together with the ε-distance property, one can also show
that the projection over a finite-dimensional subspace E can be
reached exactly. This can be done by minimizing the functional

JE,ε(ϕ0) = 1
2

∫ T
0

∫
ω
ϕ2dxdt+ ε

∣∣∣(I − πE)ϕ0
∣∣∣
L2(Ω)

−
∫
Ωϕ

0u1dx+
∫
Ωϕ(0)u0dx.



This argument does not provide any estimate on the size of the control

fε as ε→ 0. Roughly speaking:

• For a very narrow set of exactly reachable u1 states the controls

fε are bounded and converge as ε→ 0 to a control f such that

u(T ) = u1.

This necessarily happens for a small class of u1 because of the

regularizing effect of the heat equation.

• Typically, for targets u1 which are in a Sobolev class, the controls

fε diverge exponentially on 1/εα, for some α depending on the

Sobolev class they belong to.



Null controllability

For achieving u(T ) = 0 we have to consider the case in which

u1 = 0, ε = 0.

Thus, we are led to considering the functional

J0(ϕ
0) =

1

2

∫ T
0

∫
ω
ϕ2dxdt+

∫
Ω
ϕ(0)u0dx (5)

Obviously, the functional is continuous and convex from L2(Ω) to R.

Is it coercive?



For coercivity the following observability inequality is needed:

‖ ϕ(0) ‖2
L2(Ω)≤ C

∫ T
0

∫
ω
ϕ2dxdt, ∀ϕ0 ∈ L2(Ω). (6)

This inequality is very likely to hold: because of the very strong

regularizing effect of the heat equation the norm of ϕ(0) is a very

weak measure of the total size of solutions. Indeed, in a Fourier

series representation, the norm of ϕ(0) presents weights which are of

the order of exp (−λjT ), λj →∞ being the eigenvalues of the Dirichlet

−∆.



For the wave equation this inequality requires of the GCC (sufficiently

large time and geometric conditions on the subset ω to absorbe all

rays of Geometric Optics). But for the heat equation there is no

reason to think on the need of any restriction on T or ω.

Actually, this estimate was proved By Fursikov and Imanuvilov (1996)‡

using Carleman inequalities. In fact the same proof applies for equa-

tions with smooth (C1) variable coefficients in the principal part and

for heat equations with lower order potentials.

‡A. V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations,
Lecture Notes Series # 34, Research Institute of Mathematics, Global Analysis
Research Center, Seoul National University, 1996



Consider the heat equation or system with a potential a = a(t, x) in

L∞(Q;RN×N): 
ϕt −∆ϕ+ aϕ = 0, in Q,
ϕ = 0, on Σ,
ϕ(0, x) = ϕ0(x), in Ω,

(7)

where ϕ takes values in RN .

Note that we have reversed the sense of time to make the inequality

more intuitive and better underline the effect of the heat equation

as time evolves: regularizing effect and possible exponential increase

on the size of the solution due to the presense of the potential as

Gronwall’s inequality predicts.



Theorem A (Fursikov+Imanuvilov, 1996, E. Fernández-Cara+E. Zuazua,

2000) §

Assume that ω is an open non-empty subset of Ω. Then, there exists

a constant C = C(Ω, ω) > 0, depending on Ω and ω but independent

of T , the potential a = a(t, x) and the solution ϕ of (7), such that

‖ ϕ(T ) ‖2(L2(Ω))N≤ exp
(
C

(
1 +

1

T
+ T ‖ a ‖∞ + ‖ a ‖2/3∞

)) ∫ T
0

∫
ω
|ϕ|2dxdt,

(8)

for every solution ϕ of (7), potential a ∈ L∞(Q;RN×N) and time

T > 0.

§E. Fernández-Cara& E. Z. The cost of approximate controllability for heat equa-
tions: The linear case. Advances in Differential Equations, 5 (4-6) (2000), 465–
514.



Sketch of the proof:

Introduce a function η0 = η0(x) such that:
η0 ∈ C2(Ω̄)
η0 > 0 in Ω, η0 = 0 in ∂Ω
∇η0 6= 0 in Ω\ω.

