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THE GENERAL PROBLEM:

TO BUILD CONVERGENT NUMERICAL SCHEMES FOR NON-

LINEAR PARTIAL DIFFERENTIAL EQUATIONS (PDE).

Example: SCHRÖDINGER EQUATION.

Similar problems for other dispersive equations: Korteweg-de-Vries,

wave equation, ...

Goal: To cover the classes of NONLINEAR Schrödinger equations

that can be solved nowadays with fine tools from PDE theory and

Harmonic analysis.



Key point: To handle nonlinearities one needs to decode the intrin-

sic hidden properties of the underlying linear differential operators

(Strichartz, Bourgain, Kenig, Ponce, Saut, Vega, Burq, Gérard, ...)

This has been done succesfully for the PDE models.

What about Numerical schemes?

FROM FINITE TO INFINITE DIMENSIONS IN PURELY

CONSERVATIVE SYSTEMS.....



UNDERLYING MAJOR PROBLEM:

Reproduce in the computer the dynamics in Continuum and

Quantum Mechanics, avoiding spurious numerical solutions.

The issue can only be understood by adapting at the discrete

numerical level the techniques developed in the continuous context.

WARNING!

NUMERICS = CONTINUUM + (POSSIBLY) SPURIOUS



MOTIVATION/APPLICATIONS

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/schrcn.html#c1



• Quantum control and Computing.

Laser control in Quantum mechanical and molecular systems to

design coherent vibrational states.

In this case the fundamental equation is the Schrödinger one.

The Schrödinger equation may be viewed as a wave equation

with inifnite speed of propagation.



P. Brumer and M. Shapiro, Laser Control of Chemical reactions,

Scientific American, March, 1995, pp.34-39.



Strongly inspired in our previous work on the CONTROL OF

WAVE PHENOMENA

E. Z. SIAM Review, 47 (2) (2005), 197-243.



PRELIMINARIES I: THE ABSTRACT FORMULATION OF A
PDE

du

dt
(t) = Au(t), t ≥ 0; u(0) = u0.

A an unbounded operator in a Hilbert (or Banach) space H, with
domain D(A) ⊂ H.

The solution is given by

u(t) = eAtu0.

Semigroup theory provides conditions under which eAt is well de-
fined. Roughly A needs to be maximal (A+ I is invertible) and
dissipative (A ≤ 0).

Most of the linear PDE from Mechanics enter in this general
frame: wave, heat, Schrödinger equations,...



Nonlinear problems are solved by using fixed point arguments on

the variation of constants formulation of the PDE:

ut(t) = Au(t) + f(u(t)), t ≥ 0; u(0) = u0.

u(t) = eAtu0 +
∫ t

0
eA(t−s)f(u(s))ds.

Assuming

f : H → H is locally Lipschitz,

allows proving local (in time) existence and uniqueness in

u ∈ C([0, T ];H).



But, often in applications, the property that f : H → H is locally

Lipschitz FAILS.

For instance H = L2(Ω) and f(u) = |u|p−1u, with p > 1.



In order for this procedure to be applied one needs to discover
other properties of the underlying linear equation (smoothing, dis-
persion). Whenever eAt has the property that

eAtu0 ∈ X,
then, it is natural to look for solutions of the nonlinear problem
in

C([0, T ];H) ∩X.

One then needs to investigate whether f : C([0, T ];H) ∩ X →
C([0, T ];H)∩X is locally Lipschitz. This requires extra work: We
need to test the behavior of f in the space X. But the the class
of functions to be tested is restricted to those belonging to X.

Typically in applications X = Lr(0, T ;Lq(Ω)). This allows enlarg-
ing the class of solvable nonlinear PDE in a significant way.



PRELIMINARIES II: NUMERICAL ANALYSIS

Replace the PDE ut(t) + Au(t) = 0 by a discrete scheme that a

computer might solve.

A ∼ Ah, Ah being a discrete operator.

Ah → A, as h→ 0.

The continuous derivatives are replaced by discrete ones according

to Taylor’s expansions.

The new problem becomes:

ut(t) = Ahu(t), t ≥ 0; u(0) = u0.

It is now typically a finite-dimensional system of ODE.



