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Introduction to the control of finite-dimensional systems: The rank

condition. ∗

Let n,m ∈ N∗ and T > 0. Consider the following finite dimensional

system: {
x′(t) = Ax(t) +Bu(t), t ∈ (0, T ),

x(0) = x0.
(1)

In (1), A is a real n × n matrix, B is a real n × m matrix and x0 a

vector in Rn. The function x : [0, T ] −→ Rn represents the state and

u : [0, T ] −→ Rm the control. Both are vector functions of n and m

∗For a more complete introduction to the topics several books are available. in
particular that by E. Trélat.



components respectively depending exclusively on time t. Obviously,

in practice m ≤ n. The most desirable goal is, of course, controlling

the system by means of a minimum number m of controls.

Given an initial datum x0 ∈ Rn and a vector function u ∈ L2(0, T ;Rm),

system (1) has a unique solution x ∈ H1(0, T ;Rn) characterized by

the variation of constants formula:

x(t) = eAtx0 +
∫ t

0
eA(t−s)Bu(s)ds, ∀t ∈ [0, T ]. (2)

Definition 1 System (1) is said to be exactly controllable in time

T > 0 if given any initial and final one x0, x1 ∈ Rn there exists u ∈
L2(0, T,Rm) such that the solution of (1) satisfies x(T ) = x1.



According to this definition the aim of the control process consists in
driving the solution x of (1) from the initial state x0 to the final one
x1 in time T by acting on the system through the control u.

Example 1. Consider the case

A =
(1 0

0 1

)
, B =

(1

0

)
. (3)

Then the system x′ = Ax+Bu can be written as{
x′1 = x1 + u
x′2 = x2,

or equivalently, {
x′1 = x1 + u
x2 = x0

2e
t,

where x0 = (x0
1, x

0
2) are the initial data.

This system is not controllable since the control u does not act on the second

component x2 of the state which is completely determined by the initial data x0
2.,



Example 2. By the contrary, the equation of the harmonic oscillator is controllable

x′′ + x = u. (4)

The matrices A and B are now respectively

A =
( 0 1

−1 0

)
, B =

(0

1

)
.

Once again, we have at our disposal only one control u for both components x

and y of the system. But, unlike in Example 1, now the control acts in the second

equation where both components are present.

CONCLUSION: Controllability not only depends on the dimensions

m and n but on the way A and B interact.



Define the set of reachable states

R(T, x0) = {x(T ) ∈ Rn : x solution of (1) with u ∈ (L2(0, T ))m}. (5)

The exact controllability property is equivalent to the fact that

R(T, x0) = Rn for any x0 ∈ Rn.

Observability property

Let A∗ be the adjoint matrix of A, i.e. the matrix with the prop-

erty that 〈Ax, y〉 = 〈x,A∗y〉 for all x, y ∈ Rn. Consider the following

homogeneous adjoint system of (1):{
−ϕ′ = A∗ϕ, t ∈ (0, T )
ϕ(T ) = ϕT .

(6)



The following is an equivalent condition for exact controllability:

Lemma 1 An initial datum x0 ∈ Rn of (1) is driven to zero in time T
by using a control u ∈ L2(0, T ) if and only if∫ T

0
〈u,B∗ϕ〉dt+ 〈x0, ϕ(0)〉 = 0, ∀ϕ. (7)

Proof: Let ϕT be arbitrary in Rn and ϕ the corresponding solution of
(6). By multiplying (1) by ϕ and (6) by x we deduce that

〈x′, ϕ〉 = 〈Ax,ϕ〉+ 〈Bu,ϕ〉; −〈x, ϕ′〉 = 〈A∗ϕ, x〉.

Hence,

d

dt
〈x, ϕ〉 = 〈Bu,ϕ〉



which, after integration in time, gives that

〈x(T ), ϕT 〉 − 〈x0, ϕ(0)〉 =
∫ T

0
〈Bu,ϕ〉dt =

∫ T

0
〈u,B∗ϕ〉dt. (8)

We obtain that x(T ) = 0 if and only if (7) is verified for any ϕT ∈ Rn.