(9)

In some particular cases, for instance when Ω is star-shaped with
respect to a point in ω, it can be built explicitly without difficulty.
But the existence of this function is less obvious in general, when the
domain has holes or its boundary oscillates, for instance.

Let k > 0 such that k ≥ 5maxΩ̄ η0 − 6minΩ̄ η0 and let

β0 = η0 + k, β̄ =
5

4
maxβ0, ρ1(x) = eλβ̄ − eλβ

0



with λ, β̄ sufficiently large. Let be finally

γ = ρ1(x)/(t(T − t)); ρ(x, t) = exp(γ(x, t)).



The following Carleman inequality holds:

Proposition 1 (Fursikov + Imanuvilov, 1996)

There exist positive constants C∗, s1 > 0 such that

1

s

∫
Q
ρ−2st(T − t)

[
|qt|2 + |∆q|2

]
dxdt (10)

+s
∫
Q
ρ−2st−1(T − t)−1 |∇q|2 dxdt+ s3

∫
Q
ρ−2st−3(T − t)−3q2dxdt

≤ C∗

[∫
Q
ρ−2s |∂tq −∆q|2 dxdt+ s3

∫ T
0

∫
ω
ρ−2st−3(T − t)−3q2dxdt

]
for all q ∈ Z and s ≥ s1.

Moreover, C∗ depends only on Ω and ω and s1 is of the form

s1 = s0(Ω, ω)(T + T2).



Let us go back to the estimate:

‖ ϕ(T ) ‖2(L2(Ω))N≤ exp
(
C

(
1 +

1

T
+ T ‖ a ‖∞ + ‖ a ‖2/3∞

)) ∫ T
0

∫
ω
|ϕ|2dxdt.

(11)

Three different terms have to be distinguished on the observability
constant on the right hand side:

C∗1(T, a) = exp
(
C

(
1 +

1

T

))
, C∗2(T, a) = exp(CT ‖ a ‖∞), (12)

C∗3(T, a) = exp
(
C ‖ a ‖2/3∞

)
.

The role of the first two constants is clear: The first one C∗1(T, a) =
exp

(
C
(
1 + 1

T

))
takes into account the increasing cost of making con-

tinuous observations as T diminishes. The second one C∗2(T, a) =



exp(CT ‖ a ‖∞) is due to the use of Gronwall’s inequality to pass
from a global estimate in (x, t) into an estimate for t = T .

What about the third one?

Theorem 1 ¶

The third constant C∗3(T, a) is sharp in the range

‖ a ‖−2/3
∞ . T .‖ a ‖−1/3

∞ , (13)

for systems N ≥ 2 and in more than one dimension n ≥ 1.

Open problem: Optimality for scalar equations (N = 1) and in one
space dimension (n = 1).
¶Th. Duyckaerts, X. Zhang and E. Z., Annales IHP, 2006, to appear.



The proof is based on the following Theorem by V. Z. Meshkov, 1991.

Theorem 2 (Meshkov, 1991). Assume that the space dimension

is n = 2. Then, there exists a nonzero complex-valued bounded

potential q = q(x) and a non-trivial complex valued solution u = u(x)

of

∆u = q(x)u, in R2, (14)

with the property that

| u(x) |≤ C exp(− | x |4/3), ∀ x ∈ R2 (15)

for some positive constant C > 0.



Remark 1 • The growth rate exp(− | x |4/3) is optimal. Indeed,

as proved by Meshkov using a Carleman inequality, if the solution

decays faster it has to be zero. This is true for all n (space

dimension) and N (size of the elliptic system):

∀v ∈ C∞0 ({r > 1}),

τ3
∫
|v|2 exp(2τr4/3)r2−ndx ≤ C

∫
|∆v|2 exp(2τr4/3)r2−ndx. (16)

• Constructing solutions decaying as exp(− | x |4/3) for scalar equa-

tions is an interesting open problem. The construction by Meshkov

is based on a decomposition of Rn into concentric and diver-

gent annulae in which the frequency of oscillation of harmonics



increases and, simultaneously, the modulus of the solution di-

minishes. For doing that the particular structure of the spher-

ical harmonics r−k exp (−ikθ) and, in particular, the fact that

| exp (−ikθ)| = 1 plays a key role.

