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Motivation

Motivation

In various fields of Science, Engineering and Industry control and design
issues play often a key role.
Many of these issues have a great impact in our planet and quality of life:

Seismic waves, earthquakes

Environment: Floodings

Optimal shape design in aeronautics

Human cardiovascular system: the bypass

Oil prospection and recovery

Irrigation systems

........
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Motivation

From the perspective of the climate sciences, the following issues are
particularly relevant:

Accurate numerical simulations for large times

Finite time horizon versus steady state control

Robust control under systems uncertainties

And they can be only addressed combining a number of tools of Applied
Mathematics:

Partial Differential Equations: Models describing motion in the
various fields of Mechanics: Elasticity, Fluids,...

Numerical Analysis: Allowing to discretize these models so that
solutions may be approximated algorithmically, with emphasis on long
time accuracy.

Control: Automatic and active control of processes to guarantee their
best possible behavior and dynamics.

Optimal Design: Design of shapes to enhance the desired properties
(bridges, dams, airplanes,..)
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Long time numerical simulations

Table of Contents

1 Motivation

2 Long time numerical simulations

3 The steady state model

4 Evolution versus steady state control

5 Averaged controllability of uncertain systems

6 Conclusions

Enrique Zuazua (BCAM) Climate, Numerics and Control Rome, June 2013 5 / 45



Long time numerical simulations

Geometric integration

Numerical integration of the pendulum
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Long time numerical simulations

Climate modelling

Climate modeling is a grand challenge computational problem, a
research topic at the frontier of computational science.

Simplified models for geophysical flows have been developed aim to:
capture the important geophysical structures, while keeping the
computational cost at a minimum.

Although successful in numerical weather prediction, these models
have a prohibitively high computational cost in climate modeling.

Xu Wang, www.ima.umn.edu/ wangzhu/
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Long time numerical simulations

Thames barrier

The Thames Barrier’s purpose is to prevent London from being
flooded by exceptionally high tides and storm surges.
A storm surge generated by low pressure in the Atlantic Ocean, past
the north of Scotland may then be driven into the shallow waters of
the North Sea. The surge tide is funnelled down the North Sea which
narrows towards the English Channel and the Thames Estuary. If the
storm surge coincides with a spring tide, dangerously high water levels
can occur in the Thames Estuary. This situation combined with
downstream flows in the Thames provides the triggers for flood
defence operations.
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Long time numerical simulations

Tsunamis

Some isolated waves (solitons) are large and travel without loss of
energy.

This is the case of tsunamis and rogue waves.

Warning: Hence, there is no use trying sending a counterwave to stop a
tsunami!
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Long time numerical simulations

Sonic boom

Goal: the development of supersonic aircraft that are sufficiently quiet
so that they can be allowed to fly supersonically over land.
The pressure signature created by the aircraft must be such that,
when it reaches the ground, (a) it can barely be perceived by the
human ear, and (b) it results in disturbances to man-made structures
that do not exceed the threshold of annoyance for a significant
percentage of the population.

Juan J. Alonso and Michael R. Colonno, Multidisciplinary Optimization
with Applications to Sonic-Boom Minimization, Annu. Rev. Fluid Mech.

2012, 44:505 – 26.
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Long time numerical simulations

Joint work with L. Ignat & A. Pozo

Consider the 1-D conservation law with or without viscosity:

ut +
[
u2
]
x

= εuxx , x ∈ R, t > 0.

Then:

If ε = 0, u(·, t) ∼ N(·, t) as t →∞;

If ε > 0, u(·, t) ∼ uM(·, t) as t →∞,

uM is the constant sign self-similar solution of the viscous Burgers
equation (defined by the mass M of u0), while N is the so-called
hyperbolic N-wave, defined as:

N(x , t) :=

{
x
t , if − 2(pt)

1
2 < x < (2qt)

1
2

0 otherwise

p := −2 min
y∈R

∫ y

∞
u0(x)dx , q := 2 max

y∈R

∫ y

∞
u0(x)dx
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Long time numerical simulations

4 L. I. IGNAT, A. POZO, E. ZUAZUA

Figure 1. Di↵usive wave and N-wave evaluated at t = 10, with �x = 1/10,
M� = 1/10, p� = 1/10 and q� = 1/5.