Identity (7) is in fact an optimality condition for the critical points of
the quadratic functional J : Rn → Rn,

J(ϕT ) =
1

2

∫ T

0
| B∗ϕ |2 dt+ 〈x0, ϕ(0)〉

where ϕ is the solution of the adjoint system (6) with initial data ϕT
at time t = T .

More precisely:



Lemma 2 Suppose that J has a minimizer ϕ̂T ∈ Rn and let ϕ̂ be the
solution of the adjoint system (6) with initial data ϕ̂T . Then

u = B∗ϕ̂ (9)

is a control of system (1) with initial data x0.

Proof: If ϕ̂T is a point where J achieves its minimum value, then

lim
h→0

J (ϕ̂T + hϕT )− J (ϕ̂T )

h
= 0, ∀ϕT ∈ Rn.

This is equivalent to∫ T

0
〈B∗ϕ̂, B∗ϕ〉dt+ 〈x0, ϕ(0)〉 = 0, ∀ϕT ∈ Rn,

which, in view of Lemma 1, implies that u = B∗ϕ̂ is a control for (1).



This is a variational method to obtain the control as a minimum of

the functional J. The controls we obtain this way are smooth. This

is not the unique possible functional allowing to build the control.

By modifying it conveniently, other types of controls (for instance

bang-bang ones) can be obtained.



Do the minimizers of J exist?

For, coercivity is needed:

lim
||ϕ0||→∞

J(ϕ0) = ∞.

Coercivity is in fact equivalent to the following observability property

of the adjoint system.

Definition 2 System (6) is said to be observable in time T > 0 if

there exists c > 0 such that∫ T

0
| B∗ϕ |2 dt ≥ c | ϕ(0) |2, (10)



for all ϕT ∈ Rn, ϕ being the corresponding solution of (6).

In the sequel (10) will be called the observation or observability
inequality. It guarantees that the solution of the adjoint problem
at t = 0 is uniquely determined by the observed quantity B∗ϕ(t) for
0 < t < T . In other words, the information contained in this term
completely characterizes the solution of (6).

The following remark is very important in the context of finite dimen-
sional control. Unfortunately (?) it is not true for infinite-dimensional
systems (PDE, distributed parameter systems).

Proposition 1 Inequality (10) is equivalent to the following unique
continuation principle:

B∗ϕ(t) = 0, ∀t ∈ [0, T ] ⇒ ϕT = 0. (11)



This is an uniqueness or unique continuation property.

UNIQUE CONTINUATION →

OBSERVABILITY INEQUALITY →

CONTROLLABILITY,

WITH A CONSTRUCTIVE PROCEDURE TO BUILD CONTROLS

BY MINIMIZING A COERCIVE FUNCTIONAL.



The rank condition for controllability

What about the observability property? Are there algebraic conditions

on the state matrix A and the control one B for it to be true?

The following classical result† gives a complete answer to the problem

of exact controllability of finite dimensional linear systems. It shows,

in particular, that the time of control is irrelevant, something which

is far from being true in the context of PDE.

†due to J. P. La Salle (1960), W. L. Chou (1940), R. E. Kalman (1960), L. S.
Pontryaginh (1956) .... ? It is often known as the Kalman rank condition. But
himself refers for it to Pontryagin and La Salle and indicates that the nonlinear
version, using Lie Brackets, in the differenctial geometry setting, that of course is
more general than the linear one, was introduced by Chow.



Theorem 1 System (1) is exactly controllable in some time T if and

only if

rank [B, AB, · · · , An−1B] = n. (12)

Consequently, if system (1) is controllable in some time T > 0 it is

controllable in any time.

Remark 1 From now on we shall simply say that (A,B) is control-

lable if (12) holds. The matrix [B,AB, · · · , An−1B] will be called the

controllability matrix.

Proof of Theorem 1: “ ⇒” Suppose that rank([B, AB, · · · , An−1B]) <

n.