• In 1− d an ODE argument shows that the decay rate is at most

exponential. Thus, the superexponential decay for the elliptic

problem can not be obtained and the optimality of the parabolic

observability inequality can not be proved in this way.



Null control =⇒ Approximate control

The property of null controllability, even though, apparently, it only

guarantees that we can reach the state {0}, in fact it implies that a

dense set of data is reachable. This can be viewed in two steps:

• Step 1: Using the linearity of the system it can be shown that

all u1 ∈ S(T )(L2(Ω)), the range of the uncontrolled semigroup, is

reachable.

• Step 2: The set S(T )(L2(Ω)) is dense in L2(Ω). This property,

by duality, is equivalent to the property of backward uniqueness.



CONSEQUENCES ON THE CONTROL OF NONLINEAR SYS-

TEMS

Consider semilinear parabolic equation of the form
yt −∆y+ g(y) = f1ω in Ω× (0, T )
y = 0 on ∂Ω× (0, T )
y(x,0) = y0(x) in Ω.

(17)

Theorem 3 (E. Fernández-Cara + EZ, Annales IHP, 2000) The

semilinear system is null controllable if

g(s)/ | s | log3/2 | s |→ 0 as | s |→ ∞. (18)



Note that blow-up phenomena occur if

g(s) ∼| s | logp(1+ | s |), as | s |→ ∞

with p > 1. Thus, in particular, weakly blowing-up equations may

be controlled.

On the other hand, it is also well known that blow-up may not be

avoided when p > 2 and then control fails.

Note that in the control process the propagation of energy in the

x direction plays a key role. When viewing the underlying elliptic

problem ∆y+ g(y) a a second order differential equation in x we

see how the critical exponent p = 2 arises. For p > 2 concentration

in space may occur so that the control may not avoid the blow-up

to occur outside the control region ω.



OBSERVABILITY and GEOMETRY

In the absence of potential, the Carleman inequality yields the fol-

lowing observability estimate for the solutions of the heat equa-

tion: ∫ ∞

0

∫
Ω
e
−A
t ϕ2dxdt ≤ C

∫ ∞

0

∫
ω
ϕ2dxdt.

Open problem: Characterize the best constant A in this inequality:

A = A(Ω, ω).



– The Carleman inequality approach allows establishing some up-
per bounds on A depending on the properties of the weight
function. But this does not give a clear path towards the ob-
tention of a sharp constant.



– By inspection of the heat kernel one can see that for the in-

equality to be true one needs (L. Miller, 2003)

A > exp `2/4

where ` is the length of the largest segment in Ω− ω.

Recall that:

G(x, t) = (4πt)−n/2 exp
(−|x|2

4t

)
.



Characterizing the best constant A is an interesting open prob-

lem. It is even open in 1− d. The best known constant is due

to G. Tenenbaum & M. Tucsnak.

∣∣∣∣∣
G. Tenenbaum & M. Tucsnak. New blow-up rates for fast controls of Schrödinger
and heat equations, 2006.



The spectral approach

Lebeau and Robbiano∗∗ proposed (1996) a spectral proof of
the null controllability that, by duality, yields observability in-
equalities too. The key ingredient is the following estimate on
the linear independence of restrictions of eigenfunctions of the
laplacian:

Theorem 4 (Lebeau + Robbiano, 1996)

Let Ω be a bounded domain of class C∞. For any non-empty
open subset ω of Ω there exist B,C > 0 such that

Ce−B
√
µ
∑
λj≤µ

| aj |2≤
∫
ω

∣∣∣∣∣∣∣
∑
λj≤µ

ajψj(x)

∣∣∣∣∣∣∣
2

dx(19)

∗∗G. Lebeau and L. Robbiano, “Contrôle exact de l’équation de la chaleur”, Comm.
P.D.E., 20 (1995), 335-356.



for all
{
aj
}
∈ `2 and for all µ > 0.