One can finally apply the standard theory of numerical analysis

for ODE, to replace it by a purely discrete scheme. For instance:

uk+1 = uk + (∆t)Ahu
k,

k ≥ 1, which arises naturally when replacing ut =
du
dt by uk+1−uk

∆t .

THE MAIN QUESTION:

DOES THE NUMERICAL SCHEME CONVERGE?

max
0≤t≤T

||u(t)− uh(t)||H → 0, as h→ 0.??????



According to P. Lax’s Theorem,

CONVERGENCE = CONSISTENCY + STABILITY.

Consistency: The numerical scheme is in agreement with the rules
of Differential Calculus, so that the discretization approximates
the differential operator involved in the PDE, and not another
one!. Consistency means that the scheme is “reasonable”.

Stability: The numerical scheme should be so that all trajectories
remain uniformly bounded.

sup
h>0

max
0≤t≤T

||uh(t)||H <∞.

It holds immediately if Ah ≤ 0, i. e. if the numerical scheme is
dissipative as well.



The same analysis suffices to deal with nonlinear equations pro-

vided the non-linear term f : H → H is locally Lipschitz. It suffices

to replace

ut(t) = Au(t) + f(u), t ≥ 0; u(0) = u0,

by

ut(t) = Ahu(t) + f(u), t ≥ 0; u(0) = u0,

and to combine:

• the convergence result for the linear problem;

• a fixed point argument;

• the variations of constants formula.



BUT IF WORKING IN C([0, T ]; : H) ∩ X WAS NEEDED FOR

THE CONTINUOUS PROBLEM, IT IS HOPELESS TO PROVE

CONVERGENCE OF THE NUMERICAL SCHEME IF IT DOES

NOT HAVE AND APPROPRIATE BEHAVIOR IN X (OR Xh)

AS WELL.

THIS OFTEN FAILS!



The Linear Schrödinger Equation (LSE):{
iut + uxx = 0 x ∈ R, t > 0,
u(0, x) = ϕ x ∈ R.

(1)

It may be written in the abstract form:

ut = Au,

with

A = i∆ = i∂2 · /∂x2.

Accordingly, the LSE generates a group of isometries ei∆t in
L2(R), i. e.

||u(t)||L2(R) = ||ϕ||L2(R), ∀t ≥ 0.

The fundamental solution is explicit G(x, t) = (4iπt)−1/2exp(−|x|2/4iπt).



Dispersive properties: Fourier components with different wave
numbers propagate with different velocities.

• L1 → L∞ decay.

||u(t)||L∞(R) ≤ (4πt)−
1
2||ϕ||L1(R).

||u(t)||Lp(R) ≤ (4πt)
−(1

2−
1
p)||ϕ||

Lp
′(R)

,2 ≤ p ≤ ∞.

• Local gain of 1/2-derivative: If the initial datum ϕ is in L2(R),

then u(t) belongs to H
1/2
loc (R) for a.e. t ∈ R.

These properties are not only relevant for a better understand-
ing of the dynamics of the linear system but also to derive well-
posedness results for nonlinear Schrödinger equations (NLS).



The three-point finite-difference scheme

Consider the finite difference approximation

i
duh

dt
+ ∆hu

h = 0, t 6= 0, uh(0) = ϕh. (2)

Here uh ≡ {uhj }j∈Z, uj(t) being the approximation of the solution
at the node xj = jh, and ∆h ∼ ∂2

x :

∆hu =
1

h2
[uj+1 + uj−1 − 2uj].

The scheme is consistent + stable in L2(R) and, accordingly, it
is also convergent, of order 2 (the error is of order O(h2)).

In fact, ||uh(t)||`2 = ||ϕ||`2, for all t ≥ 0.





The same convergence result holds for semilinear equations{
iut + uxx = f(u) x ∈ R, t > 0,
u(0, x) = ϕ x ∈ R,

(3)

provided the nonlinearity f : R → R is globally Lipschitz.

The proof is completely standard and only requires the L2-conservation

property of the continous and discrete equation.

BUT THIS ANALYSIS IS INSUFFICIENT TO DEAL WITH OTHER

NONLINEARITIES, FOR INSTANCE:

f(u) = |u|p−1u, p > 1.

IT IS JUST A MATTER OF WORKING HARDER, OR DO WE

NEED TO CHANGE THE NUMERICAL SCHEME?