Then the rows of the controllability matrix [B,AB, · · · , An−1B] are
linearly dependent and there exists a vector v ∈ Rn, v 6= 0 such that

[B∗, B∗A∗, · · · , B∗(A∗)n−1]v = 0.

Then B∗v = B∗A∗v = · · · = B∗(A∗)n−1v = 0. From Cayley-Hamilton
Theorem we deduce that there exist constants c1, · · · , cn such that,
An = c1A

n−1 + · · ·+ cnI and therefore B∗(A∗)nv = 0, too. In fact, it
follows that B∗(A∗)kv = 0 for all k ∈ N and consequently B∗eA

∗tv = 0
for all t as well. But, from the variation of constants formula, the
solution x of (1) satisfies

x(t) = eAtx0 +
∫ t

0
eA(t−s)Bu(s)ds. (13)

Therefore

〈v, x(T )〉 = 〈v, eATx0〉+
∫ T

0
〈B∗eA

∗(T−s)v, u(s)〉ds = 〈v, eATx0〉.



Hence, 〈v, x(t)〉 is independent of t. This shows that the projection

of the solution x on v is independent of the value of the control u.

Hence, the system is not controllable.

Remark 2 The conservation property for the quantity 〈v, x〉 we have

just proved holds for any vector v in the kernel of

[B∗, B∗A∗, · · · , B∗(A∗)n−1].

Thus, if the rank of the matrix [B, AB, · · · , An−1B] is n−k, the reach-

able set that x(T ) runs is an affine subspace of Rn of dimension n−k.

“ ⇐” Suppose now that rank([B, AB, · · · , An−1B]) = n. It is sufficient

to show that system (6) is observable.



Assume B∗ϕ = 0 and ϕ(t) = eA
∗(T−t)ϕT , it follows that B∗eA

∗(T−t)ϕT ≡
0 for all 0 ≤ t ≤ T . By computing the derivatives of this function in

t = T we obtain that

B∗[A∗]kϕT = 0 ∀k ≥ 0.

But since rank(
[
B, AB, · · · , An−1B

]
) = n we deduce that

rank(
[
B∗, B∗A∗, · · · , B∗(A∗)n−1

]
) = n

and therefore ϕT = 0. Hence, (11) is verified and the proof of Theo-

rem 1 is now complete.

Remark 3 The set of controllable pairs (A,B) is open and dense.

This means that



• Most systems are controllable;

• The controllability property is robust, i. e. it is invariant under

small perturbations of A and/or B.

When controllability holds the norm of the control is proportional to

the distance between eATx0 (the state freely attained by the system

in the absence of control, i. e. with u = 0) and the objective x1,

‖ u ‖L2(0,T )≤ C|eATx0 − x1| (14)

for any initial data x0 and final objective x1.



Remark 4 Linear scalar equations of any order provide examples of

systems of arbitrarily large dimension k that are controllable with only

one control:‡

x(k) + a1x
(k−1) + . . .+ ak−1x = u.

‡Exercise: Check that the rank condition is fulfilled in this case.



Bang-bang controls

Let us consider the particular case

B ∈Mn×1, (15)

i. e. m = 1, in which only one scalar control u : [0, T ] → R is available

and B is a column vector.

To build bang-bang controls it is convenient to consider the quadratic

functional:

Jbb(ϕ
0) =

1

2

[∫ T

0
| B∗ϕ | dt

]2

+ 〈x0, ϕ(0)〉 (16)

where ϕ is the solution of the adjoint system (6) with initial data ϕT .



The same arguments as above show that Jbb is also continuous and
coercive. It follows that Jbb attains a minimum in some point ϕ̂T ∈ Rn.

The optimality condition (the Euler-Lagrange equations) its minimiz-
ers satisfy:∫ T

0
| B∗ϕ̂ | dt

∫ T

0
sgn (B∗ϕ̂)B∗ψ(t)dt+ 〈x0, ϕ(0)〉 = 0

for all ϕT ∈ R, where ϕ is the solution of the adjoint system (6) with
initial data ϕT .

The control we are looking for is

u =
∫ T

0
| B∗ϕ̂ | dt sgn (B∗ϕ̂)

where ϕ̂ is the solution of (6) with initial data ϕ̂T .