Geometric open problem: To characterize the best constant

B = B(Ω, ω).

Is the constant B in this spectral inequality related to the best

constant A > 0 in the parabolic one?

By inspection of the gaussian heat kernel it can be shown

that this estimate, i. e. the degeneracy of the constant as

exp(−B√µ) for some B > 0, is sharp even in 1− d.

Although the constant Ce−B
√
µ degenerates exponentially as

µ→∞, it is important that it does it exponentially on
√
µ. The

strong dissipativity (e−µt) of the heat equation allows compen-

sating this degeneracy and to control the system, after all.



∗ As a consequence of the spectral estimate one can prove that
the observability inequality holds for solutions with initial data
in Eµ = span

{
ψj
}
λj≤µ

, the constant being of the order of

exp
(
B
√
µ
)
. This shows that the projection of solutions over

Eµ can be controlled to zero with a control of size exp
(
B
√
µ
)
.

Thus, when controlling the frequencies λj ≤ µ one increases
the L2(Ω)-norm of the high frequencies λj > µ by a multi-
plicative factor of the order of exp

(
B
√
µ
)
.

This holds in fact for all evolution PDE allowing a Fourier
decomposition on the basis of the eigenfunctions of the lapla-
cian.

∗ However, solutions of the heat equation without control (f =
0) and such that the projection of the initial data over Eµ



vanishes, decay in L2(Ω) at a rate of the order of exp(−µt).
This can be easily seen by means of the Fourier series de-

composition of the solution.

Thus, if we divide the time interval [0, T ] in two parts [0, T/2]

and [T/2, T ], we control to zero the frequencies λj ≤ µ in the

interval [0, T/2] and then allow the equation to evolve without

control in the interval [T/2, T ], it follows that, at time t = T ,

the projection of the solution u over Eµ vanishes and the

norm of the high frequencies does not exceed the norm of

the initial data u0:

exp(B
√
µ) exp(−Tµ/2) << 1.

This argument allows to control to zero the projection over

Eµ for any µ > 0 but not the whole solution.



∗ To control the whole solution an iterative argument is needed

in which the interval [0, T ] has to be decomposed in a suitably

chosen sequence of subintervals [Tk, Tk+1) and the argument

above is applied in each subinterval to control an increasing

range of frequencies λ ≤ µk with µk →∞ at a suitable rate.

When the evolution equation under consideration allows a Fourier

series decomposition this argument is extremely useful. For in-

stance it allows controlling equations of the form

yt + (−∆y)α = 0,

with α > 1/2. This is sharp since null control property fails

for α = 1/2 (S. Micu & E. Z, 2003; L. Miller, 2005). †† This

shows that this iterative construction provides sharp results.
††S. Micu & E. Z. On the controllability of a fractional order parabolic equation



The method also applies for time-discrete numerical approxi-

mations (C. Zheng, 2006‡‡):

yk+1 − yk

∆t
−∆yk+1 = 0.

SIAM J. Cont. Optim., 44(6) (2006) 1950-1972; L. Miller, On the controllability
of anomalous diffusions generated by the fractional Laplacian, Math. Control
Signals Systems, 2006.

‡‡C. Zheng, Controllability of the time-discrete heat equation, 2006, to appear.



OTHER IMPORTANT ISSUES: OPEN PROBLEMS

∗ Heat equation with non-smooth coefficients on the principal

part. Possibly piecewise constant coefficients.

Recently the observability has been proved in 1−d for bounded

measurable coefficients, without any other regularity assump-

tion by G. Alessandrini & L. Escauriaza, 2006.

In higher space dimensions Carleman inequalities can be ap-

plied with W1,∞ coefficients.

G. Alessandrini & L. Escauriaza, Null-controllability of one-dimensional parabolic
equations, ESAIM:COCV, to appear.



∗ To exploit the possibility that the potential a = a(x, t) de-

pends both on x and t and not only on x to improve the

optimality result. Note for instance that Meshkov also con-

structs in 3 − d a potential a(x, t) for the heat equation for

which solutions decay as t→∞ with velocity exp(−ct2).