The rest of this paper is divided as follows: in Section 2 we present some classical facts about
the numerical approximation of one-dimensional conservation laws and obtain preliminary results
that will be used in the proof of the main results of this paper. In Section 3 we prove the main
result, Theorem 1.1, and we illustrate it in Section 4 with a numerical simulation. In Section
5, we discuss the approximation through similarity variables and compare the results to the
approximations obtained directly from the physical ones. Finally, in Section 6 we give some
ideas about how to generalize the results to other numerical schemes and to more general fluxes
(uniformly convex or odd ones).

2. Preliminaries

In this part, following [3] and [7], we recall a few of the well-known results about numerical
schemes for 1D scalar conservation laws. We obtain some new results that will be used in
Section 3 in the proof of Theorem 1.1. We restrict our attention to the Burgers equation, i.e.,
the nonlinear term f is given by

f(u) =
u2

2
.

More general results will be discussed in Section 5 for uniformly convex fluxes and odd fluxes.
First, given a time-step �t and a uniform spatial grid � with space increment �x, we approxi-
mate the conservation law

(2.1)

(
ut +

⇣
u2

2

⌘
x

= 0, x 2 R, t > 0,

u(x, 0) = u0(x), x 2 R,

by an explicit di↵erence scheme of the form:

(2.2) un+1
j = H(un

j�k, . . . , u
n
j+k), 8n � 0, j 2 Z,

where H : R2k+1 ! R, k � 1, is a continuous function and un
j denotes the approximation of

the exact solution u at the node (n�t, j�x). Assuming that there exists a continuous function
g : R2k ! R, called numerical flux, such that

H(u�k, . . . , uk) = u0 � � [g(u�k+1, . . . , uk) � g(u�k, . . . , uk�1)] , � = �t/�x,
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Long time numerical simulations

Conservative schemes

Let us consider now numerical approximation schemes





un+1
j = uj

n −
∆t

∆x

(
gn
j+1/2 − gn

j−1/2

)
, j ∈ Z,n > 0.

u0
j = 1

∆x

∫ xj+1/2

xj−1/2
u0(x)dx , j ∈ Z,

The approximated solution u∆ is given by

u∆(t, x) = un
j , xj−1/2 < x < xj+1/2, tn ≤ t < tn+1,

where tn = n∆t and xj+1/2 = (j + 1
2 )∆x .

Is the large tine dynamics of these discrete systems, a discrete version of
the continuous one?
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Long time numerical simulations

3-point conservative schemes

1 Lax-Friedrichs

gLF (u, v) =
u2 + v 2

4
− ∆x

∆t

(
v − u

2

)
,

2 Engquist-Osher

gEO(u, v) =
u(u + |u|)

4
+

v(v − |v |)
4

,

3 Godunov

gG (u, v) =





min
w∈[u,v ]

w2

2 , if u ≤ v ,

max
w∈[v ,u]

w2

2 , if v ≤ u.
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Long time numerical simulations

Numerical viscosity

We can rewrite three-point monotone schemes in the form

un+1
j − un

j

∆t
+

(un
j+1)2 − (un

j−1)2

4∆x
= R(un

j , u
n
j+1)− R(un

j−1, u
n
j )

where the numerical viscosity R can be defined in a unique manner as

R(u, v) =
Q(u, v)(v − u)

2
=
λ

2

(u2

2
+

v 2

2
− 2g(u, v)

)
.

For instance:

RLF (u, v) =
v − u

2
,

REO(u, v) =
λ

4
(v |v | − u|u|),

RG (u, v) =





λ
4 sign(|u| − |v |)(v 2 − u2), v ≤ 0 ≤ u,

λ
4 (v |v | − u|u|), elsewhere.
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Long time numerical simulations

Properties

These three schemes are wel-known to satisfy the following properties:

They converge to the entropy solution

They are monotonic

They preserve the total mass of solutions

They are OSLC consistent:

un
j−1 − un

j+1

2∆x
≤ 2

n∆t

L1 → L∞ decay with a rate O(t−1/2)

Similarly they verify uniform BV loc estimates
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Long time numerical simulations

Main result

Theorem (Lax-Friedrichs scheme)