Note that the control u is of bang-bang form. Indeed, u takes only

two values ±
∫ T
0 | B∗ϕ̂ | dt. The control switches from one value to

the other finitely many times when the function B∗ϕ̂ changes sign.

This control is of minimal L∞(0, T ) norm among all possible controls.

and the proof finishes.§

§Exercise: Check what are the conditions needed to guarantee the bang-bang
controllability in the case where m ≥ 2, i. e. more than once control is applied. In
that case the rank condition for the pair (A,B) does not suffice and one actually
needs each colum bj of B to be such that the pais (A, bj) satisfies the Kalman rank
condition.



Stabilization of finite dimensional linear systems

The controls we have obtained so far are the so called open loop

controls. In practice, it is interesting to get closed loop or feedback

controls, so that its value is related with the state itself in real time.

In this section, to simplify the presentation, we assume that A is a

skew-adjoint matrix, i. e. A∗ = −A. In this case, < Ax, x >= 0.

Consider the system {
x′ = Ax+Bu

x(0) = x0.
(17)



When u ≡ 0, the energy of the solution of (17) is conserved. Indeed,

by multiplying (17) by x, if u ≡ 0, one obtains

d

dt
|x(t)|2 = 0. (18)

Hence,

|x(t)| = |x0|, ∀t ≥ 0. (19)

The problem of stabilization can be formulated in the following way.

Suppose that the pair (A,B) is controllable. We then look for a matrix

L such that the solution of system (17) with the feedback control law

u(t) = Lx(t) (20)



has a uniform exponential decay, i.e. there exist c > 0 and ω > 0

such that

|x(t)| ≤ ce−ωt|x0| (21)

for any solution.

Note that, according to the law (20), the control u is obtained in real

time from the state x.

In other words, we are looking for matrices L such that the solution

of the system

x′ = (A+BL)x = Dx (22)

has an uniform exponential decay rate.



Remark that we cannot expect more than (21). Indeed, for instance,
the solutions of (22) may not satisfy x(T ) = 0 in finite time T . Indeed,
if it were the case, from the uniqueness of solutions of (22) with final
state 0 in t = T , it would follow that x0 ≡ 0.

Theorem 2 If A is skew-adjoint and the pair (A,B) is controllable
then L = −B∗ stabilizes the system, i.e. the solution of{

x′ = Ax−BB∗x
x(0) = x0

(23)

has an uniform exponential decay (21).

Proof: With L = −B∗ we obtain that

1

2

d

dt
|x(t)|2 = − < BB∗x(t), x(t) >= − | B∗x(t) |2≤ 0.



Hence, the norm of the solution decreases in time.

Moreover,

|x(T )|2 − |x(0)|2 = −2
∫ T

0
| B∗x |2 dt. (24)

To prove the uniform exponential decay it is sufficient to show that

there exist T > 0 and c > 0 such that

|x(0)|2 ≤ c
∫ T

0
| B∗x |2 dt (25)

for any solution x of (23). Indeed, from (24) and (25) we would

obtain that

|x(T )|2 − |x(0)|2 ≤ −
2

c
|x(0)|2 (26)



and consequently

|x(T )|2 ≤ γ|x(0)|2 (27)

with

γ = 1−
2

c
< 1. (28)

Hence,

|x(kT )|2 ≤ γk|x0|2 = e(lnγ)k|x0|2 ∀k ∈ N. (29)

Now, given any t > 0 we write it in the form t = kT+δ, with δ ∈ [0, T )
and k ∈ N and we obtain that

|x(t)|2 ≤ |x(kT )|2 ≤ e−|ln(γ)|k|x0|2 =

= e−|ln(γ)|
(
t
T

)
e|ln(γ)| δT |x0|2 ≤ 1

γe
−|ln(γ)|

T t|x0|2.