∗ Heat equations on graphs and networks.

R. DAGER & E. Z. Wave propagation and control in 1 − d

vibrating multi-structures. Springer Verlag. “Mathématiques

et Applications”, Paris. 2005



3.2. Hyperbolic control implies parabolic one

As we have seen, the geometric requirements needed for the

control of the wave equation are not needed in the context of

heat equations: Control can be achieved from arbitrarily small

subdomains and in an arbitrarily small control time.

It is known that, within the class of equations with time-

independent coefficients

Control of the wave equation =⇒ Control of the heat

equation in arbitrarily short time

Note however, that this “hyperbolic→ parabolic principle” does

not yield sharp results for the heat equation since, roughly, it

only works under the GCC principle.



There are two ways of doing that:

∗ Spectral methods (D. L. Russell, 1973.)

The wave equation:∑
j≥1

(a+j e
i
√
λjt + a−j e

−i
√
λjt)φj(x).

The heat equation: ∑
j≥1

bje
−λjtφj(x).

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic
partial differential equations. Studies in Appl. Math., 52 (1973), 189–221.



∗ Kannai transform ( Y. Kannai, 1977; K. D. Phung, 2001; L.
Miller, 2004)

et∆ϕ =
1

4πt

∫ +∞

−∞
e−s

2/4tW (s)ds

where W (x, s) solves the wave equation with data (ϕ,0).

This kind of transformation can be used also, for instance, to transfer results on
the wave equation into the Schrödinger one. It also applies in an abstract setting
to transfer the abstract wave equation wtt+Aw = 0 into the heat one yt+Ay = 0.
But, for it to apply, the transfer kernel has to have suitable integrability properties.
Consequently this transformation can not be used, for instance, all the way around,
to transfer the heat equation into the wave one.

Y. Kannai, Off diagonal short time asymptotics for fundamental solutions of dif-
fusion equations, Commun. Partial Differ. Equations 2 (1977), 8, 781830; K.
D. Phung, Observability and control of Schrödinger equations. SIAM J. Control
Optim. 40 (1) (2001), 211–230; L. Miller, Geometric bounds on the growth
rate of null-controllability cost for the heat equation in small time, J. Differential
Equations, 204 (1) (2004), 202–226.



Note that none of these methods applies in the context of heat

equations with potentials depending both on x and t:

ut −∆u+ a(x, t)u = 0.

Observe also that this method does not yield any counterex-

ample to the control of heat like equations. For instance the

high frequency pathologies for wave equations with rough co-

efficients are damped out by the heat dissipation.

Indeed, the concentration effects for the eigenfunctions φ of

wave equations with rough coefficients are of the order of ec
√
λ.

But, for the heat equation solutions are of the form e−λtφ(x)
which compensates this concentration effect.



3.3 Numerical approximation in 1-d

In 1−d, using Fourier series arguments, one can prove that the

null controls for the 1 − d semi-discrete finite-difference heat

equation converge to the null control of the continuous heat

equation.

The key ingredient is proving a uniform (with respect to h > 0)

observability inequality. It is an immediate consequence of the

explicit form of the spectrum together with a technical result

on series of real exponentials.

A. López & E. Z.. Some new results related to the null controllability of the 1.d
heat equation. Seminaire X- EDP 1997-1998, Ecole Polytechnique, 1998, VIII
1-22.



Consider the system:
ϕ′j −

1
h2

[
ϕj+1 + ϕj−1 − 2ϕj

]
= 0, 0 < t < T, j = 1, . . . , N

ϕj(t) = 0, j = 0, N + 1, 0 < t < T

ϕj(0) = ϕ0
j , j = 1, . . . , N.

We are going to show that the following observability inequality

holds uniformly on h > 0:

||ϕh(T )||2 ≤ C(T )
∫ T
0

∣∣∣∣∣ϕN(t)

h

∣∣∣∣∣
2

dt.