LACK OF DISPERSION OF THE NUMERICAL SCHEME

Consider the semi-discrete Fourier Transform

u
u = h

∑
j∈Z

uje
−ijhξ, ξ ∈ [−

π

h
,
π

h
].

There are “slight” but important differences between the symbols

of the operators ∆ and ∆h:

p(ξ) = −ξ2, ξ ∈ R; ph(ξ) = −
4

h2
sin2(

ξh

2
), ξ ∈ [−

π

h
,
π

h
].

For a fixed frequency ξ, obviously, ph(ξ) → p(ξ), as h → 0. This

confirms the convergence of the scheme. But this is far from

being sufficient for oul goals.





The main differences are:

• p(ξ) is a convex function;

ph(ξ) changes the convexity at ± π
2h.

• p′(ξ) has a unique zero, ξ = 0;

p′h(ξ) has the zeros at ξ = ±πh as well.

These “slight” changes on the shape of the symbol are not an

obstacle for the convergence of the numerical scheme in the L2(R)

sense. But, as we shall see, this produces the lack of uniform (in

h) dispersion of the numerical scheme and consequently, makes

the scheme useless for nonlinear problems.



LACK OF CONVEXITY = LACK OF INTEGRABILITY GAIN.

The symbol ph(ξ) looses convexity near ±π/2h. Applying the
stationary phase lemma (T. Carbery, G. Gigante, F. Soria):

Theorem 1 Let 1 ≤ q1 < q2. Then, for all positive t,

sup
h>0,ϕh∈lq1h (Z)

|| exp(it∆h)ϕ
h||
l
q2
h (Z)

||ϕh||
l
q1
h (Z)

= ∞. (4)

Initial datum with Fourier transform concentrated on π/2h.

LACK OF CONVEXITY = LACK OF LAPLACIAN.

A. Stefanov & P. G. Kevrekidis, Nonlinearity 18 (2005) 18411857.



Lemma 1 (Van der Corput)

Suppose φ is a real-valued and smooth function in (a, b) that

|φ(k)(ξ)| ≥ 1 for all x ∈ (a, b). Then∣∣∣∣∣
∫ b

a
eitφ(ξ)dξ

∣∣∣∣∣ ≤ ckt
−1/k (5)



LACK OF SLOPE= LACK OF REGULARITY GAIN.

Theorem 2 Let q ∈ [1,2] and s > 0. Then

sup
h>0,ϕh∈lqh(Z)

∣∣∣∣Sh(t)ϕh∣∣∣∣~sloc(Z)∣∣∣∣ϕh∣∣∣∣
l
q
h(Z)

= ∞. (6)

Initial data whose Fourier transform is concentrated around π/h.

LACK OF SLOPE= VANISHING GROUP VELOCITY.

Trefethen, L. N. (1982). SIAM Rev., 24 (2), pp. 113–136.



A REMEDY: FOURIER FILTERING Eliminate the pathologies
that are concentrated on the points ±π/2h and ±π/h of the spec-
trum.

Replace the complete solution

uj(t) =
1

2π

∫ π/h

−π/h
eijhξeiph(ξ)t

u
ϕ(ξ)dξ, j ∈ Z.

by the filtered one

u∗j(t) =
1

2π

∫ (1−δ)π/2h

−(1−δ)π/2h
eijhξeiph(ξ)t

u
ϕ(ξ)dξ, j ∈ Z.

a) This guarantees the same dispersion properties of the contin-
uous Schrödinger equation to be uniformly (on h) true;

b) The convergence of the filtered numerical scheme still holds.





But Fourier filtering:

• Is computationally expensive: Compute the complete solution

in the numerical mesh, compute its Fourier tranform, filter

and the go back to the physical space by applying the inverse

Fourier transform;

• Is of little use in nonlinear problems.

Other more efficient methods?



A VISCOUS FINITE-DIFFERENCE SCHEME

Consider:  i
duh

dt
+ ∆hu

h = ia(h)∆hu
h, t > 0,

uh(0) = ϕh,

(7)

where the numerical viscosity parameter a(h) > 0 is such that

a(h) → 0

as h→ 0.

This condition guarantess the consistency.

This scheme generates a dissipative semigroup Sh+(t), for t > 0:

||u(t)||2
`2

= ||ϕ||2
`2
− 2a(h)

∫ t

0
||u(τ)||2~1dτ.