We have obtained the desired decay result (21) with

c =
1

γ
, ω =

| ln(γ) |
T

. (30)

To prove (25) we decompose the solution x of (23) as x = ϕ+y with
ϕ and y solutions of the following systems:{

ϕ′ = Aϕ

ϕ(0) = x0,
(31)

and {
y′ = Ay −BB∗x

y(0) = 0.
(32)

Remark that, since A is skew-adjoint, (31) is exactly the adjoint sys-
tem (6) except for the fact that the initial data are taken at t = 0.



As we have seen in the proof of Theorem 1, the pair (A,B) being
controllable, the following observability inequality holds for system
(31):

|x0|2 ≤ C
∫ T

0
| B∗ϕ |2 dt. (33)

Since ϕ = x− y we deduce that

|x0|2 ≤ 2C

[∫ T

0
| B∗x |2 dt+

∫ T

0
| B∗y |2 dt

]
.

On the other hand, it is easy to show that the solution y of (32)
satisfies:

1

2

d

dt
| y |2= −〈B∗x, B∗y〉 ≤ |B∗x| |B∗| |y| ≤

1

2

(
|y|2 + |B∗|2|B∗x|2

)
.



From Gronwall’s inequality we deduce that

| y(t) |2≤ |B∗|2
∫ t

0
et−s | B∗x |2 ds ≤ |B∗|2eT

∫ T

0
| B∗x |2 dt (34)

and consequently∫ T

0
| B∗y |2 dt ≤ |B|2

∫ T

0
| y |2 dt ≤ T |B|4eT

∫ T

0
| B∗x |2 dt.

Finally, we obtain that

| x0 |2≤ 2C
∫ T

0
| B∗x |2 dt+C|B∗|4eTT

∫ T

0
| B∗x |2 dt ≤ C′

∫ T

0
| B∗x |2 dt

and the proof of Theorem 2 is complete.



Example: Consider the damped harmonic oscillator:

mx′′ +Rx+ kx′ = 0, (35)

where m, k and R are positive constants.

Note that (36) may be written in the equivalent form

mx′′ +Rx = −kx′

which indicates that an applied force, proportional to the velocity of
the point-mass and of opposite sign, is acting on the oscillator.

It is easy to see that the solutions of this equation have an expo-
nential decay property. Indeed, it is sufficient to remark that the two
characteristic roots have negative real part. Indeed,

mr2 +R+ kr = 0 ⇔ r± =
−k ±

√
k2 − 4mR

2m



and therefore

Re r± =


− k

2m if k2 ≤ 4mR

− k
2m ±

√
k2

4m − R
2m if k2 ≥ 4mR.



We observe here the classical overdamping phenomenon. Contradict-

ing a first intuition it is not true that the decay rate increases when

the value of the damping parameter k increases.

This can be avoided if the feedback mechanisms also involves the

state x and not only its time derivative. In other words, if instead of

the previous equation we consider

mx′′ +Rx+ k1x
′ + k2x = 0, (36)

then the decay rate can be made arbitrarily large.



If (A,B) is controllable, we have proved the uniform stability property
of the system (17), under the hypothesis that A is skew-adjoint.
However, this property holds even if A is an arbitrary matrix. More
precisely, we have

Theorem 3 If (A,B) is controllable then it is also stabilizable. More-
over, it is possible to prescribe any complex numbers λ1, λ2,...,λn as
the eigenvalues of the closed loop matrix A+ BL by an appropriate
choice of the feedback matrix L so that the decay rate may be made
arbitrarily fast.

This result is not in contradiction with the behavior we observed above
on the harmonic oscillator (the overdamping phenomenon). In order
to obtain the arbitrarily fast decay one needs to use all components
of the state on the feedback law!



We have shown that

• Controllability and observabilitiy are equivalent notions (Wiener’s
cybernetics);

• Both hold for all T if and only if the Kalman rank condition is
fulfilled.

• The controls may be obtained as minimizers of suitable quadratic
functionals over the space of solutions of the adjoint system.

• There are very many controls ( smooth ones, in bang-bang form,...
) that can be characterized by variational methods.



• The key ingredient is always the observability inequality.

• Controllable systems are stabillizable by means of closed loop or

feedback controls.