This is due to the very properties of the eigenvalues entering

in its Fourier expansion:

λhk =
4

h2
sin2

(
kπh

2

)



Consider the class L(ξ,M) increasing sequences of positive real

numbers
{
νj
}
j≥1

such that

νj+1 − νj ≥ ξ > 0, ∀j ≥ 1,

∀δ > 0,
∑

k≥M(δ)

1

νk
≤ δ. (20)

Here ξ is any positive number and M : (0,∞) → N is a function

such that M(δ) →∞ as δ → 0.

Obviously, different values of ξ and M determine different

classes of sequences L(ξ,M).

The following holds:



Proposition 2 Given a class of sequences L(ξ,M) and T > 0,
there exists a positive constant C > 0 such that

∫ T
0

∣∣∣∣∣∣
∞∑
k=1

ake
−νkt

∣∣∣∣∣∣
2

dt ≥
C[∑

k≥1 1/νk
] ∑
k≥1

|ak|2e−2νkT

νk
, (21)

for all {νk}k≥1 ∈ L(ξ,M) and all bounded sequence {ak}k≥1.

The sequences of eigenvalues

λhk =
4

h2
sin2

(
kπh

2

)
of the semi-discrete heat equations belong to the same class
L(ξ,M) for all h > 0. Thus, the observability constant C is
uniform, i. e. independent of h, for all T > 0.

Once this holds, the controls are bounded and converge to the
controls of the heat equation.



3.4 Multi-dimensional pathologies

As we have mentioned in the context of the wave and the
Schrödinger equation, the classical unique continuation result
for the eigenfunctions of the Laplacian guaranteeing that the
only one vanishing in an open non-empty subset is the trivial
one, fails in the discrete-context.

In view of this one immediately deduces that the unique con-



tinuation property fails as well for the corresponding evolution

problems, including the heat equation. This shows that for the

2− d semi-discrete heat equation when the control subdomain

(or subset of the boundary) does not intersect the diagonal

the approximate controllability property fails. Null controllabil-

ity fails as well.

Consequently, for semi-discrete heat equations, in order to get

null controllability results the control subset needs to be suf-

ficiently large. In the following section we prove that, when

the control acts everywhere on the boundary, the null control-

lability property holds uniformly on the mesh-size parameter

h > 0.



3.5 A first result in the multi-dimensional case

We analyze the null controllability of the finite-difference semi-

discretization of the heat equation in a bounded domain Ω, by

means of boundary controls supported in a subset Γ0 of the

boundary ∂Ω. In the continuous setting null controllability is

known to hold in any time T > 0.

We first consider the case where Ω is the square domain Ω =

(0, π) × (0, π), and the control subdomain is one side of the

boundary Γ0 = {x2 = 0.}.

Given N ∈ N we set h = π/(N + 1) and we consider the mesh

xi,j = (ih, jh), i, j = 0, ..., N + 1, (22)



and introduce the finite-difference semi-discretizations:

y′j,k + 1
h2(4yj,k − yj+1,k −yj−1,k − yj,k+1 − yj,k−1) = 0,

(j, k) ∈ Ωh, 0 < t < T,
yj,k = 0, (j, k) ∈ [∂Ω \ Γ0]h, 0 < t < T,

yj,0 = vj, j = 0, ..., N + 1, 0 < t < T

yj,k(0) = y0j,k, (j, k) ∈ Ωh,

(23)

and






ϕ′j,k −

1
h2(4ϕj,k − ϕj+1,k −ϕj−1,k − ϕj,k+1 − ϕj,k−1) = 0,

(j, k) ∈ Ωh, 0 < t < T,
ϕj,k = 0, (j, k) ∈ [∂Ω]h, 0 < t < T

ϕj,k(T ) = ϕ0
j,k, (j, k) ∈ Ωh.

(24)

Ωh (resp. ∂Ωh) is the set of interior (resp. boundary) nodes,

and [∂Ω\Γ0]h the set of indices (j, k) so that the corresponding

nodes belong to ∂Ω \ Γ0. Here and in the sequel yj,k = yj,k(t)

(resp. ϕj,k = ϕj,k(t)) stands for an approximation of the con-

trolled solution y (resp. the adjoint state ϕ of) at the mesh-

points xi,j. On the other hand, vj denotes the control that acts

on the semi-discrete system (24) through the subset [Γ0]h of

the boundary. The control does not depend of the index k



since the subset of the boundary [Γ0]h where the control is
being applied corresponds to k = 0.