This is a Two dynamical systems are mixed in this scheme:

• the purely conservative one, idu
h

dt + ∆hu
h = 0,

• the heat equation uht − a(h)∆hu
h = 0 with viscosity a(h).

Viscous regularization is a typical mechanism to improve conver-

gence of numerical schemes: hyperbolic conservation laws and

shocks, level set methods for image processing, ...

The receipt: “Convergent numerical scheme + extra viscosity (at

a suitable scale), keeps convergence and enhances the regulartity

of solutions”.



The main dispersive properties of this scheme are as follows:

Theorem 3 (Lp-decay) Let fix p ∈ [2,∞] and α ∈ (1/2,1] . Then

for

a(h) = h2−1/α,

Sh±(t) maps continuously l
p′
h (Z) to l

p
h(Z) and there exists some

positive constants c(p) such that

||Sh±(t)ϕh||lph(Z) ≤ c(p)(|t|−α(1−
2
p) + |t|−

1
2(1−

2
p))||ϕh||

l
p′
h (Z)

(8)

holds for all |t| 6= 0, ϕ ∈ lp
′
h (Z) and h > 0.



Theorem 4 (Smoothing) Let q ∈ [2α,2] and s ∈ [0,1/2α − 1/q].

Then for any bounded interval I and ψ ∈ C∞c (R) there exists a

constant C(I, ψ, q, s) such that∣∣∣∣ψEhuh(t)∣∣∣∣
L2(I;Hs(R))

≤ C(I, ψ, q, s)
∣∣∣∣ϕh∣∣∣∣

l
q
h(Z)

. (9)

for all ϕh ∈ lqh(Z) and all h < 1.

For q = 2, s = 1
2

(
1
α − 1

)
. Adding numerical viscosity at a suitable

scale we can reach the Hs-regularization for all s < 1/2, but not

for the optimal case s = 1/2. This will be a limitation to deal

with the critical nonlinearities. Indeed, when α = 1/2, a(h) = 1

and the scheme is no longer an approximation of the Schrödinger

equation itself.



The proof of these results relies on the principle above. Solutions

are obtained as an iterated convolution of a discrete Schrödinger

Kernel and a parabolic one. The heat kernel kills the high fre-

quencies, while for the low ones the discrete Schrödinger kernel

behaves very much the same as the continuous one.

At a technical level, the proof combines the methods of Harmonic

Analysis for continous dispersive and sharp estimates of Bessel

functions arising in the explicit form of the discrete heat kernel

(Kenig-Ponce-Vega, Barceló-Córdoba,...).













NUMERICAL APPROXIMATION OF THE NLSE



Consider now: {
iut + uxx = |u|pu x ∈ R, t > 0,
u(0, x) = ϕ(x) x ∈ R,

(10)

which can also be rewritten by means of the variation of constants
formula:

u(t) = S(t)ϕ− i
∫ t

0
S(t− s)|u(s)|pu(s)ds, (11)

where S(t) = eit∆ is the Schrödinger operator.

Let us recall the following classical result:

Theorem 5 (Global existence in L2, Tsutsumi, 1987). For 0 ≤
p < 4 and ϕ ∈ L2(R), there exists a unique solution u in C(R, L2(R))∩
L
q
loc(L

p+2) with q = 4(p+1)/p that satisfies the L2-norm conser-
vation and depends continuously on the initial condition in L2.



Consider now the semi-discretization:
i
duh

dt
+ ∆hu

h = ia(h)∆hu
h + |uh|puh, t > 0

uh(0) = ϕh,

i
duh

dt
+ ∆hu

h = −ia(h)∆hu
h + |uh|puh, t < 0.

(12)

with 0 < p < 4 and

a(h) = h
2− 1

α(h)

such that

α(h) ↓ 1/2, a(h) → 0

as h ↓ 0.



Then:

• The viscous semi-discrete nonlinear Schrödinger equation is

globally in time well-posed;

• The solutions of the semi-discrete system converge to those

of the continuous Schrödinger equation as h→ 0.



A TWO-GRID ALGORITHM

Inspired on the method introduced by R. Glowinski (J. Compt.

Phys., 1992) for the numerical approximation of controls for wave

equations .