Consider u0 ∈ L1(R) and ∆x and ∆t such that λ
∣∣∣un
∣∣∣
∞,∆
≤ 1,

λ = ∆t/∆x . Then, for any p ∈ [1,∞), the numerical solution u∆ given by
the Lax-Friedrichs scheme satisfies

lim
t→∞

t
1
2

(1− 1
p

)
∣∣∣u∆(t)− w(t)

∣∣∣
Lp(R)

= 0,

where the profile w = wM∆
is the unique solution of





wt +
(
w2

2

)
x

= (∆x)2

2 wxx , x ∈ R, t > 0,

w(0) = M∆δ0,

with M∆ =
∫
R u0

∆.
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Long time numerical simulations

Main result

Theorem (Engquist-Osher and Godunov schemes)

Consider u0 ∈ L1(R) and ∆x and ∆t such that λ
∣∣∣un
∣∣∣
∞,∆
≤ 1,

λ = ∆t/∆x . Then, for any p ∈ [1,∞), the numerical solutions u∆ given
by Engquist-Osher and Godunov schemes satisfy the same asymptotic
behavior but for the hyperbolic N − wave w = wp∆,q∆

unique solution of





wt +
(
w2

2

)
x

= 0, x ∈ R, t > 0,

w(0) = M∆δ0, lim
t→0

∫ x

0
w(t, z)dz =





0, x < 0,

−p∆, x = 0,

q∆ − p∆, x > 0,

with M∆ =
∫
R u0

∆ and
p∆ = −minx∈R

∫ x
−∞ u0

∆(z)dz and q∆ = maxx∈R
∫∞
x u0

∆(z)dz .
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Long time numerical simulations

Example

Let us consider the inviscid Burgers equation with initial data

u0(x) =





−0.05, x ∈ [−1, 0],

0.15, x ∈ [0, 2],

0, elsewhere.

The parameters that describe the asymptotic N-wave profile are:

M = 0.25 , p = 0.05 and q = 0.3.

We take ∆x = 0.1 as the mesh size for the interval [−350, 800] and
∆t = 0.5. Solution to the Burgers equation at t = 105:
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Long time numerical simulations
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Long time numerical simulations

Similarity variables

Let us consider the change of variables given by:

s = ln(t + 1), ξ = x/
√

t + 1, w(ξ, s) =
√

t + 1 u(x , t),

which turns the continuous Burgers equation into

ws +

(
1

2
w 2 − 1

2
ξw

)

ξ

= 0, ξ ∈ R, s > 0.

The asymptotic profile of the N-wave becomes a steady-state solution:

Np,q(ξ) =

{
ξ, −√2p < ξ <

√
2q,

0, elsewhere,
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Long time numerical simulations

Examples

Convergence of the numerical solution using Engquist-Osher scheme
(circle dots) to the asymptotic N-wave (solid line). We take ∆ξ = 0.01
and ∆s = 0.0005.
Snapshots at s = 0, s = 2.15, s = 3.91, s = 6.55, s = 20 and s = 100.
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Long time numerical simulations

Examples

Numerical solution using the Lax-Friedrichs scheme (circle dots), taking
∆ξ = 0.01 and ∆s = 0.0005. The N-wave (solid line) is not reached, as it
converges to the diffusion wave.
Snapshots at s = 0, s = 2.15, s = 3.91, s = 6.55, s = 20 and s = 100.

Enrique Zuazua (BCAM) Climate, Numerics and Control Rome, June 2013 23 / 45



Long time numerical simulations

Physical vs. Similarity variables

Comparison of numerical and exact solutions at t = 1000. We choose ∆ξ

such that the
∣∣∣ ·
∣∣∣
1,∆

error is similar. The time-steps are ∆t = ∆x/2 and

∆s = ∆ξ/20, respectively, enough to satisfy the CFL condition.
For ∆x = 0.1:

Nodes Time-steps
∣∣∣ ·
∣∣∣
1,∆

∣∣∣ ·
∣∣∣
2,∆

∣∣∣ ·
∣∣∣
∞,∆

Physical 1501 19987 0.0867 0.0482 0.0893

Similarity 215 4225 0.0897 0.0332 0.0367

For ∆x = 0.01:

Nodes Time-steps
∣∣∣ ·
∣∣∣
1,∆

∣∣∣ ·
∣∣∣
2,∆

∣∣∣ ·
∣∣∣
∞,∆

Physical 15001 199867 0.0093 0.0118 0.0816

Similarity 2000 39459 0.0094 0.0106 0.0233
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The steady state model

Joint work with M. Ersoy and E. Feireisl, JDE, 2013.