We introduce the vector unknowns and control

Yh =
(
yj,k

)
0≤j,k≤N+1

, Φh =
(
φj,k

)
0≤j,k≤N+1

, Vh =
(
vj
)
1≤j≤N

,

(25)
that we shall often denote simply by Y , Φ and V .

The previous systems read:{
Y ′h +AhYh = BhVh,

Yh(0) = Y 0
h ,

(26)

{
Φ′
h −AhΦh = 0,

Φh(T ) = Φ0
h.

(27)

We denote by Ah the usual positive-definite symmetric Toeplitz



matrix associated with the five-point finite-different scheme we

have employed in the discretization of the Laplacian so that

(AhW )j,k =
1

h2
(4wj,k−wj+1,k−wj−1,k−wj,k+1−wj,k−1), (28)

for the inner nodes. The linear operator Bh in (26) is such that

the action of the control vj enters on those nodes which are

neighbors to those of [Γ0]h, i. e. for k = 1, so that [BhV ]j,k = 0

whenever 2 ≤ k ≤ N but [BhV ]j,1 = −vj/h2.

The null-controllability problem for system (26) reads as fol-

lows: Given Y 0 ∈ RN+2×N+2 to find V ∈ L2
(
0, T ; RN

)
such

that the solution Y of (26) satisfies

Y (T ) = 0. (29)



On the other hand, the problem of observability for system

(27) consists in proving the existence of C > 0 such that∣∣∣∣Φ(0)
∣∣∣∣2
h
≤ Ch

∫ T
0

N∑
j=1

∣∣∣∣∣φj,1h
∣∣∣∣∣
2

dt (30)

for every solution Φ of (27).

In (30)
∣∣∣∣ · ∣∣∣∣

h
stands for the scaled Euclidean norm

∣∣∣∣Φ∣∣∣∣
h
=

h2
N+1∑
j,k=0

|φj,k|2
1/2 (31)

and the right hand side term of inequality (30) represents the



discrete version of the L2-norm of the normal derivative.

The following result holds:

A similar problem can be formulated in general bounded smooth domains Ω. In
that case, obviously, the domain Ω needs to be approximated by domains Ωh whose
boundaries are constituted by mesh-points.

In [ S. Labbé, S., E. Trélat. Uniform controllability of semidiscrete approximations
of parabolic control systems. Systems & Control Letters, 55 (2006), no. 7,
597–609] the problem of approximate controllability has been analyzed. There
it has been proved that, as the mesh-size tends to zero, the numerical scheme
reproduces the controllability properties of the continuous heat equation getting
explicit convergence rates and bounds on the number of iterations needed when
applied descent algorithms.



Theorem 5 Let T > 0 be any positive control time. Let y0 ∈
L2(Ω) and Y 0

h a discrete approximation. Then, the null controls

Vh for the semi-discrete problem (26) are uniformly bounded,

with respect to h and converge in L2(Γ0 × (0, T )) towards the

null control of the heat equation. The semi-discrete controlled

states Yh also converge to the controlled state y of the heat

equation in L2(0, T ;H−1(Ω)) satisfying the null final condition.

Remark 2 The result is sharp in what concerns the support

Γ0 of the control. It fails when [Γ0]h is replaced by the set of

indices [Γ∗0]h in which the first node corresponding to the index

j = 1 is removed.



The key point of the proof is proving that the observability
inequality (30) is uniform with respect to the mesh-size h > 0.

The method of proof of the uniform estimate (30) depends
heavily on the Fourier decomposition of solutions.