The idea: To work on the grid of mesh-size h with slowly oscil-

lating data interpolated from a coarser grip of size 4h.The ratio

1/2 of meshes does not suffice!

The space of discrete functions on the coarse mesh 4hZ:

ChZ4 = {ψ ∈ ChZ : suppψ ⊂ 4hZ},

and the extension operator E:

(Eψ)((4j+r)h) = 4−r
4 ψ(4jh)+r

4ψ((4j+4)h), ∀j ∈ Z, r = 0,3, ψ ∈ ChZ4 .





Let V h4 be the space of slowly oscillating sequences (SOS) on the

fine grid

V h4 = {Eψ : ψ ∈ ChZ4 },

and the projection operator Π : ChZ → ChZ4 :

(Πφ)((4j + r)h) = φ((4j + r)h)δ4r, ∀j ∈ Z, r = 0,3, φ ∈ ChZ.

We now define the smoothing operator

Π̃ = EΠ : ChZ → V h4 ,

which acts as a a filtering, associating to each sequence on the fine

grid a slowly oscillating sequence. The discrete Fourier transform

of a slowly oscillating sequence SOS is as follows:̂̃
Πφ(ξ) = 4cos2(ξh) cos2(ξh/2)Π̂φ(ξ).





The semi-discrete Schrödinger semigroup when acting on SOS
has the same properties as the continuous Schrödinger equation:

Theorem 6 i) For p ≥ 2,∣∣∣∣eit∆hΠ̃ϕ
∣∣∣∣
lp(hZ)

. |t|−1/2(1/p′−1/p)
∣∣∣∣Π̃ϕ∣∣∣∣

lp
′(hZ)

.

ii) Furthermore, for every admissible pair (q, r),∣∣∣∣eit∆hΠ̃ϕ
∣∣∣∣
Lq(R,lr(hZ))

.
∣∣∣∣Π̃ϕ∣∣∣∣

l2(hZ)
.

Sketch of the Proof. By scaling, we can assume that h = 1. We
write T (t) as a convolution operator T (t)ψ = Kt ∗ ψ where

K̂t(ξ) = 4e−4it sin2 ξ/2 cos2 ξ cos2(ξ/2).



We need ∣∣∣∣Kt
∣∣∣∣
l∞(Z)

. 1/
√
t.

The fact that (4 sin2(ξ/2))′′ = 2cos(ξ) allows applying the sharp

results by Kenig-Ponce-Vega and Keel-Tao to derive the desired

decay.

SOS vanish at the spectral points ±π/2h implies gain of integra-

bility.

This is consistent with the previous analysis of the viscosity method.



Concerning the local smoothing properties we can prove that

Theorem 7 Let r ∈ (1,2]. Then

supj∈Z
∫∞
−∞

∣∣∣(D1−1/reit∆hΠ̃f)j
∣∣∣2 dt .

∣∣∣∣Π̃f ∣∣∣∣2
lr(hZ)

(13)

for all f ∈ lr(hZ), uniformly in h > 0.

Sketch of the Proof. Applying results by Kenig-Ponce-Vega we
have to T1 we get

supx∈R
∫∞
−∞ |(T1(t)ϕ)(x)|2 dt .

∫ π
−π

|f̂(ξ)|2cos4 ξ cos4(ξ/2)
| sin ξ| dξ.

Then, using the fact that cos4 ξ cos4(ξ/2) vanishes at ξ = ±π, we
can compensate the singularity of sin(ξ) in the denominator and



guarantee that

supx∈R
∫∞
−∞ |(T1(t)ϕ)(x)|2 dt .

∫ π
−π

|f̂(ξ)|2
|ξ| dξ .

∣∣∣∣D−1/2f

∣∣∣∣2
L2(R)

.

SOS vanish at the spectral points = ±π, implies gain of local

regularity.

This is also consistent with the results obtained by means of the

viscosity method.

The effect of the two-grid algorith combining the meshes h and

4h is clearly observed when trying to mimic at the discrete level

the properties of the continuous semigroup.





A TWO-GRID CONSERVATIVE APPROXIMATION OF THE

NLSE

Consider the semi-discretization

i
duh

dt
+ ∆hu

h = Π̃f(uh), t ∈ R; uh(0) = Π̃ϕh, (14)

where f(uh) is a suitable approximation of |u|pu with 0 < p < 4.