Consider the scalar steady driven conservation law

∂x [f (v(x))] + v(x) = g(x), x ∈ R. (1)

In the context of scalar conservation laws (nonlinear semigroups of
L1-contractions), these solutions can be viewed as limits as t →∞ of
solutions of the evolution problem:

∂tu(t, x) + ∂x f (u(t, x)) + u(t, x) = g(x), u(0, x) = u0. (2)

Entropy L1-solutions exist and are unique in both cases.

-1

-0.5

0

0.5

1

-2 0 2 4 6 8

numerical solution v(x)
source term g(x)

-2

-1

0

1

2

3

0 2 4 6 8 10

numerical solution v(x)
source term g(x)

Two examples of steady state solutions
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The steady state model

Convergence towards the stateady state as t →∞
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Evolution versus steady state control
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Evolution versus steady state control

Time evolution control problem. Joint work with A. Porretta

Consider the finite dimensional dynamics
{

xt + Ax = Bu

x(0) = x0

(3)

where A ∈ M(N,N), B ∈ M(N,M), the control u ∈ L2(0,T ;RM), and
x0 ∈ RN .
Given a matrix C ∈ M(N,N), and some x∗ ∈ RN , consider the optimal
control problem

min
u

JT (u) =
1

2

∫ T

0
(|u(t)|2 + |C (x(t)− x∗)|2)dt .

There exists a unique optimal control u(t) in L2(0,T ;RM), characterized
by the optimality condition

u = −B∗p ,

{
−pt + A∗p = C ∗C (x − x∗)

p(T ) = 0
(4)
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Evolution versus steady state control

The steady state control problem

The same problem can be formulated for the steady-state model

Ax = Bu.

Then there exists a unique minimum ū, and a unique optimal state x̄ , of
the stationary ”control problem”

min
u

Js(u) =
1

2
(|u|2 + |C (x − x∗)|2) , Ax = Bu , (5)

which is nothing but a constrained minimization in RN ; and by elementary
calculus, the optimal control ū and state x̄ satisfy

Ax̄ = Bū , ū = −B∗p̄ , and A∗p̄ = C ∗C (x̄ − x∗) .
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Evolution versus steady state control

We assume that
The pair (A,B) is controllable, (6)

or, equivalently, that the matrices A, B satisfy the Kalman rank condition

Rank
[
B AB A2B . . . AN−1B

]
= N . (7)

Then there exists a linear stabilizing feedback law L ∈ M(M,N) and c ,
µ > 0 such that
{

xt + Ax = B(Lx)

x(0) = x0

=⇒ |x(t)| ≤ ce−µt |x0| ∀t > 0 . (8)

Concerning the cost functional, we assume that the matrix C is such that

The pair (A,C ) is observable (9)

which means that the following algebraic condition holds:

Rank
[
C CA CA2 . . . CAN−1

]
= N . (10)
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Evolution versus steady state control

Under the above controllability and observability assumptions, we have the
following result.

Theorem

Assume that (7) and (10) hold true. Then we have

1

T
min

u∈L2(0,T )
JT T→∞−→ min

u∈RN
Js

and
1

T

∫ T

0

(
|u(t)− ū|2 + |C (x(t)− x̄)|2

)
dt → 0

where ū is the optimal control of Js and x̄ the corresponding optimal state.

In particular, we have

1

(b − a)T

∫ bT

aT
x(t) dt → x̄ ,

1

(b − a)T

∫ bT

aT
u(t) dt → x̄

for every a, b ∈ [0, 1].
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Evolution versus steady state control

Time scaling = Singular perturbations

Note that the problem in the time interval [0,T ] as T →∞ can be
rescaled into the fixed time interval [0, 1] by the change of variables
t = Ts.
In this case the evolution control problem takes the form

εxs + Ax = Bu, s ∈ [0, 1].

In the limit as ε→ 0 the steady-state equation emerges:

Ax = Bu.

This becomes a classical singular perturbation control problem.
Note however that, in this setting, the role that the controllability and
observability properties of the system play is much less clear than when
dealing with it as T →∞.
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Averaged controllability of uncertain systems

Motivation

Often the data of the system under consideration or even the PDE (its
parameters) describing the dynamics are not fully known.
In those cases it is relevant to address control problems so to ensure that
the control mechanisms:

Are robust with respect to parameter variations.