The eigenvalue problem associated with the semi-discrete sys-
tem (27) is as follows:{

1
h2

[
4wj,k − wj+1,k − wj−1,k − wj,k+1 − wj,k−1

]
= λwj,k, Ωh

wj,k = 0, [∂Ω]h.
(32)

Its spectrum may be computed explicitly:

λ`,m(h) =
4

h2

[
sin2

(
`h

2

)
+ sin2

(
mh

2

)]
(33)

W `,m(h) = w`,m(x)
∣∣∣
x=(jh,kh),j,k=0,··· ,N+1

(34)



for `,m = 1, ..., N , where w`,m(x) are the eigenfunctions of the

continuous Laplacian:

w`,m(x) =
2

π
sin(`x1) sin(mx2).

We have:

∗ The eigenvectors are the restrictions to the mesh of the

eigenfunctions of the Laplacian;

∗ Eigenvalues converge:

λ`,m(h) → λ`,m = `2 +m2 as h→ 0. (35)

The eigenvectors
{
W `,m

}
`,m=1,...,N

constitute an orthonormal



basis of RN×N with respect to the scalar product

〈f, f̃〉h =

h2
N∑

j,k=1

fj,kf̃j,k

1/2 , (36)

associated with the norm (31).

The solution of the semi-discrete adjoint system (27) can also
be easily developed in this basis:

Φh(t) =
N∑

`,m=1

a`,me−λ
`,m(h)(T−t)W `,m (37)

where
{
a`,m

}
are the Fourier coefficients of the datum at time

t = T :

Φ0
h =

N∑
`,m=1

a`,mW `,m, a`,m = 〈Φ0
h, W

`,m〉h. (38)



Solutions may also be rewritten in the form

Φh(t) =
N∑
`=1

ψm(t)⊗ σm, (39)

where

σm =

(√
2

√
π

sin(mkh)

)
k=0,...,N+1

,

so that W `,m = σ` ⊗ σm, and each vector-valued function

ψm(t) =
(
ψmj (t)

)
j=0,...,N+1

is a solution of the 1 − d semi-



discrete problem:
ψ′j −

[2ψj−ψj+1−ψj−1]
h2 + µmψj = 0, j = 1, . . . , N, 0 < t < T

ψ0 = ψN+1 = 0, 0 < t < T

ψj(T ) = ψ0
j , j = 1, . . . , N,

(40)

where µm = 4
h2 sin2

(
mh
2

)
.

The observability inequality (30) is equivalent to proving the

1− d analogue for (40), uniformly on m ≥ 1, i.e.∣∣∣∣ψ(0)
∣∣∣∣2
h
≤ C

∫ T
0

∣∣∣∣ψ1

h

∣∣∣∣2 dt, (41)

for all ψ0, ψ being the solution of (40), with a constant C > 0

which is independent of m.



This is trivially true since an explicit change of variables reduces

these problems to the particular case µm = 0.



General domains

The methods of proof of the previous section, based on Fourier

series expansions, do not apply to general domains.

However, using a classical argument, based on extending the

control domain and then getting the controls as restrictions to

the original boundary of the controlled states, one can derive

similar results for general domains but provided the controls

are supported everywhere on the boundary of the domain.

The problem of determining sharp conditions on the subsets of

the boundary so that the semi-discrete systems are uniformly

controllable is completely open.



3.6 The Carleman inequalities aproach

The results in the previous section show that null-controllability

and observability hold when the control acts everywhere on the

boundary of the domain. However, to deal with more general

problems (equations with variable coefficients, nonlinear prob-

lems,...) it would be convenient to be able to derive these

results by more systematic methods. In particular it would

be desirable to develop the methodlogy based on Carleman

inequalities.

Anyhow, the counterexample of the eigenvector for the dis-

crete Laplacian concentrated in the square shows that, for the

observability inequality to be true, the high frequency compo-

nents have to be filtered out.



The following result could be true: Given any subdomain ω of

the square ω, the observability inequality holds for all eigen-

vectors of the discrete Laplacian, uniformly on the mesh-size

parameter h > 0, within the class of eigenvectors corresponding

to eigenvalues

λ ≤
c(Ω, ω)

h2
,

for a suitable geometric constant.

In fact this result could well be true for all domains Ω and ω.

This is an interesting open problem.