By using the two-grid filtering operator both in the nonlinearity

and on the initial data we guarantee that the corresponding tra-

jectories enjoy the properties above of gain of local regularity and

integrability.

But to prove the stability of the scheme we need to guarantee the

conservation of the l2(hZ) norm of solutions, a property that the



solutions of NLSE satisfy. For that the nonlinear term f(uh) has

to be chosen such that (Π̃f(uh), uh)l2(hZ) ∈ R. These property is

guranteed with the choice

(f(uh))4j = g
(
(uh4j +

∑3
r=1

4−r
4 (uh4j+r + uh4j−r))

/
4

)
; g(s) = |s|ps.

The same arguments as in the viscosity method allow showing

that the solutions of the two-grid numerical scheme converge as

h→ 0 to the solutions of the continuous NLSE.



TWO GOOD NEWS:

• Lecture is ending.... ;

• Things improve when we also discretize in time.

Time discretization ∼ time upwind ∼ time viscosity ∼ space-like

viscosity.



CONCLUSIONS:

• FOURIER FILTERING (AND SOME OTHER VARIANTS
LIKE NUMERICAL VISCOSITY,...) ALLOW BUILDING
NUMERICAL SCHEMES FOR AN EFFICIENT APPROX-
IMATION OF LINEAR AND NONLINEAR SCHÖDINGER
EQUATIONS.

• THESE NEW SCHEMES ALLOW CAPTURING THE RIGHT
DISPERSION PROPERTIES OF THE CONTINUOUS MOD-
ELS AND CONSEQUENTLY PROVIDE CONVERGENT AP-
PROXIMATIONS FOR NONLINEAR EQUATIONS TOO.

• IN PRACTICE THE TWO-GRID METHOD IS EASIER TO
APPLY. IT MAY ALSO BE EASIER TO ADAPT TO GEN-
ERAL NON-REGULAR MESHES.



• THE METHODS DEVELOPED IN THIS CONTEXT ARE

STRONGLY INSPIRED ON OUR PREVIOUS WORK ON

THE NUMERICAL APPROXIMATION OF CONTROLS FOR

WAVE EQUATIONS.

• MUCH REMAINS TO BE DONE IN ORDER TO DEVELOP

A COMPLETE THEORY (MULTIDIMENSIONAL PROB-

LEMS, BOUNDARY-VALUE PROBLEMS, NONREGULAR

MESHES, OTHER PDE’S,...)

• A COMPLETE THEORY SHOULD COMBINE FINE HAR-

MONIC ANALYSIS, NUMERICAL ANALYSIS AND PDE THE-

ORY.



• THE SAME IDEAS SHOULD BE USEFUL TO DEAL WITH

OTHER ISSUES SUCH AS TRANSPARENT BOUNDARY

CONDITIONS, SCATTERING PROBLEMS, ...

Gracias !

Thank you!

L. Ignat and E. Z. C. R. Acad. Sci. Paris, 340 (7) (2005),

529534.



Theorem 8 (Global well-posedness of the numerical problem)

Let p ∈ (0,4) and α(h) ∈ (1/2,2/p]. Let q(h) be such that

(q(h), p+ 2) is an α(h)-admissible pair.

Then for every ϕh ∈ l2h(Z), there exists a unique global solution

uh ∈ C([0,∞), l2h(Z)) ∩ Lq(h)
loc ([0,∞); lp+2

h (Z)) (15)

of the problem (12) which satisfies the following estimates

||uh||L∞([0,∞),l2h(Z)) ≤ ||ϕ||l2h(Z) (16)

and

||uh||
Lq(h)(I,lp+2

h (Z))
≤ c(I)||ϕ||l2h(Z) (17)

where the above constants are independent of h.



Theorem 9 (Convergence as h→ 0)

The sequence Euh satisfies

Euh
?
⇀u in L∞([0,∞), L2(R)), (18)

Euh ⇀ u in Lsloc([0,∞), Lp+2(R)), ∀ s < q, (19)

Euh → u in L2
loc([0,∞)×R), (20)

|Euh|p|Euh|⇀ |u|pu in L
q′
loc([0,∞), L(p+2)′(R)) (21)

where u is the unique weak solution of (NSE).