Guarantee a good control theoretical response of the system at least
in an averaged sense.
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Averaged controllability of uncertain systems

Parameter dependent control problem

Consider the finite dimensional linear control system

{
x ′(t) = A(ν)x(t) + Bu(t), 0 < t < T ,
x(0) = x0.

(11)

In (11) the (column) vector valued function
x(t, ν) =

(
x1(t, ν), . . . , xN(t, ν)

)
∈ RN is the state of the system, A(ν) is

a N × N−matrix and u = u(t) is a M-component control vector in RM ,
M ≤ N.

The matrix A is assumed to depend on a parameter ν in a continuous
manner. To fix ideas we will assume that the parameter ν ranges
within the interval (0, 1).

Note however that the control operator B is independent of ν, the
same as the initial datum x0 ∈ RN to be controlled.
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Averaged controllability of uncertain systems

Averaged controllability

Given a control time T > 0 and a final target x1 ∈ RN we look for a
control u such that the solution of (11) satisfies

∫ 1

0
x(T , ν)dν = x1. (12)

This concept of averaged controllability differs from that of simultaneous
controllability in which one is interested on controlling all states
simultaneously and not only its average.

When A is independent of the parameter ν, controllable systems can be
fully characterized in algebraic terms by the rank condition

rank
[
B, AB, . . . ,AN−1B

]
= N. (13)
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Averaged controllability of uncertain systems

The following holds:

Theorem

Averaged controllability holds if and only the following rank condition is
satisfied:

rank
[
B,

∫ 1

0
[A(ν)]dνB, . . . ,

∫ 1

0
[A(ν)]N−1dνB, ...

]
= N. (14)
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Averaged controllability of uncertain systems

Several remarks are in order:

Note that, contrary to the case where A is fully determined,
independent of ν, in (14) we are considering all the averages of all the
powers of A(ν) to any order. This is so since, in the present setting,
Cayley-Hamilton’s Theorem cannot be applied to ensure that∫ 1

0 [A(ν)]Ndν can be written as a linear combination
∫ 1

0 [A(ν)]kdν for
k = 0, 1, ...,N − 1, as it happens in the case where A is fully
determined, independent of ν.
The averaged rank condition can be interpreted and simplified when
all the matrices A(ν) are multiples of the same constant matrix A:

A(ν) = σ(ν)A. (15)

In this case ∫ 1

0
[A(ν)]kdν =

∫ 1

0
[σ(ν)]kdνAk , k ≥ 0

[
B,
∫ 1

0 [A(ν)]dνB, . . . ,
∫ 1

0 [A(ν)]N−1dνB, ...
]

=
[
B,
∫ 1

0 [σ(ν)]dνAB, . . . ,
∫ 1

0 [σ(ν)]N−1dνAN−1B, ...
] (16)

Thus, under the further assumption that
∫ 1

0
[σ(ν)]kdν 6= 0, k = 1, ...,N − 1, (17)

the averaged rank condition (14) is equivalent to the classical one
(13), involving only powers of A up to order N − 1. Note however
that, if some of the integrals in (17) vanish, then, necessarily, higher
order terms are to be considered for the rank condition to be fulfilled.
In those cases the averaged rank condition does not coincide with the
classical one.
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Averaged controllability of uncertain systems

Averaged observability

The adjoint system depends also on the parameter ν:

{
−ϕ′(t) = A∗(ν)ϕ(t), t ∈ (0, T )
ϕ(T ) = ϕ0.

(18)

Note that, for all values of the parameter ν, we take the same datum for ϕ
at t = T . This is so because our analysis is limited to the problem of
averaged controllability.
We have the duality identity

<

∫ 1

0
x(T , ν)dν, ϕ0 >=

∫ T

0
< u(t),

∫ 1

0
B∗ϕdν > dt+ < x0,

∫ 1

0
ϕ(0, ν)dν > .

(19)
Accordingly, the controllability condition (12) can be recast as follows:

< x1, ϕ0 >=

∫ T

0
< u(t),B∗

∫ 1

0
ϕdν > dt+ < x0,

∫ 1

0
ϕ(0, ν)dν >, ∀ϕ0 ∈ RN .
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Averaged controllability of uncertain systems

This is the Euler-Lagrange equation associated to the minimization of the
following quadratic functional over the class of solutions of the adjoint
system:

J
(
ϕ0
)

=
1

2

∫ T

0

∣∣∣∣B∗
∫ 1

0
ϕ(t, ν)dν

∣∣∣∣
2

dt− < x1, ϕ0 > + < x0,

∫ 1

0
ϕ(0, ν)dν > .

The functional J : RN → R is trivially continuous and convex.
Let us assume for the moment that the functional J has a minimizer ϕ̂0.
This would automatically lead to the control

u(t) = B∗
∫ 1

0
ϕ̂(t, ν)dν, (20)

ϕ̂ being the solution of the parametrized adjoint system associated to the
minimizer ϕ̂0. For the existence of the minimizer of J it is sufficient to
prove the coercivity of the functional J:

|ϕ0|2 + |
∫ 1

0
ϕ(0, ν)dν|2 ≤ C

∫ T

0

∣∣∣∣B∗
∫ 1

0
ϕ(t, ν)dν

∣∣∣∣
2

dt, ∀ϕ0 ∈ RN . (21)
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Averaged controllability of uncertain systems

Since we are working in the finite-dimensional context, inequality (21) is
equivalent to the following uniqueness property:

B∗
∫ 1

0
ϕ(t, ν)dν = 0 ∀t ∈ [0,T ]⇒ ϕ0 ≡ 0. (22)

To analyze this inequality we use the following representation of the
adjoint state:

ϕ(t, ν) = exp[A∗(ν)(T − t)]ϕ0.

Then, the fact that

B∗
∫ 1

0
ϕ(t, ν)dν = 0 ∀t ∈ [0,T ]

is equivalent to

B∗
∫ 1

0
exp[A∗(ν)(t − T )]dν ϕ0 = 0 ∀t ∈ [0,T ].

The result follows using the time analyticity of the matrix exponentials,
and the classical argument consisting in taking consecutive derivatives at
time t = T .

Enrique Zuazua (BCAM) Climate, Numerics and Control Rome, June 2013 42 / 45



Averaged controllability of uncertain systems

Comparison with simultaneous controllability

The notion of averaged observability differs and is weaker than the one of
simultaneous controllability. Consider the simplest case:

{
x ′j (t) = Ajxj(t) + Bu(t), 0 < t < T ,

xj(0) = x0
j ,

(23)

with j = 1, 2. Contrarily to the problem of averaged controllability now the
initial data of the system also depends on j .
The problem of simultaneous control requires

x1(T ) = x2(T ) = 0. (24)

For, we need to consider the adjoint system with different possible data at
t = T for its different components:

− ϕ′j(t) = A∗j ϕj(t), t ∈ (0, T );ϕj(T ) = ϕ0
j , for j = 1, 2. (25)
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Averaged controllability of uncertain systems

The corresponding observability problem then reads

|ϕ0
1|2 + |ϕ0

2|2 ≤ C

∫ T

0
|B∗[ϕ1 + ϕ2]|2 dt, ∀ϕ0

j ∈ RN , j = 1, 2, (26)

For averaged controllability it is sufficient this to hold in the particular case
where ϕ0

1 = ϕ0
2.
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Conclusions
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Conclusions

Lots to be done on:

Development of numerical algorithms preserving large time
asymptotics for nonlinear PDEs (other works of our team on
dispersive equations, dissipative wave equations,...)

The analysis of how time-evolution control and steady-state one are
related for nonlinear problems.

Robust and averaged control of uncertain systems.

All this needs to be made in a multidisciplinary environment so to assure
impact on Climate Sciences

Enrique Zuazua (BCAM) Climate, Numerics and Control Rome, June 2013 45 / 45


	Motivation
	Long time numerical simulations
	The steady state model
	Evolution versus steady state control 
	Averaged controllability of uncertain systems
	Conclusions

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PlayPauseLeft: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	anm1: 
	1.EndLeft: 
	1.StepLeft: 
	1.PlayPauseLeft: 
	1.PlayPauseRight: 
	1.StepRight: 
	1.EndRight: 
	1.Minus: 
	1.Reset: 
	1.Plus: 


